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Based on previous results of the two first authors, it is shown

that the combinatorial construction of invariants of compact,

closed three-manifolds by Turaev and Viro as state sums in

terms of quantum 6j-symbols for SLq(2; C ) at roots of unity

leads to the unitary representation of the mapping class group

found by Moore and Seiberg. Via a Heegaard decomposition

this invariant may therefore be written as the absolute square

of a certain matrix element of a suitable group element in this

representation. For an arbitrary Dehn surgery on a figure-eight

knot we provide an explicit form for this matrix element in-

volving just one 6j-symbol. This expression is analyzed nu-

merically and compared with the conjectured large k = r � 2

asymptotics of the Chern–Simons–Witten state sum [Witten

1989], whose absolute square is the Turaev–Viro state sum. In

particular we find numerical agreement concerning the values

of the Chern–Simons invariants for the flat SU(2)-connections

as predicted by the asymptotic expansion of the state sum with

analytical results found by Kirk and Klassen [1990].

1. INTRODUCTIONThe advent of topological quantum �eld theorieshas stimulated the analysis of compact three-mani-folds and knot theory. Thus Witten [1989] (see also[Fr�ohlich and King 1989]) suggested a functionalintegral approach using the Chern{Simons action(with a coupling constant k 2 Z, called the level)to obtain Jones' polynomial knot invariants [Jones1985; 1987] as expectation values of Wilson loops.In particular the partition function �(M;k) itselfshould give rise to new invariants of three-mani-folds M . The idea of Witten was made rigorousby Reshetikhin and Turaev [1990; 1991] without
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318 Experimental Mathematics, Vol. 6 (1997), No. 4recourse to the as yet formal functional integralapproach by using the theory of braided ribbongraphs associated to quantum groups, in particularfor the quantum group SLq(2; C ) at roots of unityq = exp�i=r, with r = k + 2. The correct normal-ization of the Reshetikhin{Turaev invariants wasprovided by Kirby and Melvin [1991], who also an-alyzed these invariants for small r.Another approach, at �rst sight seemingly un-related, was advocated in [Turaev and Viro 1992],and investigated further by Turaev [1991a; 1991b;1991c; 1992; 1993]. It uses quantum 6j-symbols,in particular those of SLq(2; C ) at roots of unity.This approach was generalized by Durhuus, Jakob-sen, and Nest [Durhuus et al. 1993; Durhuus 1993]to a large class of algebras (replacing SLq(2; C ))with associated 6j-symbols. Using a triangulationof a closed three-manifold M , these authors de�nean invariant, called a state sum in analogy to par-tition functions in statistical mechanics, and thenshow the independence of the particular triangula-tion, thus giving rise to an invariant Z(M; r). Asit turned out, for closed, oriented compact three-manifolds|the case we shall be dealing with ex-clusively in this article|the Turaev{Viro invari-ant and the Chern{Simons{Witten invariant arerelated as follows [Turaev 1991c; Walker 1991]:Z(M; r = k + 2) = jZCS(M;k)j2 (1–1)The construction in [Turaev and Viro 1992] wasextended in [Karowski et al. 1992] to the case whereM is not necessarily closed. Furthermore a directproof was given in [Karowski and Schrader 1993]exhibiting the Turaev{Viro theory as a topologicalquantum �eld theory with a Hilbert space struc-ture given in terms of a suitably formulated reec-tion positivity property [Osterwalder and Schrader1973; 1975]. See [Beliakova and Durhuus 1995] foran extension of these results to quantum group ver-sions of arbitrary semisimple Lie groups and an al-ternative proof of (1{1).Using the representations of SL(2;Z), the map-ping class group for the torus, given in [Gepner and

Witten 1986], Freed and Gompf [1991] and Je�rey[1992] have analyzed the Chern{Simons{Witten in-variants for lens spaces and torus bundles over S1.In fact, each of these invariants is then just givenas a certain matrix element of a suitable mappingclass group element in this representation whichis obtained from the appropriate Heegaard decom-position. It also involves the use of the canonicalframing given by Atiyah [1990].One aim of this article is to show in Section 3that the Turaev{Viro approach for SLq(2; C ) andarbitrary q = exp(i�=r) leads to a unitary repre-sentation of the mapping class group for Riemannsurfaces of arbitrary genus. In fact, these rep-resentations parametrized by r are exactly thosefound by Moore and Seiberg [1989] in the contextof conformal quantum �eld theory. Via a suitableHeegaard decomposition, the Turaev{Viro invari-ant Z(M; r) may be written in accordance withrelation (1{1) as the absolute square of a suitablematrix element of a mapping class group elementin the given representation. Our discussion so fardoes not permit the conclusion that the matrix el-ement itself de�nes an invariant. This is relatedto the fact that the Turaev{Viro invariant is frameindependent. Our result con�rms preliminary �nd-ings of Kohno [1992; 1994], who started the op-posite way, by �rst de�ning representations of themapping class group and then showing that certainmatrix elements de�ne invariants.For the reader's convenience, Section 2 brieyrecapitulates the main concepts and results foundin [Karowski and Schrader 1993]. In particularwe will use certain bases in the topological quan-tum �eld theory associated to the Turaev{Viro ap-proach. These bases are given in terms of invari-ants of coloured graphs on the boundary of an arbi-trary oriented, compact three-manifold. The map-ping class group representations considered in Sec-tion 3 are then de�ned in a natural way as lineartransformations on this set of invariants of graphs.In Section 4 we shall give a more detailed descrip-tion for the case when M is obtained via an n=mDehn surgery on a �gure-eight knot. In that case



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 319Z(M; r) is given as the absolute square of an ex-pression which involves a 3-fold sum over coloursand with only one 6j-symbol. The resulting ex-pression for Z(M; r) cannot be simpli�ed furtherin an analytic way. In Section 5, however, andstimulated by the computer calculations on lensspaces carried out by Freed and Gompf [1991], wepresent results from a numerical analysis for man-ifolds M obtained in this way, which include somehyperbolic manifolds. In particular, we use ourresults to calculate Chern{Simons invariants of as-sociated at SU(2)-bundles over these manifolds aspredicted by the conjecture on the asymptotic be-haviour as k ! 1 of the Chern{Simons{Wittenstate sum (see [Witten 1989; Freed and Gompf1991; Rozansky 1995], for example), and comparethem with the analytic results of Kirk and Klassen[1990]. The latter authors present tables for �veDehn surgeries on the �gure-eight knot, but it iseasy to extend their calculations of Chern{Simonsinvariants to any Dehn surgery. In all cases con-sidered the calculations based on their method andour numerical calculation, which is based on a fun-damentally di�erent approach, give identical re-sults (up to precision bounds) concerning the val-ues of the Chern{Simons actions for at bundles.Also we con�rm the di�erent asymptotic behaviourof the contributions to the state sum resulting fromthe irreducible and the reducible at connections,as predicted by stationary phase methods appliedto the formal functional integral. The coe�cientsof this asymptotic expansion are related to the Rei-demeister torsion and the spectral ow of the atbundle. In principle our numerical results also per-mit the evaluation of these coe�cients. This couldbe another check of the validity of this asymp-totic expansion which has not been performed sofar. We note that in the case of lens spaces, Jef-frey [1992] has performed an analytic calculationof the Chern{Simons action based on Gauss's reci-procity theorem and found agreement with the wellknown analytic results on the at SU(2)-bundles.Ohtsuki [1995] and Murakami [1995] have used thelarge k expansion to obtain �nite type invariants

of integral homology spheres. This was extendedby Rozansky [1997], Lawrence [1995] and Ohtsuki[1996] to rational homology spheres.In the present case the relevance of the Turaev{Viro invariants of hyperbolic spaces for the asso-ciated fundamental groups (contained in SL(2; C ))and the associated number theory remains an openquestion.Preliminary versions of the results given herewere presented at various conferences, such as theSchr�odinger workshop in Vienna (1993), the AMS{DMV meeting in Heidelberg (1993), and the AMS{IMU meeting in Jerusalem (1995).
2. INVARIANTS OF COLOURED GRAPHSIn this section we give a brief review of the con-struction of coloured graphs in the context of theTuraev{Viro approach as given in [Karowski andSchrader 1993]. First we recall the constructionof invariants of graphs on two-manifolds as bound-aries of three-manifolds. Let jGj be the topolog-ical space associated to a one-dimensional simpli-cial complex G (see [Spanier 1966, pp. 108{114],for example). By assumption on G every vertex�0 2 G is contained in the boundary of n = n(�0)one-simplexes in G with 2 � n � 4 and we will call�0 an n-vertex. The notion of being an n-vertexwith n � 3 is independent of the particular tri-angulation G of jGj. Every 4-vertex �0 is givenan additional structure by pairing the four one-simplexes meeting in �0 into two unordered pairs.The two one-simplexes in one pair are said to beopposite to each other. In addition one of the pairsis given the name \above" and the other pair thename \below" and is depicted in Figure 1. By thepreceding remark this additional structure is inde-pendent of the particular triangulation G of jGj.@@@@@�� ��

FIGURE 1. The additional structure at a 4-vertex.



320 Experimental Mathematics, Vol. 6 (1997), No. 4By abuse of notation we continue to denote by jGjthis space equipped with this additional structure.Let x : �1 7! x(�1) be a map from the setof nonoriented one-simplexes in G into the set of\colours" I = f0; 12 ; 1; 32 ; : : : ; r2�1g with the follow-ing properties.
(1) If two one-simplexes �11 and �12 join at a 2-vertex,then x(�11) = x(�12).
(2) If two one-simplexes �11 and �12 are opposite toeach other at a 4-vertex, then x(�11) = x(�12)(compare Figure 1).If sdG is a subdivision of G, then such a map xinduces a map sdx on sdG with similar propertiesby setting sdx(�10) = x(�1) whenever j�10 j � j�1j,for �10 2 sdG, �1 2 G. We say that a map x on Gand a map x0 on G0 with jGj = jG0j are equivalentif they induce the same map on a common subdi-vision. The equivalence class is called a colouredgraph, and is denoted by jGjx. Any set L in jGjhomeomorphic to an interval and not containingany n-vertex, for n � 3, will be called a line. Forgiven jGjx, by condition (1) we may associate toeach line a colour x = x(L). By de�nition, a col-oured graph on a two-manifold � is a pair (jGjx; '),where ' is a homeomorphism of jGj into � withthe following additional property. Near the image'(�0) of a 4-vertex �0, the images of the two openopposite one-simplexes 2 G in one pair are sepa-rated by the images of the closed one simplex G inthe other pair for any choice of a triangulation Gof jGj (compare Figure 1). Two coloured graphs(jGjx; ') and (jGjx; '0) on � are called isotopic ifthere is a homotopy 't (0 � t � 1) between themaps ' and '0 such that (jGjx; 't) are colouredgraphs on � for all 0 � t � 1.In [Karowski and Schrader 1993] we gave a gen-eralization of the state sum Z(M; r) of Turaev andViro for the case SLq(2; C ), for q = exp i�=r, as-signing a complex number Z(M; jGjx; ') (depend-ing on r) to each triple (M; jGjx; '), whereM is anoriented, compact three-manifold and (jGjx; ') isa coloured graph on @M . Moreover, Z(M; jGjx; ')de�ned as a state sum is a homotopy invariant of

the pair (jGjx; '). This understood, and by identi-fying jGj with its image in @M under ', the statesum above is also simply written as Z(M; jGjx).
Example 2.1. Some examples of Viro{Turaev invari-ants of three-manifolds that will be used in thesequel are Z(D3) = 1;Z(S3) = w�2;Z(S2 � S1) = 1;Z(S1 � S1 � S1) = (r � 1)2;Z(M nD3) = w2Z(M);where w will be de�ned in Equation (2{9). For de-tails, see, for example, [Karowski et al. 1992; Ka-rowski and Schrader 1993].The next lemma gives factorization formulas forthe invariants of three-manifolds equipped with col-oured graphs, derived in [Karowski et al. 1992;Karowski and Schrader 1993] (see also [Karowski1992]).
Lemma 2.2. (a) If a three-manifold consists of twodisconnected parts M\M 0 = ? such that jGja �@M and jG0ja0 � @M 0, thenZ(M[M 0; jGja[jGj0a0)=Z(M; jGja)Z(M 0; jGj0a0):(b) If jGja is planar , that is, if jGj is containedin an open set of @M homeomorphic to a disc,then Z(M; jGja) factorizes:Z(M; jGja) = Z(M)Z(jGja)[Karowski and Schrader 1993, Theorem 4.2]. Inthis equality Z(jGja) is independent of M andis called the invariant of the planar graph jGja.Since Z(D3) = 1 for the unit ball D3 in R 3 withboundary �= S2 (see Example 2.1), we haveZ(jGja) = Z(D3; jGja): (2–1)This expression is not only homotopy invariantbut also invariant under Reidemeister moves.



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 321(c) If a graph consists of disconnected planar partsjG1ja \ jG2jb = ? we haveZ(jG1ja [ jG2jb) = Z(jG1ja)Z(jG2jb):We also recall some examples of invariants of pla-nar graphs that will be used later. The invariantof the circle with colour i 2 I, namelyZ � ���i� = w2i = (�1)2i q2i+1 � q�2i�1q � q�1 ; (2–2)yields (�1)2i times the q-dimension of the irre-ducible representation of SLq(2; C ) associated tothe colour i. The fusion matrix N ijk, for i; j; k 2 I,is obtained byZ �i����j k� = N ijk = 8><>: 1 if k�i+j; j�i+k,i�k+j, andr�2�i+j+k2Z,0 otherwise,
(2–3)with N 0jk = �jk. The invariant

Z ������@@m lni jk ! = ���� i j kl m n ���� ; (2–4)with i; : : : ; n 2 I, is equal to the q-Racah{Wigner6j-symbol, andZ  a����@@dci j b! = qaqbqcqd ���� i a cj b d ���� (2–5)is equal to the R-matrix (in the path basis) repre-senting the 4-vertex of Figure 1. Hereqa = (�1)�aqa(a+1)for a 2 I, correcting a misprint in [Karowski andSchrader 1993, (2.11)].Various relations of invariants of graphs [Karow-ski and Schrader 1993] such as completeness, or-thogonality, Yang{Baxter's relation, Racah's rela-tion, and Biedenharn{Elliot's relation (also calledthe Fierz transformation) are obtained from a cut-ting rule for graphs, given by the Wigner{EckartrelationZ0BB@ A Ba1a2an�� 1CCA =Xx �a1x1�anxn�1w2a1w2an n�1Yi=1 w2xi Z0BB@ A x1x2xn�1a1a2an�� 1CCAZ0BB@ Bx1x2xn�1 a1a2an�� 1CCA (2–6)For n = 1 the single colour a1 has to be zero. Us-ing this cutting rule any planar graph may be cutinto pieces of the form of Equations (2{2){(2{5).Therefore:
Lemma 2.3. The invariant of any planar graph isthe sum of products of invariants of the simplegraphs of Equations (2{2){(2{5); that is, it can beexpressed in terms of w2i ; qi and the 6j-symbols.In [Karowski and Schrader 1993] the constructionof Z(M; jGjx) was also extended to coloured graphsin the interior of the three-manifold M as follows:
Definition 2.4. Let M be a compact three-manifold.A coloured graph Gx in M is a triple�c(Gx);TGx; jGjx�satisfying these conditions:

(a) c(Gx) is a �nite one-dimensional simplicial com-plex embedded in �M and called the core of Gx.
(b) TGx is an open tubular neighborhood of c(Gx) in�M with smooth boundary @TGx.
(c) jGjx is a coloured graph on @TGx.Given Gx, we denote by M n TGx the compact ori-ented three-manifold obtained by deleting TGx fromM . By construction the boundary ofM nTGx is thedisjoint union of @TGx and @M . By de�nition, theinvariant of the three-manifoldM equipped with acoloured graph in its interior isZ(M(Gx)) = Z(M n TGx; jGjx): (2–7)Of course this de�nition may be extended to thecase where there is another coloured graph jG0jx0on @M . This notion of a coloured graph Gx in M



322 Experimental Mathematics, Vol. 6 (1997), No. 4allows the introduction of what we called a merid-ian m in [Karowski and Schrader 1993]:
Definition 2.5. Consider a subset in TGx that lookslike �D2 � I (D2 the unit disc in R 2, I = [0; 1] theunit interval), and such that its intersection with@TGx has the form (S1 = @D2)�I. Ameridian m isany circle of the form S1�fQg, withQ 2 (0; 1) � I.Such a meridian will be equipped with a colour yand combined with jGjx to give a coloured graphdenoted by jG [mjx;y. Given several such meridi-ans written asm = m1[� � �[mn and equipped withcolours y = (y1; : : : ; yn), by de�nition the invariantof the three-manifold M containing the graphGmx = (c(Gx);TGx; jG [mjx;y)with meridians m isZ(M(Gmx )) =Xy nYi=1 w2yiw2 Z(M n TGx; jG [mjx;y);

(2–8)wherew2 =Xi w4i = �2r(q � q�1)2 ; q = ei�=r; (2–9)and w2i is given by Equation (2{2). A line of Gmxis called oriented if it intersects a meridian oncetransversally. It is called left (right) handed ifit undercrosses (overcrosses) the meridian in thesense of Figure 1, looking from the exterior of TGxonto the 4-vertex.Graphically a left-handed and a right-handed linelook locally likem and m respectively.We will need later the following projecting andbranching properties of meridians [Karowski andSchrader 1993, Corollaries 5.5, 5.6 and 6.5].

Lemma 2.6. (i) If one of the colours x in x happensto be simultaneously left- and right-handed , theinvariant (2{8) vanishes unless x = 0.Xyy0 w2yw2 w2y0w2 yy0x / �x0(ii) If m and m0 are two meridians of the same left-handed (say) line, one of them may be omitted :m [m0 � m or � :(iii) If three left-handed (say) lines with meridiansm, m0 and m00 branch at a three vertex , one ofthe meridians may be omitted : m [m0 [m00 �m [m0, or�� � ��: (2–10)Similar relations hold for right-handed lines. Therelations above have to be understood in the sensethat both sides will give the same invariant in for-mula (2{8).In the following results all lines will be assumedto be oriented. We write for short Z(M;Ga;�b) ifthe graph has left-handed lines with colours a andright-handed ones with colours �b.
Lemma 2.7 [Karowski and Schrader 1993]. The rel-ative braiding of a left- and a right-handed line istrivial : �����  � ����� :
Corollary 2.8. A graph Ga;�b in S3 with oriented linescan be decomposed as Ga [ G�b such that Ga � D31,G�b � D32 and D31\D32 = ?. Therefore the invariantfactorizesZ�S3(Ga;�b)� = w2 Z�S3(Ga)�Z�S3(G�b)�:In addition, in [Karowski and Schrader 1993] for-mulas were derived that express the change of theinvariants of three-manifolds equipped with graphsunder speci�c changes M !M 0 of the manifolds.



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 323

Lemma 2.9 (Cutting full cylinders). If the three-mani-fold M contains a cylinder D2 � [0; 1] such that@D2 � [0; 1] � @M and if , for a point P 2 @D2,P � [0; 1] is part of a line (of colour a) of a graphGa, then the cylinder may be removed using theformulaZ0BBB@ '�@@@@: : : ... : : :...M Mab c��@@@ 1CCCA= �a0 1wbwcZ0BBBBB@ '�: : : ... : : :...M 0 M 0b c�	 1CCCCCA
Lemma 2.10 (Introducing hollow tubes). If the three-manifold M contains a cylinder D2 � [0; 1] suchthat D2 � f0; 1g � @M , then the cylinder may beremoved (that is, a tube may be introduced) usingthe formulaZ0BBB@ '�M 1CCCA=Xx w2xZ0BBBBB@ '�@@@@@@M 0 M 0x� 1CCCCCAwhere the circle @D2�f 12g with colour x is a merid-ian.Finally we have a relation between invariants ofgraphs in the internal of three-manifolds and theinvariants of planar graphs. For the simple case ofS3 this is given by the following theorem.
Theorem 2.11. For any graph Ga � S3 (of only left-handed lines) the invariant of S3(Ga) may be writ-ten in terms of the invariant of a correspondingplanar graph jGja on S2Z�S3(Ga)� = w�(Ga)�2 Z(jGja);

where �(Ga) is the Euler characteristic of the graphGa and jGja is some projection of Ga � S3 onto anS2 � S3.The exact form of the planar graph jGja followsfrom the construction in the proof.
Proof. We use homotopy invariance, apply itera-tively the Wigner{Eckart relation (2{6), and thenchange the graph Ga � S3 in such a way that itsprojection onto R 2 may be decomposed into localpieces that look like those of Figure 2.All meridians may be shifted by Lemma 2.6 sothat they only appear at pieces of type (e). Nowwe use properties of the meridians [Karowski andSchrader 1993, Lemma 5.4] to change pieces (a)and (b) of Figure 2 as follows:�� ! ������ ; � ! ������ :Creating a hole in S3 such that its projection liescompletely below the the projection of the graph,the invariant changes by a factor w�2: indeed,Z�S3(Ga)� = w�2 Z�(S3 nD3)(Ga)�(see Example 2.1). Now we deform the hole sothat in the end the original position of the graphlies completely inside the hole. During this proce-dure we perform step by step several changes of thegraph and the manifold. At the end the tubularneighborhood has disappeared and only the holeremains with the graph jGja on its boundary S2.If, during this procedure, we reach a piece of type��(a) ��(b) �" !"!(c) �& %"!(d) ��' $# (e) �' %# !(f) �$�&  "(g)

FIGURE 2. The building blocks of any graph Ga.



324 Experimental Mathematics, Vol. 6 (1997), No. 4(d), we apply Lemma 2.10 to connect it with thehole: 
 	� �! w2 Xx w2xw2 
 	
 	�	 �
x! w2 
 	
 	�	 �
(In second step we have used Lemma 2.6 again.)Thus the invariant has changed by a factor of w2.Passing pieces of type (a), (b), (f), and (g) theinvariant will not change. In the case of (f) we useagain [Karowski and Schrader 1993, Lemma 5.4] toobtain �' 	%� � �� ! ' 	� � ��! ' 	� �and analogously for case (g). If we reach a piece oftype (e) we apply Lemma 2.9:Xx w2xw2 '$�� ��x ! Xx w2xw2 �x0'$! 1w2 '$The invariant changes by a factor w�2. Finally thegraph Ga has disappeared and instead we have thenew planar graph jGja on the boundary�= S2 whereeach piece of Ga as depicted in Figure 2 is replacedby the corresponding piece of jGja, as depicted inFigure 3.

Since Z(S3 n D3) = 1 and twice the number ofpieces of type (e) minus twice the number of piecesof type (d) is the Euler characteristic of Ga, theclaim follows. �For a graph G�b � S3 with only right-handed linesthe result is quite similar. The only di�erence isthat for the resulting planar graph jGj�b � S2, incases (a), (b), (f), and (g), overcrossings and un-dercrossings are exchanged. This means that theinvariant has the complex conjugate value com-pared to the corresponding left-handed case.We now de�ne basic graphs in the interior ofhandle bodies. We use here a slight modi�cationof [Karowski and Schrader 1993, De�nition 7.5],since this turns out to be more convenient for ourconstruction of the representation of the mappingclass group.Consider the handlebody (ge�llte pretzel) M�associated to a Riemann surface � of genus g � 2.Let (�1; : : : ; �g ; �1; : : : ; �g) be a canonical homol-ogy basis of � realized by simple closed curves on� such that �1; : : : ; �g are contractible in M�. Wedepict this basis in Figure 4, together with an ad-ditional curve �g+1.
Definition 2.12. For the handlebody M� the canon-ical coloured graphG�e = (c(Ge); TGe; jG [ T�je;x)is de�ned as follows. Its core is as depicted inFigure 5. The coloured graph jG�je with colourse = (e1; : : : ; e3g�3) for (g > 1) on the boundary ofthe tubular neighbourhood of the core is depictedin Figure 6. In addition there are the meridiansT�1 ; : : : ; T�3g�3 such that all lines of G�e are left-handed.��� � ��(a) � �����(b) "!(c) "!(d) # (e) � �(f) ��(g)

FIGURE 3. The building stones of the planar graph jGja that correspond to Ga � S3.
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FIGURE 4. A canonical homology basis (�1; : : : ; �g; �1; : : : ; �g) plus the additional curve �g+1.M���	 ���	 c(Ge)����	'
& : : : $

%
FIGURE 5. The core c(G�e ) (dotted line).The tubular neighbourhood TG�e of the core is adeformation retract of M� and lies in a tubularneighborhood of � = @M� inM�. On @TG�e , whichis di�eomorphic to �� (where � means the oppositeorientation), the family of curves �1; : : : ; �3g�3 (ex-tending the family �1; : : : ; �g+1) forms a maximalset of disjoint pairwise nonisotopic, nonintersect-ing smooth circles, noncontractible in @TG�e butcontractible in TG�e . Thus they de�ne a markingwhose dual graph (see [Kohno 1992; 1994], for ex-ample) is given by Figure 5. Note that jG�je is notuniquely �xed by the dual graph (whose homeo-morphic image it is), but we shall agree that agiven choice has been made in such a way that,

for 1 � i � 3g � 3, the line corresponding to thecolour ei intersects the curve �i exactly once, andintersects no other �j . Now all lines with colourse1; : : : ; e3g�3 are assumed to be left-handed withrespect to the meridians T�1 ; : : : ; T�3g�3 de�ned bythe curves �1; : : : ; �3g�3.Let �G��f be another canonical graph in M� ofthe same form. However, now all the colours �f =( �f1; : : : �f3g�3) are right-handed with respect to thecorresponding meridians. The tubular neighbour-hoods TG�e and T�G��f may be taken to be disjoint.Alternatively, they may be identi�ed, written asTG�, and the invariant (2{8) will change by a fac-tor w�2g+2 only. In the following we will assumeTG�e��	 @TG�e��	G�e���	T�1 T�2 T�3 T�g
T�2g
T�g+2 T�g+1e1 e2 e3 eg eg+1eg+2

e2g
e2g�1
e3g�3

'
& : : : $
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FIGURE 6. The graph jG�je and the meridians T�1 ; : : : ; T�3g�3 .



326 Experimental Mathematics, Vol. 6 (1997), No. 4the second choice. For short we write the invariantof any three-manifold equipped with the canonicalgraph asZ(M(G�e; �f )); where G�e; �f = G�e [ �G��f :In particular we haveZ(M(G�0;0)) = w2�2g Z(M) (2–11)for all colours equal to zero. Here we have used therule for �lling empty tubes given by Lemma 2.9 andEquations (2{8) and (2{10). See also Appendix A.Finally the colours e and �f are only restricted bythe fusion rules; that is, we are supposed to haveN e1e2eg+2 = N e3eg+2eg+3 = � � �= N �f1�f2 �fg+2 = N �f3�fg+2 �fg+3 = � � � = 1; (2–12)where N ijk is the fusion matrix of Equation (2{3).We introduce the handlebody M�� with the op-posite orientation, equipped with the mirror graphG��e0; �f 0 such that gluingM�� andM� along � we have(M�� n TG��) [� (M� n T�G�) �= �� I (2–13)(where I = [0; 1]) andjG�� je0; �f 0;x0 := jG�� [ �G�� [ T ��0 je0; �f 0;x0 � �� f0g;jG�je; �f;x := jG� [ �G� [ T�je; �f;x � �� f1g;where both graphs are homotopic in �� [0; 1]. InAppendix A we prove the orthogonality relationZ�(M��[�M�)(G��e0; �f 0[G�e; �f )�=Xx0;x 3g�3Yi=1 w2x0iw2 w2xiw2 Z(��I; jG�� je0; �f 0;x0[jG�je; �f;x)= w�2g+2�e0;e� �f 0; �f 3g�3Yi=1 w�2ei w�2�fi ; (2–14)with �e0;e =Q3g�3i=1 �e0i;ei (for g > 1) and analogouslyfor � �f 0; �f . Here and in similar situations below, wemake the convention that G�e; �f lies inM� and G��e0; �f 0lies in M��.In the context of a topological quantum �eld the-ory, any oriented compact three-manifold M2 with

@M2 = � gives rise to a vector jM2 i in a �nite-dimensional vector space V �. Its dual (V �)� iscanonically isomorphic to V �� with elementshM1 j (@M�1 �= ��)such that the canonical pairing in V ���V � is givenas hM1 jM2 i = Z(M�1 [� M2):Furthermore, if we consider a handlebody equippedwith its canonical graph, we have the mapsG�e; �f 7! j e; �f i = wg�1 jM�(G�e; �f) i 2 V �;G��e; �f 7! h e; �f j = wg�1hM�(G�e; �f) j 2 V �� (2–15)such thathM1 je; �f i=wg�13g�3Yi=1 weiw �fi Z�(M�1 [� M�)(G�e; �f )�;he; �f jM2 i=wg�13g�3Yi=1 weiw �fi Z�(M�� [� M2)(G��e; �f )�;and by Equation (2{14)h e0; �f 0 j e; �f i = �e0;e � �f 0; �f :In particular, Equation (2{11) givesjM� i = wg�1 j 0; 0 i = w2g�2 jM�(G�0;0) i: (2–16)One of the main results in [Karowski and Schrader1993] was the completeness relation in terms thefollowing surgery formulahM1 jM2 i =Xe �f hM1 j e; �f i h e; �f jM2 i: (2–17)In other words, the vectors j e; �f i and h e; �f j forma system of dual bases in V � and V �� , respectively.
Remark 2.13. This completeness relation also ex-tends to the case when M1 and (or) M2 containscoloured graphs (with meridians) and (or) if M1and M2 contain additional boundary componentsalong which no gluing takes place.



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 327Lemma E of [Karowski and Schrader 1993], com-bined with (2{14) and the fact that w�i = (�1)2iwi,shows that the antilinear extension of the mapj e; �f i 7! h e; �f j(for g > 1) gives a map �� from V � onto V �� with�� jM2 i = hM2 j and such that the resulting her-mitian form (note that hM1 jM2 i� = hM2 jM1 i)is positive de�nite.Finally, by the results in [Karowski and Schrader1993] for the dimensions of these spaces, we havedimV � = �trace�Xa2I(Na)2�g�1�2;where the Na are the fusion matrices given by(2{3). The square on the right-hand side of thisequation also suggests the introduction of the fol-lowing structure. Let V �l and V �r be the subspacesof V � spanned by elements of the formj e i := j e; 0 i and j �f i := j 0; �f i; (2–18)respectively, such thatdimV �l = dimV �r = trace( ~N 2)g�1:Then there is a canonical linear isomorphism be-tween V �l 
C V �r and V � by which j e i
 j �f i corre-sponds to j e; �f i. Also V ��l(r) = (V �l(r))�. The Hilbertspace structure induced by �� is obviously compat-ible with this isomorphism. In the next section weshow that the representation of the mapping classgroup de�ned on V � also is compatible with thisisomorphism; that is, it factorizes with respect tothe left- and right-handed spaces.
3.FINITE-DIMENSIONAL UNITARY REPRESENTATIONS

OF THE MAPPING CLASS GROUPThe aim of this section is to show that the results in[Karowski and Schrader 1993] on the Turaev{Virotheory, as outlined in Section 2, lead to a unitaryrepresentation on V � of the mapping class groupMCGg for �. It su�ces to consider the case g �2, since for g = 1 the construction is well-known

[Gepner and Witten 1986; Karowski and Schrader1993, Appendix A]. Let ' be a di�eomorphism of�. We de�ne the linear transformation �(') on V �by its matrix elementsh e0; �f 0 j�(') j e; �f i = w2g�2 3g�3Yi=1 we0i wei w �f 0i w �fi�Z�(M�� [(�;')M�)(G��e0; �f 0 [ G�e; �f)�: (3–1)Here the symbol (�; ') means that we glue M�� toM� by identifying x 2 �� of M�� with '�1(x) 2 �of M�. Similarly to Equation (2{14), the invariantin (3{1) equalsXx0;x 3g�3Yi=1 w2x0iw2 w2xiw2�Z�(�� I) [(�;')(�� I); jG�� je0; �f 0;x0 [ jG�je; �f;x�:
(3–2)In particular, by Equation (2{14), �(id) is the iden-tity transformation on V �.

Proposition 3.1. The map ' 7! �(') de�nes a rep-resentation of the di�eomorphism group of �. Itskernel contains the identity component ; hence �descends to a representation of the mapping classgroup MCGg also denoted by �.
Proof. By the basic construction of state sums withcoloured graphs in [Karowski and Schrader 1993]it is easy to see that one may move ' to the right;that is, the partition function in (3{2) equalsZ��� I; jG�� je0; �f 0;x0 [ '(jG�je; �f;x)�; (3–3)with the following notation: '(jG�je; �f;x) is the one-dimensional simplicial complex in � � f1g that isthe image of jG�je; �f;x under ' and is equippedwith the corresponding colours. Inserting (3{3)into (3{2) and (3{1) now proves the second partof the proposition for �, due to the homotopy in-variance for coloured graphs of state sums. The



328 Experimental Mathematics, Vol. 6 (1997), No. 4�rst part of the proposition follows from the obser-vation that(�� I) [(�;'1�'2)(�� I)�= (� [ I) [(�;'1)(�� I) [(�;'2)(�� I)for two di�eomorphisms '1 and '2 and from thecompleteness relation (2{17). �Denote by A1; : : : ; A3g�3; B1; : : : ; Bg the elemen-tary Dehn twists associated with the curves �1; : : : ;�3g�3; �1; : : : ; �g (see Figures 4 and 6). Then themapping class group MCGg is generated by the el-ements A1; : : : ; Ag ; Ag+2; B1; : : : ; Bg (see [Wajnryb1983], for example). SetSi = A�12g�2+iBiA�12g�2+i for 1 < i < g;S1 = A�11 B1A�11 ;Sg = A�1g+1Bg A�1g+1:Then MCGg is also generated by A1; : : : ; A3g�3;S1; : : : ; Sg.
Proposition 3.2. The representation �(') of MCGgde�ned by (3{1) satis�esh e0; �f 0 j�(') j e; �f i = h e0 j�l(') j e ih �f 0 j�r(') j �f i:

(3–4)This means � decomposes into two maps �l and �ron V �l and V �r , respectively , de�ned by (2{18). Byuse of the canonical isomorphism V � �= V �l 
C V �r ,Equation (3{4) implies that�(') �= �l(') 
 �r('): (3–5)

Furthermore the map �r is complex conjugate tothe map �l in these bases. For the generating ele-ments A1; : : : ; A3g�3; S1; : : : ; Sg of MCGg the map�l is given byh e0 j�l(Ai) j e i = h e0; 0 j�(Ai) j e; 0 i;h e0 j�l(Si) j e i = w�1h e0; 0 j�(Si) j e; 0 i; (3–6)where w =pr=2=(sin�=r) (see Equation (2{9)).
Proof. By explicit calculation of the matrix ele-ments (3{1) we prove the factorization property(3{4) for the generators of MCGg. Thus it su�cesto de�ne �l on these elements. We start with theelements A1; : : : ; A3g�3 and determine �(A1) j e; 0 i�rst. For the elementary Dehn twist A1 along �1,the graph jG�je;0;x on @TG� of Figure 6 is changedinto A1jG�je;0;x as given in Figure 7.We see that the meridians T�1 ; : : : ; T�3g�3 are leftunchanged. Also the equivalence of the two pic-tures in Figure 7 on the level of state sums resultsfrom [Karowski and Schrader 1993, Lemma 5.4](compare also the proof of Theorem 2.11). Hencewe obtain by Equations (2{5) and (2{6)�(A1) j e; 0 i = j e; 0 i q2e1 ; (3–7)where qj = (�1)�jqj(j+1) for j 2 I. For right-handed lines we would obtain a similar picture asthat of Figure 7, except that the self-overcrossingis replaced by the opposite version. Therefore weobtain �(A1) j e; �f i = j e; �f i q2e1q�2�f1 : (3–8)T�1e1 e2'

&
'
��' � � � �! T�1e1 e2'

&
'
����
 � � �

FIGURE 7. The Dehn twist A1 applied to jG�je;0;x.



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 329The discussion for any Ai (1 � i � 3g � 3) is anal-ogous, giving�(Ai) j e; �f i = j e; �f i q2eiq�2�fifor 1 � i � 3g � 3.We turn to the investigation of S1 = A�11 B1A�11and discuss �rst �(S1) j e; 0 i. The graph jG�je andthe meridians T�2 ; : : : ; T�3g�3 do not change underB1. The circle B1T�1 takes the form depicted inFigure 8. This results in the following action of S1on jG�je and its meridians as depicted in Figure 9.In particular the circle A�11 B1A�11 T�1 is just �1. Toevaluate the matrix elements h e0; �f 0 j�(S1) j e; �f iB1T�1e1 e2 : : :'
&
'
& $%'&	�

FIGURE 8. The e�ect of B1 on jG�je;0;x.

we apply a basis transformation j e; 0 i 7! j ~e; 0 i.First we omit the meridian T�2 of e2 by Equa-tion (2{10). Then we use the following identityfor the coloured graph (see [Karowski and Schrader1993, (4.11)], a special case of a Fierz transforma-tion):e1 e2ge2e1 e2g+2=X~e2 w2~e2 ��@@ ��@@e1e1 ~e2 e1e1 e2ge2g+2e2=X~e2 w2~e2 ���� e1 e1 e2eg+2 e2g ~e2 ���� ��@@ ��@@e1e1 ~e2 e2ge2g+2;where ��ad be cf �� is the 6j-symbol of Equation (2{4).We obtain the transformation matrixh ~e; 0 j e; 0 i =Yi 6=2 �~eiei w~e2we2 ���� e1 e1 e2eg+2 e2g ~e2 ���� : (3–9)We also apply the analogous transformationh e0; 0 j 7! h ~e0; 0 j :Using the cutting rules established in [Karow-ski and Schrader 1993] (see also Appendix A) toT�1e1 e2 : : :: : : -A�11'
&
'& : : :: : :A�11 T�1 = T�1e1 e2 -B1'

&
'& ��

: : :: : :B1A�11 T�1
e1 e2 -A�11'

&
�&#" ��� : : :: : :A�11 B1A�11 T�1 e1 e2'

&
�&#" ��

FIGURE 9. The e�ect of S1 = A�11 B1A�11 on jG�je;0;x.



330 Experimental Mathematics, Vol. 6 (1997), No. 4Equations (3{1) and (3{2) for ' = S1 we obtainthe resulting expressionh ~e0; 0 j�(S1) j ~e; 0 i= w2g�2 3g�3Yi=1 w~e0iw~eiXx0;x 3g�3Yi=1 w2x0iw2 w2xiw2� Z(M1; jG1j) w2 �~e02~e2w2~e2 Z(M2; jG2j);where Z(M1; jG1j) is the invariant of the manifoldand the coloured graph depicted in Figure 10 andZ(M2; jG2j) that of the remainder. Here x1 is thecolour of S1T�1 belonging to the line of colour ~e1 onthe inner part of the surface and x01 is the colour ofthe meridian for ~e01 on the outer part of the surface.x01
x1

~e01 ~e02~e2~e1'
&
'
&

$
%

FIGURE 10. Graphical description for the nontrivialcontribution to the matrix element h~e0; 0 j�(S1) j~e; 0 i.By appropriate cuttings (in analogy to the proofof (2{14) in Appendix A) we write Z(M1; jG1j) andZ(M2; jG2j) in terms of invariants of planar graphsand �ndh ~e0; 0 j�(S1) j ~e; 0 i = 1wS~e2~e01~e1 3g�3Yi=2 �~e0i~ei (3–10)whereS~e2~e01;~e1 = w~e01w~e1w Z0BB@ ~e01 ~e1~e2�� ����1CCA (3–11)

in the sense of a state sum of a planar graph on S2[Karowski and Schrader 1993, Example 4.10]. Forright lines the matrix S in Equation (3{10) is tobe replaced by the complex conjugate matrix.�S ~�f2~�f 01; ~�f1 = (S ~�f2~�f 01; ~�f1)� = w ~�f 01w ~�f1w Z0BB@ ~�f 01 ~�f1~�f2�� ����1CCA
(3–12)By the same method as above one can calculatethe general matrix elementh ~e0; ~�f 0 j�(S1) j ~e; ~�f i = S~e2~e01~e1 �S ~�f2~�f 01; ~�f1 3g�3Yi=2 �~e0i~ei� ~�f 0i ~�fi :In terms of the original basis we obtain, by thetransformation formula (3{9),h e0; �f 0 j�(S1) j e; �f i= Seg+2;e2ge01e02;e1e2 �S �fg+2; �f2g�f 01 �f 02; �f1 �f2 3g�3Yj=3 �e0jej � �f 0i �fi ; (3–13)whereSeg+2;e2ge01e02;e1e2= we02we2X~e2 w2~e2 ���� e01 e01 e02eg+2 e2g ~e2 ���� ���� e1 e1 e2eg+2 e2g ~e2 ����S~e2e01e1= we01we02we1we2w X~e2 w2~e2Z0BBBB@ e01 e1~e2e02 e2eg+2 e2g eg+2e2g'& $%�� AA �� AA 1CCCCA

= we01we02we1we2w Z0BBBB@ e01 e1e02 e2eg+2e2g'& $%� �
� �1CCCCA(we have again made use of a Fierz transformationin the proof of this last equality) and �S = S�.



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 331Obviously �(Sg = A�1g+1BgA�1g+1) may be calcu-lated in the same way giving (compare Figure 6):h e0; �f 0 j�(Sg) j e; �f i= Se3g�3;e2g�1e0g+1e0g;eg+1eg �S �f3g�3; �f2g�1�f 0g+1 �f 0g ; �fg+1 �fg Yi=1i6=g;g+1�e0jej � �f 0i �fi : (3–14)It remains to calculate the matrix elements of�(Si = A�12g�2+iBiA�12g�2+i);for 1 < i < g. We look at the local picture aroundthe i-th hole; see Figure 11, where the colourseI; eII; eIII and eIV areeI = eg+i�1eII = e2g�3+ieI = eII = e1eIII = eg+i+1eIV = e2g�i+1eIII = eIV = eg+1
if i > 2;if i > 2;if i = 2;if i < g � 1;if i < g � 1;if i = g � 1:By methods similar to those used to calculatethe matrix elements of S1 we obtainh e0; �f 0 j�(Si) j e; �f i= 1w2 Yj2I1 we0jwejw �f 0jw �fj Yj2I2 �e0jej� �f 0j �fj Zi� �Zi (3–15)

T�i T�i+1T�2g
T�g+2

ei ei+1
eg+i

e2g�2+i
eI
eII

eIII
eIV

FIGURE 11. The local form of jG�je and its merid-ians around the i-th hole.

for 1 < i < g, where
Zi = Z0BBBBBBBBBB@ e02g�2+i e2g�2+ie0i+1 ei+1e0g+ie0i eg+i eieIeIIeIIIeIV'& $%� �#  ' $' $1CCCCCCCCCCA ;

�Zi = Z�i , I1 = f2g�2+i; i; g+i; i; i+1g and I2 =f1; : : : ; 3g�3g n I1. This concludes the proof ofProposition 3.2. �Before we prove unitarity of the representation ofthe mapping class group given by the invariantsof graphs on Riemann surfaces we discuss someproperties of two special (r� 1)� (r� 1)-matrices:the diagonal matrix A (see Equation (3{7))Aab = �ab q2a (3–16)and Sc (for �xed c) with matrix elements given byEquation (3{11)Scab = q�2a q�2bw Xd w2dq2dN cdab (3–17)where N cdab = wawb��ab ba dc ��. This representation interms of a 6j-symbol and the following relationsare proved in Appendix B. Note that for c = 0this formula coincides with the representation ofSab (A.1) in [Karowski and Schrader 1993] for thegenus g = 1 case, i.e., S0 = S, because N 0d =Nd is the fusion matrix (2{3). The matrix Sc issymmetric and q�1=2c Sc is real:Scab = Scba = qc(Scab)�: (3–18)Moreover the matrices A and Sc are unitary:AyA = 1; Sc(Sc)y = 1c: (3–19)In the second relation 1c has to be understood asthe unit matrix with indices a subject to the con-dition N caa 6= 0. We also haveAScAScA = �Sc; (3–20)



332 Experimental Mathematics, Vol. 6 (1997), No. 4where� = 1wXd w4dq2d = q�3=2 e�i�(1=4+r=2) (3–21)(This phase factor � di�ers from the one in [Re-shetikhin and Turaev 1991] and [Kirby and Melvin1991] since we have a di�erent sign convention forq2a.) The matrixN cd (for c and d �xed) with matrixelements N cdab is diagonalized by Sc:(Sc)�1N cdSc = diag(Sdb=S0b)b2I: (3–22)The eigenvalues of N cd are independent of c, imply-ing that N cd is equivalent to the fusion matrix Nd:(ScS�1)�1N cdScS�1 = Nd: (3–23)That A is unitary and Sc is symmetric is obvious;the other relations are proved in Appendix B.By Proposition 3.1 we now have:
Theorem 3.3. The representation of the mappingclass group ' 7! h e0; �f 0 j�(') j e; �f i on V � (see(3{1)) is unitary .
Proof. Since MCGg is generated by A1; : : : ; Ag; Ag+1and S1; : : : ; Sg, Equations (3{19) imply unitaritybecause of Equations (3{8), (3{13), (3{14), (3{15)and transformations like (3{9). �Moreover, because of the decomposition formula ofProposition 3.2, we have:
Theorem 3.4. The map ' 7! h e0 j�l(') j e i on V �land the map ' 7! h �f 0 j�r(') j �f ion V �r (see Equation (3{6)) both de�ne a unitaryray representation of MCGg such that � = �l 
 �rand �r = ��l . For genus g = 1 the maps �l(')and �r(') given by �l(S) = �l(S) and �l(A) =��1=3�l(A) for the generators and �r = ��l de�nerepresentations of MCG1.
Proof. It remains to prove that the relations S4 =1 and ASASA = S for the generators of MCG1also hold for the representation matrices �l. This

follows from Equations (3{19){(3{21). Thus wehave proved the main results of this section. �The preceding decomposition of the representation� into �l and �r provides a choice of the phasesthat makes them into ray representations only. Forg = 1 the phases have been adjusted in such a waythat one indeed obtains representations �l and �r.
Example 3.5. If '(A;S) is a word composed of A'sand S's thenh e0 j�l('(A;S)) j e i = wNSh e0; 0 j�('(A;S)) j e; 0 i;where NS is the number of S's in '(A;S).
Example 3.6. For genus g = 1 we haveh e0 j�l(Amt S Amt�1 S � � �Am1 S) j e i= (Amt S Amt�1 S � � �Am1 S)e0eandh e0 j�l(S Amt S Amt�1 S � � �Am1 S) j e i= (S Amt S Amt�1 S � � �Am1 S)e0e ;where the matrix A is given by Equation (3{16)and S, given by Equation (3{17) for c = 0, is theVerlinde matrixSab = (�1)2a+2b sin(�=r)(2a + 1)(2b + 1)w sin(�=r) : (3–24)

4. APPLICATION TO THE PARTITION FUNCTION OF
ARBITRARY MANIFOLDSBased on our discussion in Section 3 of the repre-sentation of the mapping class group, we now pro-vide a formulation on how to calculate the Turaev{Viro state sum Z(M) for an arbitrary orientedcompact three-manifold M . In particular we givean explicit formula for manifolds obtained from a�gure-eight knot by an (�n=m)-surgery. Let M�be an arbitrary handlebody with boundary � ofgenus g, viewed as embedded in S3. We set ~M�� =S3nM� with @ ~M� = �, such that ~M��[�M� = S3.Let ' be an arbitrary orientation preserving dif-feomorphism and set M = ~M�� [(�;') M�. Anythree-manifold can be obtained (nonuniquely) in



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 333this way [Heegaard 1916]. By our previous discus-sion we may write the Turaev{Viro invariant of thethree-manifold M asZ(M; r) = h ~M� j�(') jM� i=Xe; �f h ~M� j e; �f ih e; �f j�(') jM� i: (4–1)In particular, for ' = 1, we get of courseZ(S3; r) = h ~M� jM� i= h ~M� j 0; 0 ih 0; 0 jM� i = w�2: (4–2)Because of (2{16) this means that h 0; 0 jM� i =wg�1 and h ~M� j 0; 0 i = w�g�1. We want to fac-torize the right-hand side of Equation (4{1) into aleft- and a right-handed contribution. The factor-ization of the �rst factor,h ~M� j e; �f i = wg+1 h ~M� j e; 0 ih ~M� j 0; �f i= wg+1 h ~M� j e ih ~M� j �f i;follows from the trivial braiding of left- and right-handed lines that was proved in [Karowski andSchrader 1993], which implies that the graphs G�eand G��f may be moved into two nonintersectingballs D3 � S3, respectively. The normalization fol-lows from the de�nitions (2{15) and the equalitiesZ(S3) = w�2 and h ~M� j 0; 0 i = w1�gh ~M� jM� i =w�1�g. We have introduced h ~M� j e i = h ~M� j e; 0 isuch that h ~M� j 0 i = w�g�1. The factorization ofthe second factor,h e; �f j�(') jM� i = wg�1h e j�l(') j 0 ih �f j�r(') j 0 i;follows from Proposition 3.2 and Equation (2{16).Therefore we haveZ(M; r) = Zl(M; r) � Zr(M; r);whereZl(M; r)= ei ( ~M�;')wg Xe h ~M� j e ih e j�l(') j 0 i (4–3)and Zr(M; r) = Z�l (M; r). For ' = 1 we haveZl(S3; r) = ei w�1;

compare Equation (4{2). The phase  ( ~M�; '),which is of course not determined by the Turaev{Viro invariant, has to be chosen in such a way thatZl(M; r) is invariant (see below).We now discuss the case where � is a set of (pos-sibly knotted) tori:� = N[i=1(S1 � S1)i;forming a link L with N components. For simplic-ity we write h ~M� j = hL j and use jM� i = j 0; 0 i.The mapping class group of a torus is generatedby the elements S and A with the relations S4 = 1and (SA)3 = S2. We use the representation asgiven in [Karowski and Schrader 1993] and Theo-rem 3.4 (see also [Gepner and Witten 1986]). If weconsider the map ' = An11 � � �AnNN S1 � � �SN , theninstead of the invariant (4{3) we get the followingformula, due to Reshetikhin and Turaev [1991] (seealso [Kirby and Melvin 1991]).
Theorem 4.1. Let L be a link of N components withframing n1; : : : ; nN . ThenZl(M; r) = ���Lw1�N�Xe hL j�l(An11 � � �AnNN ) j e iw2e1 � � �w2eN (4–4)is invariant under Kirby moves, if the phase factor� = q�3=2e�i�(1=4+r=2)is given by Equation (3{21) and �L is the signatureof the linking matrix . Therefore Zl(M; r) is aninvariant of the three-manifold obtained by surgeryalong L.Note that (4{4) for N = 1 is compatible with (4{3)for g = 1.
Proof. Let L0 be the link obtained by a Kirby moveat a line of L of colour e. We use Theorem 2.11to write the invariant of the link L0 embedded inS3 as an invariant of a planar graph. We then



334 Experimental Mathematics, Vol. 6 (1997), No. 4apply formula (B{4) of Appendix B and use againTheorem 2.11 in the inverse direction to obtainXe0 w2e0hL0 j�l('0) j e; e0 i=Xe0 w2e0 Z0BBBB@ � �� �#�
 !� ������e::::::::::::::: m m0 e0� ��� ��1CCCCA= w��2 Xe0 w2e0 Z0@ e e0� ��� �� �:::::: 1A= w��2 w �Z  � ��::::::e !

= w �Z0BBB@ %�������e::::::::::::::: ����m 1CCCA = w � hL j�l(') j e i:�This relation also explains the local meaning of Land L0. The normalization of (4{4) is consistentwithhL j�l(An11 � � �AnNN ) j 0; 0 i = hL j 0; 0 i = w�2and h e j�l(S1 � � �SN) j 0 i = Se10 � � � SeN0= w�Nw2e1 � � �w2eN :Invariance under Kirby moves obviously does notdetermine uniquely the phase factor in (4{4). InSection 5 we present for special cases an experi-mentally obtained choice of the phase factor exp i such that Zl(M; r) �ts asymptotically for r ! 1with the asymptotic expansion of Witten's Chern{Simons functional integral ZCS(M;k) fork = r + 2!1:This choice of the phase does not agree with thatof (4{4). Formula (4{4) yields up to a factor wthe Reshetikhin{Turaev invariant of three-mani-folds [Reshetikhin and Turaev 1991] in the slightly

modi�ed version of Kirby and Melvin [1991] (seealso [Wenzl 1993]):Zl(M; r) = w�1 �r(M): (4–5)The matrix elementhL jAn11 � � �AnNN j e iin (4{4) is the invariant of the link L with framingsn1; : : : ; nN of the components as given by formulas(2{7) and (2{8) for left-handed lines with colourse = (e1; : : : ; eN ). In particular for a single unknot-ted circle (N = 1) and framing n = �1, (4{4)together with (2{8) and (3{7) yields the followingvalue for the invariant of S3 (see also Figure 7):Zl(S3; r) = ��1 Xe hL j�l(A�1) j e iw2e= ��1 w�2 Xe w4e q�2e = w�1: (4–6)This means that Zl(M; r) is invariant under Kirbymoves in this case.We now return to Equation (4{3) and restrictattention to the case where � is a (possibly knot-ted) single torus S1 � S1 forming a knot K of onecomponent. ThenZl(M; r) = ei w Xe hK j e ih e j�l(') j 0 i; (4–7)which is the desired formula. The general case forthe map ' belongs to a (�n=m)-surgery. We dis-tinguish two cases, always with m 6= 0:
(i) jn=mj > 1. Then we write n=m as a �nite con-tinued fraction expansionnm = mt � 1mt�1 � 1� � � � 1m1 ;for 1 � t < 1 with integers m1; : : : ;mt each� 2. The mapping class group element is thenof the form'�n=m = Amt S Amt�1 S � � �Am1 S; (4–8)



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 335and the matrix element in (4{7) is given by thematrix producth e j�l('�n=m) j 0 i = (Amt S � � �Am1 S)e0; (4–9)where A is the diagonal matrix of (3{16) withdiagonal elements q2a and S is the Verlinde ma-trix (3{24).
(ii) jn=mj < 1. This time we writemn = mt � 1mt�1 � 1� � � � 1m1 ;again with the mi � 2. The mapping classgroup element is then of the form'�n=m = S Amt S Amt�1 S � � �Am1 S;and the matrix element in (4{7) is given by thematrix producth e j�l('�n=m) j 0 i = (S Amt S � � �Am1 S)e0:We obtain, in particular,h e j�l('�n=1) j 0 i = q2ne Se0 = w�1q2ne w2e (4–10)h e j�l('�1=m) j 0 i =Xe0 See0q�2me0 Se00: (4–11)What remains is to calculate the coe�cients hK j e idepending on the way K is embedded in S3. Theyare invariants of knots.We now assume in addition that K is a �gure-eight knot.
Lemma 4.2. If K is the �gure-eight knot , thenhK j e i = w�2 Xb;c w2bw2cq2bq�2c ���� e e be e c ���� : (4–12)

Proof. We use Theorem 2.11 to write the invariantof the knot embedded in S3 as an invariant of a

planar graphhK j e i = Z0BBBBBB@
���� ��������� �� � ��
�� ����m��� ���e

1CCCCCCA= w�2 Z0B@ ������� ���e 1CA
= w�2Xb;c w2bw2c Z0BBBB@�� ������

� ��e eeb c 1CCCCA= w�2Xb;c w2bw2cq2bq�2c Z0@����e e eebc 1A :The completeness and Racah relations (B{1) havebeen used. By Equation (2{4) we obtain Equa-tion (4{12). �
Corollary 4.3. For the �gure-eight knot and a (�n=m)surgery the resulting manifold M8(�n=m) has aTuraev{Viro state sum Z(M8(�n=m)) equal tojZl(M8(�n=m))j2;withZl(M8(�n=m); r) = ei w�1�Xb;c;ew2bw2cq2bq�2c ���� e e be e c ���� h e j�l('�n=m) j 0 i:

(4–13)

Example 4.4. We may write Equation (4{7) also asZl(M; r) = ei w�1 Xe hK j�l('̂) j e ih e j�l(S) j 0 iwith ' = '̂ S. For a (�2=1)-surgery at a �gure-eight knot we have
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hK j�l(A2) j e i = Z0BBBBBB@
���� ��������� �� � ��
�� ����m��� �����e

1CCCCCCA :The meridian m undercrosses the line with coloure such that it is left-handed. For a (�1=2)-surgeryat a �gure-eight knot we havehK j�l(S A�2) j e i = Z0BBBBBB@
���� ��������� �� � ��
�� ��������
��� � ������ e

1CCCCCCA :For simplicity we have not drawn the image of themeridian.
5. NUMERICAL RESULTSWe have analyzed numerically the partition func-tion Z(M8(�n=m); r) given by Equations (4{10){(4{13) for several cases. For this we used the ex-plicit formula for the 6j-symbol taken from [Kir-illov and Reshetikhin 1989], with the identi�cation���� a b ed c f ���� = i�2(a+b+c+d+e+f)� a b ed c f �RW; (5–1)where the right-hand side is the quantity de�nedin [Kirillov and Reshetikhin 1989, Theorem 5.1] asfollows:n a b ed c f oRW= 4(abe)4(acf)4(cde)4(dbf)�Xz (�1)z [z+1]q!�[z�a�b�e]q![z�a�c�f ]q!�[z�b�d�f ]q![z�d�c�e]q ![a+b+c+d�z]q!�[a+d+e+f�z]q![b+c+e+f�z]q!��1 (5–2)with the notation

4(abc) = � [�a+b+c]q![a�b+c]q ![a+b�c]q ![a+b+c+1]q ! �12
(5–3)as in [Karowski and Schrader 1993, (3.6)],[n]q! = �q1 � q�1q � q�1 ��q2 � q�2q � q�1 � � � � �qn � q�nq � q�1 �;and the sum in (5{2) taken over all nonnegative in-tegers z with nonnegative arguments in the squarebrackets.(Note that the q1=2 of [Kirillov and Reshetikhin1989] is our q and the q0 of [Turaev and Viro 1992]).The numerical calculations were performed forvarious manifoldsM8(�n=m) and values of r in therange 4 � r � 403. We used a Fortran programwith double precision. Note that due to Equa-tions (4{12) and (5{1){(5{3) the numerical cal-culation is essentially a four-loop calculation, soZl(M8(�n=m); r) is a sum of O(r4) contributionswith a corresponding computing time behaviour.This is why for values of r above r � 440 the resultstended to become unreliable in double precision. Itis possible to extend the range of r up to � 500 byworking with G-precision. Here, however, we shallonly report on results in the range given above.The absolute values of Zl(M8(�n=m); r) turn outto be all of order one, in contrast to the case of lensspaces (see [Freed and Gompf 1991; Je�rey 1992],for example).

Example 5.1. Figure 12, left, plots Zl(M8(�6=1); r)for even r = 4; : : : ; 403 as dots in the complexplane. The phase in Equation (4{13) is taken as = �r; see Equation (5{8) below. It turns outthat for odd r these invariants are zero (see belowand Appendices C and D). Note that M8(�6=1) isa hyperbolic manifold.
Example 5.2. Figure 12, right, plots Zl(M8(�1=6); r)for r = 4; : : : ; 403. The phase in Equation (4{13)for m = 1 is taken as  = 0; see Equation (5{10)below.The main interest of our analysis was to see if thesemiclassical analysis r !1 could be correct.
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FIGURE 12. Left: The values of Zl(M8(�6=1); r), for even 4 � r � 403. Right: The values of Zl(M8(�1=6); r),for 4 � r � 403.Recall that by Equation (1{1) (see also (4{8)and (4{13)) the values of Zl(M8(�n=m); r) andZCS(M8(�n=m); k = r � 2) should agree up toa phase. Now the semiclassical conjecture [Witten1989; Freed and Gompf 1991; Rozansky 1995] isthat for large r we haveZCS(M; k = r � 2)�= 12 XA atCA r� 12 dimH0(A) � e2�irSCS(A); (5–4)if all at connections are isolated (modulo gaugetransformations), so that in particular we then havedimH1(A) = 0. This is indeed the case for all ex-amples we have considered. Therefore the leadingcontributions in Equation (5{4) arise from the ir-reducible at bundles, where H0(A) = 0. Since thestructure group is SU(2) and since we consider theadjoint representation, dimH0(A) can only takethe values 0 (in the irreducible case), 1 (reducibleto U(1)) or 3 (in the trivial case with SCS(A) = 0).Finally, the absolute value of C2A is conjectured tobe, say for the irreducible connections, equal tothe Reidemeister{Ray{Singer torsion, whereas thephase is related to the spectral ow [Witten 1989;Freed and Gompf 1991; Rozansky 1995].

To see if (5{4) holds we performed a Fouriertransform~Zl(M8(�n=m); t)= 1400 403Xr=4 Zl(M8(�n=m); r) e�2�itr; (5–5)where 0 � t � 1. This function should showprominent maxima at values of t that correspondto SCS(A) for at A. In principle the absolute val-ues of the CA's may be determined from j ~Zl(M; t)jat the maxima unless there are two or more di�er-ent at connections with the same Chern{Simonsaction and the same dimH0(A). This is for exam-ple the case for M8(�n=1) with n = 8; 16; 20 (seeAppendix C).
Example 5.3. Figure 13, left, plots the absolute valueof the Fourier transform ~Zl(M8(�6=1); t) wherethe phase in Equation (4{13) for m = 1 has betaken as  = �r; see Equation (5{8) below. Thefunction has period t = 12 since Zl(M8(�6=1); r)vanishes for odd r. We interpret the big peaks ascorresponding to the leading contributions of theasymptotic expansion (5{4) with dimH0(A) = 0and the small ones to dimH0(A) = 1.
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0 0:2 0:4 0:6 0:8 1 t

j ~Zlj �6=1 surgery

0 0:2 0:4 0:6 0:8 1 t

j ~Zlj �6=1 surgery

FIGURE 13. Left: The Fourier transform j ~Zl(M8(�6=1); t)j. Right: j ~Zl(M8(�1=6); t)j:
Example 5.4. Figure 13, right, plots the absolutevalue of ~Zl(M8(�1=6); t) where the phase in Equa-tion (4{13) has been taken as  = 0; see Equa-tion (5{10) below.To locate the maxima of j ~Zl(M8(�n=m); t)j, wealso employed the following procedure. We consid-ered the set of pointsZl(M8(�n=m); r; t) = Zl(M8(�n=m); r) e�2�itr:For t at a maximum these members typically form

a symmetric pattern. Figure 14 provides two ex-amples at the maxima t = 0:15127 and t = 0:33333for the manifoldM8(�6=1) (compare Figure 13 andTables 1 and 2). Figure 12, left, corresponds to thechoice t = 0.In all the examples considered, this procedureallowed for an evaluation of the maxima up to sixdigits. Since ZCS and Zl might di�er by a phasefactor, the di�erences in the maxima should cor-respond to the di�erences in the Chern{Simonsinvariants of at bundles.
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FIGURE 14. The values of Zl(M8(�6=1); r) e�2�itr for t = 0:15127 (left) t = 0:33333 (right).



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 339Kirk and Klassen [1990] describe explicitly howto obtain all reducible and irreducible at connec-tions up to gauge equivalence ofM8(n=m) and giveprecise formulae for computing the correspondingChern{Simons invariants. For the convenience ofthe reader we briey recall these results in Ap-pendix C, where we also derive some consequencesfrom these formulae. The set of Chern{Simonsinvariants of M8(n=m) corresponding to reducibleat connections is given byn� t2pn ��� t = 0; 1; : : : ; � 12n�o; (5–6)where p is an integer such that p �m � �1 mod n(see Appendix C). In our numerical analysis thereducible at connections show up as small peaks(see Example 5.3, Figure 13, left, and Table 1).This is obviously due to the fact that these contri-butions in formula (5{4) go like r�1=2. Comparingthese values (5{6) with the values obtained fromour numerical calculations starting from (4{13), wecan determine (at least asymptotically for r !1)the phase  in (4{3) and (4{13), which is unde-termined from the Turaev{Viro invariants. For allexamples of three-manifolds M8(�n=m) we haveconsidered the phase is consistent with (n;m; r) = �2 K(n;m) r; (5–7)with K(n;m) 2 Z4, at least asymptotically forlarge r.In Table 1 we list for some examples the numberK(n;m) and the values of SCS obtained by our nu-merical method compared with the values obtainedby the method of [Kirk and Klassen 1990].Kirk and Klassen [1990] provide for the examples(n=m) = (�3=1), (�1=1), (�1=2), and (�1=3) alist of all irreducible representations of �1M8(n=m)and the corresponding Chern{Simons invariants.With the techniques presented in Appendix C wehave extended their list by more examples to com-pare the values of SCS(A) predicted by the semi-classical approximation formula (5{1) with the ac-tual values given by Equations (C{3) and (C{4).

surgery # red. reps K SCS (4{13) SCS (K{K)�3=1 1 3 0:66681 2=3�4=1 1 0 0:75000 3=4�5=1 2 1 0:19997 1=50:79999 4=5�6=1 3 2 0:3333 1=30:5012 1=20:83333 5=6
TABLE 1. Values of SCS(A) as obtained from (4{13)and from [Kirk and Klassen 1990], for some exam-ples of reducible representations for (�n=1) surgery.We usedMathematica to �nd the solutions of (C{2)and to calculate the corresponding values of Equa-tions (C{3) and (C{4).Some of these results are listed in Tables 2, 3,and 4. They too show excellent agreement betweenthe two methods. The following comments alsotake into account other examples not listed in thesetables.

Example 5.5. For (�n=1)-surgery (see Table 2) thephase factor in Equation (4{13) turns out to beconsistent with the choiceei = ei� nr=2; i.e., K(n; 1) = n; (5–8)at least asymptotically for large r. Note that thisphase factor is an invariant of the three-mani-foldM8(�n=1), because the modi�ed Reshetikhin{Turaev invariant �r(M) of [Kirby and Melvin 1991](see (4{5)) takes the following values for r = 3:�3(M8(�n=1)) = � 1p2 �1 + e�i� n=2� :This result is obtained as follows. For r = 3 in(4{13) only b = c = 0 and e = 0; 1=2 contribute.Therefore with Equation (4{10) we haveZl(M8(�n=1); 3) = ei w�2 1=2Xe=0 w2e q2ne ���� e e 0e e 0 ���� :



340 Experimental Mathematics, Vol. 6 (1997), No. 4surgery # irr. reps K SCS (4{13) SCS (K{K)�0=1 0 3 0:00000 0:00:20000 0:20:80000 0:8�1=1 2 1 0:27978 0:2797620:85116 0:8511905�2=1 2 2 0:387512 0:38750:88750 0:8875�3=1 2 3 0:479178 0:4791660:91667 0:91666�4=1 2 0 0:55019 0:550:950009 0:95�5=1 2 1 0:054478 0:0544580:605920 0:6059135�6=1 2 2 0:151275 0:1512650:651283 0:651265�8=1 4 0 0:29997 0:30:70003 0:70:721091 0:7213040:721091 0:721304�12=1 4 0 0:050089 0:050:450186 0:450:489647 0:48969070:489647 0:4896907�14=1 6 2 0:048320 0:04853790:055263 0:0548530:161499 0:16147930:548319 0:54853790:555265 0:5548530:661497 0:6614793�16=1 4 0 0:200064 0:20:251354 0:2513070:251354 0:2513070:799979 0:8�18=1 6 2 0:306522 0:30647130:325624 0:32550130:413818 0:4138810:806520 0:80647130:825627 0:82550130:913822 0:913881
TABLE 2. Values of SCS(A) for some examples of(�n=1)-surgery for irreducible representations. SeeTable 1 for the meaning of the last two columns.

Now Equations (2{2), (2{5), and (2{9) yield w20=1,w21=2=�1, q0=1, q1=2=�q3=2= e�i�=2, w2=2, and���� 0 0 00 0 0 ���� = 1; ���� 12 12 012 12 0 ���� = �1(see [Turaev and Viro 1992], for example), givingZl(M8(�n=1); 3) = ei 12 �1 + e�i� n=2�. In particu-lar for n = 4n0+2 this vanishes. As already stated,the big peaks in the function ~Zl(M; t) (compareFigure 13 for n = 6) correspond to the leading con-tributions of the asymptotic expansion (5{4) withdimH0(A)=0 and the small ones to dimH0(A)=1.
(a) For m = 1 and n > 4, in which case the spaceM8(�n=m) is hyperbolic, there is at least oneat SU(2)-connection A with vanishing coho-mology. For increasing n there is a proliferationin the number of such at connections (mod-ulo gauge equivalence). See the remarks afterEquation (C{2) in Appendix C.
(b) The numerical calculations con�rm the analyticresults of Appendices C and D to the e�ect thatZl(M8(�n=1); r) = 0 for all odd r in case n � 2mod 4. The case n = 6 is depicted in Figure 13,left, showing that ~Zl(M8(�6=1); t) is indeed pe-riodic in t with period 12 .
(c) For the exceptional case of M8(0=1), which forthe case of an unknotted torus would correspondto S2 � S1 we �nd the closed formula (guessedby our numerical results)Zl(M8(0=1); r) = cos 2�=5� cos 2�r=52 sin �=5 sin 2�=5 : (5–9)In this case the semiclassical approximation isexact. This is analogous to the situation for lensspaces [Je�rey 1992]. This result also agreeswith the analytic result of Kirk and Klassen[1990] according to which there are two Chern{Simons invariants with values � 15 (and vanish-ing cohomology).
(d) For the case n = 1, m = 1, corresponding to theSeifert homology sphere ��(2; 3; 7), we obtaintwo maxima for j ~Zlj located near1� 254 � 42 and 1� 1214 � 42 :



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 341This is compatible with the result of Kirk andKlassen giving two at connections A1 and A2withSCS(A1) = � 1124 � 42 and SCS(A2) = � 524 � 42 :
(e) For n = 3, m = 1, corresponding to a Seifert�bered space over the two-sphere with Seifertinvariants (3;�2), (3;1), (4;1), Kirk and Klassenpredict two valuesSCS(A1) = � 224 � 12 and SCS(A2) = � 524 � 12 :We have found two strong maxima of ~Zl at t1 =1�52=(4 �12) and t2 = 1�22=(4 �12) and a smallmaximum at t3 = 2=3 if we choose K(3; 1) = 3in Equation (5{7); see (5{8).
(f) If n = 4k with k > 1, there are at least two irre-ducible representations of �1(M8(�n=1)) withthe same Chern-Simons actions (for a precisestatement see Proposition C.1 below). We havetaken account of this fact in Table 2, althoughof course the analysis of Equation (4{12) doesnot exhibit this. Table 2 provides examples ofall statements of Proposition C.1.
Example 5.6. For (�1=m)-surgery (see Table 3) thephase factor in (4{13) turns out to be consistentwith the choiceei = 1; i.e., K(1;m) = 0 (5–10)(again at least asymptotically for large r), and thenumerical results are in agreement with the obser-vation made above that there are 2m irreducibleat connections (modulo gauge equivalence). Sincethe M8(�1=m) are homology spheres there are nonontrivial reducible representations.
Example 5.7. Figure 15 plots the absolute value ofthe Fourier transforms~Zl(M8(�3=2); t) and ~Zl(M8(�2=3); t):In each case the maxima are at the same values ascalculated using the methods of Kirk and Klassen[1990, p. 363], that is, Zl seems to agree with ZCS inthese cases, which means thatK(2; 3)=K(3; 2)=0.

surgery # irr. reps SCS (4{13) SCS (K{K)�1=2 4 0:053927 0:0539330:235109 0:235160:514125 0:5141250:828180 0:828117�1=6 12 0:018324 0:0184510:051140 0:0511630:074568 0:074610:211492 0:210820:291498 0:2925070:298875 0:2973620:470291 0:4703570:504663 0:5046380:614698 0:6147390:729624 0:7295870:810647 0:8100420:890340 0:890394�1=8 16 0:003120 0:003480:086381 0:086370:171330:172185 0:1725350:207460 0:208040:272334 0:2723290:400936 0:400890:415939 0:4159860:514109 0:513860:555343 0:555790:593689 0:5936540:720535 0:72052570:808226 0:8076000:850603 0:850530:867921 0:8684050:989921 0:990035
TABLE 3. Values of SCS for examples of (�1=m)surgery. For �1=8 one spike at SCS = 0:17133 isnot discernible, since it is too close to the one atSCS = 0:172535.

Example 5.8. We analyzed numerically the phasefactor ei for manifolds M8(�n=m) with n > 0,m > 0, n=m > 1, and values of m from 2 to15. We looked at about 400 manifolds in total.Our numerical results indicate the following rules:Asymptotically for large r the phase  is again ofthe form (5{7). In particular K(n;m) is �xed onlymod 2 if Zl(M8(�n=m); r) = 0 for r odd. Also
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0 0:2 0:4 0:6 0:8 1 t

j ~Zlj �3=2 surgery

0 0:2 0:4 0:6 0:8 1 t

j ~Zlj �2=3 surgery

FIGURE 15. Left: The Fourier transform j ~Zl(M8(�3=2); t)j. Right: j ~Zl(M8(�2=3); t)j:surgery # irr. reps K SCS (4{13) SCS (K{K)�3=2 4 0 0:141068 0:1411380:333369 0:3333330:548895 0:5489300:870718 0:870641�2=3 6 0 0:129545 0:1295630:248862 0:2488740:336324 0:3362880:629556 0:6295630:748850 0:7488740:836311 0:836288
TABLE 4. Values of SCS for (�3=2) and (�2=3) surgery.K(n;m) is quasiperiodic in n with quasiperiod�m;that is,K(n+m;m) � K(n;m)�m mod 4;with a minus sign if m � 1 mod 4 and a plussign otherwise. We have not been able to �nd ageneral closed form for K(n;m) as a function of nand m. In Table 5 we have listed the values of Kfor m = 1; : : : ; 12 and some low values of n > m.For m = 4 we found K(n; 4) = 0 for all n > 4.To sum up, within our limits of numerical accu-racy and for the examples considered we have beenable to con�rm the asymptotic expansion (5{4) upto contributions going like r�1=2; that is, for ir-reducible at connections the coe�cient in frontof exp 2�irSCS(A) behaves like a constant and for

n m = 1 2 3 4 5 6 7 8 9 10 11 120 01 12 23 3 04 0 05 1 2 2 06 2 27 3 0 3 0 3 08 0 1 2 09 1 2 0 2 0 010 2 2 2 211 3 0 0 0 1 0 2 2 1 012 0 2 0 013 1 2 1 0 1 2 2 1 1 0 2 014 2 3 1 2 015 3 0 0 3 0 116 0 0 0 3 2 017 1 2 2 0 1 2 1 0 2 0 2 018 2 0 1 219 3 0 3 0 0 0 3 2 1 0 3 220 0 1 1 0 021 1 2 0 3 1 2 222 2 2 0 2 023 3 0 0 0 3 0 2 0 1 2 3 024 0 3 0 125 1 2 1 0 2 0 0 1 3 026 2 3 2 2 1 027 2 229 2 2 031 0 0 233 035 0 037 041 0
TABLE 5. Values of K for various manifolds M8(�n=m).



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 343reducible ones with dimH0(A) = 1 like r�1=2. Inaddition for some manifolds (including n=m = 7=1,16=1, 22=1) we have found peaks whose amplitudesindicate at least an r�2 decay. To the best of ourknowledge, so far such contributions to the semi-classical asymptotic expansion have no interpreta-tion yet. The technique used to see the rate ofdecay was to modify Equation (5{5) by introduc-ing the quantity~Zl(M8(�n=m); t; rmin; rmax; �)= (rmax�rmin)�1 r=rmaxXr=rmin r�Zl(M8(�n=m); r)e�2�itr;which satis�es

~Zl(M8(�n=m); t) = ~Zl(M8(�n=m; t; 4; 403; 0):We then looked at the absolute value of the peaksfor varying rmin, rmax, and �.Figure 16 gives an example for the case n=m =16=1, for which exp i = 1; see (5{8). The top rowof diagrams, with � = 0, shows that the ampli-tudes for the irreducible at connections (indicatedby arrows: see Table 2) stay constant for varyingrmax and rmin. The middle row, with � = 1=2,shows that the amplitudes of the reducible at con-nections (again indicated by arrows: see Table 1)behave like r�1=2. The bottom row, with � = 2,indicates that the peak at 0.6104 (which is not thevalue for the Chern{Simons action of a at connec-tion) has an amplitude that decays at least like r�2.In the two bottom rows the peaks corresponding to� = 0r=4:::103# # # r=104:::203# # # r=204:::303# # # r=304:::403# # #
� = 12r=4:::103# # # r=104:::203# # # r=204:::303# # # r=304:::403# # #
� = 2r=4:::103# r=104:::203# r=204:::303# r=304:::403#

FIGURE 16. The absolute value j ~Zl(M8(�16=1); t; rmin; rmax)j of the Fourier transform of r�Zl(M8(�16=1); r)for some r-regimes.



344 Experimental Mathematics, Vol. 6 (1997), No. 4irreducible at connections have been cut o�. Fig-ure 16 also shows that for Zl(M8(�16=1); r) theasymptotic regime sets in at r � 100.
A. PROOF OF AN ORTHOGONALITY RELATION FOR

THE CANONICAL GRAPH OF HANDLEBODIESIn this appendix we outline the proof of Equa-tion (2{14). To this end we we cut the manifold(2{13)(M�� n TG��) [� (M� n T�G�) �= �� I (A–1)into simple pieces. We consider a hollow cylin-dric part which is the neighbourhood of the lineswith colours e = ei, �f = �fi, e0 = e0i, �f 0 = �f 0i forsome i in the range 1 � i � 3g � 3. We applysome results from [Karowski and Schrader 1993]that are recalled in Section 2 and Appendix B:Lemma 2.10, which says how to introduce hollowtubes, and Lemma 2.9, which says how to cut fullcylinders. Using in addition Equations (B{2) and(B{3) we have the following cutting rule:Z0BB@� � � T�T�0�f 0e0�fe � � �1CCA
= w2 �ee0 � �f �f 0w2e w2�f Z0BBB@� � � T��f 0e0�fe +mirrorimage � � �1CCCA :Applying this rule 3g � 3 times, where g > 1, themanifold (A{1) may be cut into 2g � 2 pieces ofthe form M(T�) = �%�&: (A–2)These manifolds are equipped with graphsjGje1e2e3 �f1 �f2 �f2 ;

where the e-lines branch at a 3-vertex and so do the�f -lines. In addition there are the meridians. Usingagain the cutting rules of [Karowski and Schrader1993] one �ndsZ(M(T�); jGje1e2e3 �f1 �f2 �f2) = w�4N e1e2e3N �f1�f2 �f3 :This concludes the proof of Equation (2{14).
B. PROOF OF SOME EQUATIONS OF SECTION 3In this appendix we outline the proofs of someequations of Section 3. The following equations in-volving graphs are to be understood as equationsof their invariants in the sense of Equation (2{1). Ifthere are graphs with open lines they have to be in-terpreted as parts of closed graphs. By (2{2){(2{5)and the Wigner{Eckart relation (2{6) we have thefollowing completeness and Racah relations:Xc w2c caa bb = ����a b ;���cab = qcqaqb �cab : (B–1)The Verlinde matrix (genus g = 1)Sab = (�1)2a+2b sin(�=r)(2a + 1)(2b + 1)w sin(�=r)diagonalizes the fusion matrix; that is, it solves theeigenvalue equation(Nd S)ab = SdbSd0 Saband we have the well-known relations1w ��������a b = Sab = Sba = S�ab = (S�1)ab;see [Karowski and Schrader 1993], for example.



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 345In particular S2 = 1, together with the Wigner{Eckart relation (2{6), implies the following changeof a part of a graph:Xb w2b ������a b =Xb w2bw2a ��a ��������a b= w2w2aXb SabSb0 ��a= w2 �a0 ��a ; (B–2)compare [Karowski and Schrader 1993, (A.2)]. Asa result, using the completeness relation (B{1), wegetXc w2c ���� ����a bc =Xc w2c w2d �� ��aa bbc d= w2 aa 0bb = w2 �abw2a aa :
(B–3)Also we have with Equation (B{1)Xb w2b ��������a b =Xb w2b q2b ������a b=Xbc w2b w2c q2b �� ������aa cb= q�2a w� ��a = w� ����a ; (B–4)and analogously to Equation (B{3)Xc w2c q2c ���� ����a bc = q�2a q�2b w� ����a b ;
(B–5)where in both cases the sum over c yields the con-stantw� =Xc w4c q2c = w q�3=2 e�i�(1=4+r=2): (B–6)In (B{4) and (B{5) we used Yang{Baxter relationsand in (B{6) we used Gauss's reciprocity relation.These formulas for the special matrix Sab = S0ab are

now used to derive Equations (3{19){(3{23) for thegeneral matrix Scab de�ned by Equation (3{12).
Proof of (3–18). The symmetry Scab = Scba followsdirectly from the homotopy invariance of the in-variants of graphs on S2, and the second equationfollows fromwwawbScab = ��������c ba = ���������a cb= �������������a ac a cb = qc wwawb (Scab)�:
Proof of (3–19). Equation (B{3) impliesXd Scad Sc �db =Xd waw2d wbw2 �������� ��������a bc cd d=Xd waw2d wbw2 ������ ������a bcd = �abN caa:
Proof of (3–21). Equation (B{5) impliesXd Scad q2d Sc �db =Xd wa w2d wbw2 q2d �������� ��������a bc cd d=Xd wa w2d wbw2 q2d ������ ������a bcd= �q�2a q�2b Sc�ab ;
and (3{21) follows with Scab = Scba.
Proof of (3–22) and (3–23). The eigenvalue equationof N cdab de�ned by (3{17) readsXa0 N cda0a Sca0b =Xa0 waw2a0 wbw2 �� ���� ���aa da0 cb= wawbw2 ���� ����� ���ad cb = SdbS0b Scab:
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Proof of (3–17). Using again Equation (B{1) we ob-tain the following representation for the matrixSsab:Scab = wawbw ���������a bc =Xd w2d wawbw ������� ��a a cd bb= 1w q2a q2b Xd w2d q2dN cdab :
C. CHERN-SIMONS INVARIANTS FOR FLAT

CONNECTIONSThe results of [Kirk and Klassen 1990] describeexplicitly how to obtain all irreducible at con-nections up to gauge equivalence of M8(�n=m)and give precise formulae for computing the cor-responding Chern{Simons invariants. For the con-venience of the reader, and since we derive someconsequences from these formulae, we will brieyrecall these results. The groupG of the �gure-eightknot has the presentation
x; y : [x�1; y]x = y[x�1; y]�;where x represents a meridian and� = [y; x�1][x; y�1]the preferred longitudinal curve. De�ne curves inC � R by �e2�is; u�(s)� for s 2 [ 16 ; 13 ];whereu�(s) = cos 4�s� 3=2 �qcos2 4�s� cos 4�s� 34 :Then the representations of G given byx 7! � e2�is e�2�is0 e�2�is � ;y 7! � e2�is 0�e2�isu�(s) e�2�is � ;

for s 2 [ 16 ; 13 ], are conjugate in SL(2; C ) to irre-ducible SU(2) representations and correspond one-to-one to the conjugacy classes of irreducible SU(2)representations.Actually, the above SL(2; C ) representation isconjugate to a unique SU(2) representation �s;�having the following action:x 7! � e2�is 00 e�2�is� ;� 7! �L�(s) 00 L�(s)�1� ;withL�(s) = �1 + e�4�is � 2e4�is + e8�is+ u�(s) (e�4�is � e4�is):Now assume that �s;� is such that it projects to arepresentation of �1(M8(n=m)). If t, for 0 � t �1, is a path of SL(2; C ) representations of G goingfrom the identity to �s;�, and such thatt(x) = � e2�i�(t) 00 e�2�i�(t)� ;t(�) = � e2�i�(t) 00 e�2�i�(t)� ;it follows from [Kirk and Klassen 1990, Theorem4.3] that the Chern{Simons invariant SCS(�s;�) ofM8(n=m) corresponding to �s;� is equal to�2Z 10 ��0 dt� � � n�2(1)�� �m�2(1)� 2� �m�(1)�(1): (C–1)Here � and � are integers such that �n� �m = 1.(This is formula (�) of [Kirk and Klassen 1990,p. 361], taking account of a misprint).In [Kirk and Klassen 1990, pp. 361, 362] a pathof representations from id to �1=6;+ = �1=6;� is pro-vided and the corresponding value of the integralR ��0 up to this point is evaluated as 112 . The cor-responding values of � and � are 16 and 12 . Therepresentation �s;� of G, for s 2 [ 16 ; 13 ], factors



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 347through a representation of �1(M8(n=m)) if andonly if �s;�(xn � �m) = id; that is, if and only ife�2�ins = (L�(s))m:De�ne ��(s) by L�(s) = e2�i��(s) such that ��is continuous and ��( 14) = 0. One easily seesthat L�( 14 � s) = L�( 14 + s), so that ��( 14 � s) =���( 14 + s). Further,L�( 14 + s) = �2 sin2 4�s+cos 4�s� 2i sin 4�sq�cos 4�s+ 12�2 � 1:This implies that for 0 � s � 112 the function�+( 14 + s) is strictly monotonically increasing from0 to 12 and ��(s) = ��+(s).It follows that �s;� factors through a representa-tion of M8(n;m) if and only ifn=m � s � ���(s) mod (1=m): (C–2)The following facts are easy to check (we will al-ways assume that n;m are coprime).� If n is even, then 14 + � is a solution if and onlyif 14 � � is a solution.� 14 is a solution if and only if 4 divides n.� If s is a solution for (n;m) then it is also a solu-tion for (�n;m) with the sign in �s;� changed.Let R(n=m;�) be the number of s 2 [ 16 ; 13 ] suchthat �s;� projects to a representation of �1M8(n=m).We will always assume that m > 0. We have thefollowing results:� For n=m � �2p5 (this being the maximum of�0�(s) for 16 � s � 13), R(n=m;+) is the numberof integers in ��m2 �n3 ; m2 �n6 �.� For n=m � �12, R(n=m;+) is the number ofintegers in �m2 �n6 ;�m2 �n3 �.� For n=m � 2p5, R(n=m;�) is the number ofintegers in ��m2 �n6 ; m2 �n3 �.� For n=m � 12, R(n=m;�) is the number ofintegers in �m2 �n3 ;�m2 �n6 �.To compute the Chern{Simons invariant SCS(�s;�)of M8(n=m) corresponding to the representation

�s;� we employ (C{1). Using the path of [Kirkand Klassen 1990] from the trivial representationto �1=6;+ = �1=6;� and then the path t 7! �t;�, witht 2 [ 16 ; s], we get for the Chern{Simons invariant of�s;+ the value�2� 112 + Z s16 (�+(t) + 1)dt���ns2 � �m(�+(s) + 1)� 2�ms(�+(s) + 1); (C–3)while the one corresponding to �s;� is�2� 112 + Z s16 ��(t)dt���ns2 � �m��(s)� 2�ms��(s): (C–4)(Since the curve � of the path from id to �1=6;+ends with the value 12 , the continuation of � from�1=6;+ to �s;+ is �+(s) + 1, and not simply �+(s)).Using these formulae and the fact that��( 14 + �) = ���( 14 � �);a straightforward calculation for even n and fors = 14+� a solution of (C{2) yields SCS(�1=4+�;�)�SCS(�1=4��;�) � n�=4 mod 1; where as before � isgiven by �n� �m = 1. Therefore:
Proposition C.1. (a) Let n;m be coprime with n =4k + 2. Then for any irreducible representation�1=4+�;� of �1(M8(n=m)) also �1=4��;� is an ir-reducible representation andSCS(�1=4+�;�)� SCS(�1=4��;�) = 12 mod 1:(b) If n = 4k, we have the irreducible representa-tions �1=4;� with Chern{Simons invariant�1=5 + l=4 if k � l mod 4;and , for any irreducible representation �1=4+�;�of �1(M8(n=m)), the representation �1=4��;� isalso irreducible andSCS(�1=4+�;�) = SCS(�1=4��;�):This result was inspired experimentally. First, ournumerical calculations of Zl(M8(�n=1); r) for n �2 mod 4 suggested that these numbers are 0 for all



348 Experimental Mathematics, Vol. 6 (1997), No. 4odd r. Then we proved this analytically (see Ap-pendix D). This implies that the Fourier transform~Zl(M8(�n=1); t) is periodic with period 12 . Assum-ing the correctness of the semiclassical approxima-tion formula (5{4) a statement like Proposition C.1would have to hold.The statement that Zl(M8(�n; 1); r) = 0 forn � 2 mod 4 and r odd may be generalized asfollows:
Proposition C.2. Let MK(n=m) be the three-mani-fold obtained by (n=m) Dehn surgery on the knotK � S3. If n � 2 mod 4 (and m;n coprime) thenZl(MK(n=m); r) = 0 for every odd r.When K is the �gure-eight knot, this result turnsinto an if and only if, with a proof that uses di�er-ent arguments; see Appendix D.
Proof. By [Kirby and Melvin 1991, Corollary 8.9] itsu�ces to show that Zl(MK(4k+2=2l+1); 3) = 0,which in turn holds if and only if one can em-bed a closed surface of odd Euler characteristicin MK(4k + 2=2l + 1) [Kirby and Melvin 1991,Theorem 6.3]. If D2 � S1 is the solid torus gluedinto the exterior of a tubular neighborhood of Kto obtain MK(4k + 2=2l + 1), then a Seifert sur-face of K will meet the boundary torus S1 � S1of D2� S1 in a simple closed curve homologous to�p(S1 � f�g) + (4k + 2)(f�g � S1), where p is aninteger such that p(2l + 1) � �1 mod (4k + 2).Any such curve bounds a nonorientable surface ofgenus 2k + 1 in D2 � S1. The union of these twosurfaces is then a closed surface of odd Euler char-acteristic. �With regard to reducible representations, notethat the �rst integral homology group of M8(n=m)is isomorphic to Z=nZ. Therefore, �1(M8(n=m))has nontrivial reducible SU(2) representations ifjnj > 1. They correspond to the representationsof �1(L(n;m)), where L(n;m) is the (n;m)-lensspace. The proof of [Kirk and Klassen 1990, The-orem 5.1] can be applied to calculate the set ofChern{Simons invariants of reducible representa-tions ofMK(n=m) for any knotK in S3. Therefore,

the set of Chern{Simons invariants of MK(n=m)corresponding to reducible at connections A (forthese, as noted in Section 5, dim H0(A) = 1 unlessA is trivial) is given byn� t2pn ��� t = 0; 1; : : : ; jn2 ko;where as before p is an integer such that p �m � �1mod n.
D. VANISHING INVARIANTSHere we give a necessary and su�cient conditionfor Zl(M8(�n=m); 3) to be zero. By a result from[Kirby and Melvin 1991], Zl(M8(�n=m); r) van-ishes for r odd wheneverZl(M8(�n=m); 3) = 0:For r = 3 we haveA = � 1 00 i � ; S = 1p2 � 1 �1�1 �1�and ���� e e 0e e 0 ���� = (�1)2e = wS0e for e = 0; 12 :We consider the case j nm j > 1 �rst.Since S2 = 1 we have by (4{9) and (4{13)Zl�M8(�n=m); 3�= ei w�1Xe (�1)2eh e jAmtS � � �SAm1S j 0 i= ei h 0 jSAmtS � � �SAm1S j 0 i;where (mt; : : : ;m1) is the continued fraction ex-pansion of n=m (compare Section 4). ConsiderX(mt; : : : ;m1) = SAmtS � � �SAm1Sas a word in S and A. We call words of the formSA�SAk for � even and those of the formSA�SA�r � � �SA�1SASAkfor �;  odd, �j even, and 0 � r initial factorsif k 6= 0 and �nal factors if k = 0. A (�nal orinitial) factor of the form SA4kSAk or of the form



Karowski, Schrader, and Vogt: Invariants of Three-Manifolds and Unitary Representations of the Mapping Class Group 349SA�SA�r � � �SA�1SASAk with  � � mod 4 iscalled even, all other factors are called odd. Onecan write X(mt; � � �m1) uniquely asIp � � � I1 � F orIp � � � I1 � SAS with  odd, orSA�SA�r � � �SA�1S with � odd, �j even,where the Ij are initial factors and F is a �nalfactor.
Lemma D.1. Let jn=mj > 1. We haveZl(M8(�n=m); 3) = ei h 0 jX(mt; � � �m1) j 0 i = 0if and only if X(mt; : : : ;m1) = Ip � � � I1 � F , wherethe Ij are initial factors, F is a �nal factor andthe number of odd factors is odd .
Proof. Use the fact that A4 = 1 and (SA2)4 = �1 tocheck that even factors are diagonal matrices withboth diagonal entries di�erent from zero, while oddfactors are o�-diagonal matrices with both o� di-agonal entries di�erent from zero (since their de-terminant is nonzero). The lemma follows from theequations SAS = 12 � 1� i �1� i�1� i 1� i� ;SA3S = 12 � 1 + i �1 + i�1 + i 1 + i� ;andSA�SA�r � � �SA�1S= SA�SA�r � � �SA�1SA�SSA4��= DSA4��with D diagonal. For all odd � all entries of SA4��are nonzero. �When comparing Lemma D.1 with Proposition C.2it turns out that in the case of Dehn surgery onthe �gure-eight knot Proposition C.2 gives exactlythe surgery coe�cients for which Zl(M8(�n=m); 3)vanishes. With the preceding notation:

Lemma D.2. Let (mt; : : : ;m1) be the continued frac-tion expansion of n=m, with jn=mj > 1, and letX(mt; : : : ;m1) be(i) Ip � � � I1 � F or(ii) Ip � � � I1 � SAS with  odd , or(iii) SA�SA�r � � �SA�1S with � odd , �j even.Then n=m = 4k=(2l + 1) if and only if case (i)occurs with an even number of odd factors, andn=m = (4k + 2)=(2l + 1) if and only if case (i)occurs with an odd number of odd factors.
Proof. We use induction on the length t of the con-tinued fraction expansion. Writenm = mt � 1mt�1 � 1� � � � 1m1= mt � 1mt�1 � 1� � � � 1ms+1 � 1q ;
so that (ms; : : : ;m1) is the continued fraction ex-pansion of q. Notice that the denominator andnumerator of a number described by a continuedfraction expansion both change additively by mul-tiples of 4 if the coe�cients are changed additivelyby multiples of 4. Then check that if SA�SAk orSA�SA�r : : : SA�1SAS is an even or odd factorand q = 2a=(2l + 1), then�� 1i� 1q or �� 1�r � 1� � � � 1 � 1qis of the form 2a0=(2l0 + 1) with 2a0 � 2a mod 4and 2a0 � 2a + 2 mod 4, respectively. Analo-gously a �nal factor represents a fraction of theform 2b=(2l + 1) with b even or odd according towhether the �nal factor is even or odd. In case (ii)



350 Experimental Mathematics, Vol. 6 (1997), No. 4the induction starts with q = � = odd. The induc-tion step of adding as above the coe�cients of aninitial factor to the coe�cients of q will change afraction q of the form odd/something into a q0 ofthe same form.Finally a direct calculation shows that the frac-tion represented by (�; 2; 2; 2; : : :) equals (�(k+1)�k)=(k + 1), where k is the number of 2's. If � isodd, then so is �(k+1)�k. This takes care of case(iii), concluding the proof of the lemma. �Completely analogous results hold for jn=mj < 1.ThenZl(M8(�n=m); 3)= ei h 0 jAmtSAmt�1 � � �SAm1S j 0 i;where now (mt; : : : ;m1) is the continued fractionexpansion for jmn j. Due to the above form of Awhen r = 3, we haveh 0 jAmtSAmt�1 � � � SAm1S j 0 i= h 0 jSAmt�1 � � �SAm1S j 0 i:Therefore (mt�1; : : : ;m1) is the continued fractionexpansion of jnjmtjnj � jmjwith jnj > mtjnj � jmj > 0. Thus n=m is of theform 4k/odd, (4k+2)/odd or odd/something if andonly if jnj=(mtjnj � jmj) is.
FINAL NOTEAfter the submission of this paper, R. J. Harring-ton's Ph.D. thesis [Harrington 1996] became avail-able. It contains results overlapping to a certaindegree with ours, although his focus is di�erent.He compares directly the predicted and exact val-ues of Z(M;k) for large k for M obtained by n=1-surgery from the �gure-eight knot for some n. Forthese n he calculates also the spectral ow and Rei-demeister torsion that appear in the asymptoticformula for Z(M;k). Reidemeister torsions for atconnections of manifolds obtained by n=m-surgeryon the �gure-eight knot were also computed by

Ch. Haase in his Diplomarbeit [Haase 1997]. Incontrast our strategy was to determine the Chern{Simons invariants from Z(M;k). The method weuse is Fourier analysis as suggested by the asymp-totic formula. The same technique also allows thedetermination of the Reidemeister torsions and thespectral ows. So far agreement for the Reidemeis-ter torsion is again excellent.
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