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We show that there are at most 19 integers that are not of the
form xy + yz + xz with x,y,z > 1. Eighteen of them are small
and easily found. The remaining possibility must be greater than
10" and cannot occur if we assume the Generalized Riemann
Hypothesis.

1. INTRODUCTION

Recently, Crandall [1999] used Andrews’ identity for
the cube of the Jacobian theta function 6,

3(q) = (2(—1)%*)3

neEL

X 1\nn > n?—j2 _oon\(_1\J
ey <11+>ng Y (11+Zn)( 0
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l7l<n
to derive new representations for several interest-
ing numbers. He considered the three-dimensional
Epstein zeta function M(s), which is the analytic

continuation of the series
Z (_1)x+y+z
B G
(z,y,2)#(0,0,0)

The number M (3) is the celebrated Madelung con-
stant. Using a reworking of Andrews’ identity, he
obtained the formula

M(s) = —6(1 —2"7)*C*(s) — 4U(s)
where ((s) is the Riemann zeta function and

B (—1)e+v+s
Uls) := Z (zy + yz + x2)°

2,221

In view of this representation, Crandall asked what
integers are of the form of xzy + yz + xz for posi-
tive integers x,y, z, and he made a conjecture that
every odd integer greater than one can be so writ-
ten. Crandall’s conjecture is indeed true. In fact,
we show a somewhat stronger result:
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Theorem 1.1. There are at most 19 integers that are
not of the form zy + yz + xvz with x,y,z > 1. The
only such integers that are not square-free are 4 and
18. The first 16 square-free integers are

1, 2, 6, 10, 22, 30, 42, 58, 70,
78, 102, 130, 190, 210, 330, 462

If the 19th wnteger exists, it must be greater than
10'*. Moreover, assuming the Generalized Riemann
Hypothesis (GRH), the 19th integer does not exist
and the list (1-1) is then complete.

(1-1)

If we consider only the even numbers in the list (1.1)
and divide them by 2, we get the list

1, 3, 5, 11, 15, 21, 29, 35,

39, 51, 65, 95, 105, 165, 231.
This is the same list as for disjoint discriminants less
than 10,000 found by Dickson in 1929. A discrim-
inant of a binary quadratic form is disjoint if each
genus of this discriminant contains exactly one re-
duced form. So if N = 2p;p, - - - p, with distinct odd
prime p;, then —4N is a disjoint discriminant if and
only if the class number h(—4N) equals to 2". It was
Heilbronn who first showed that limy_ ., h(—d) =
00. Chowla [1934] improved this result by proving

that
lim h(=d)

d— o0 2

(1-2)

= 0

where ¢ is the number of distinct prime factors of d.
Chowla’s result immediately implies that there are
only finitely many disjoint discriminants. However,
in order to determine all of them, an explicit esti-
mate is needed. Weinberger [1973] used the zero-
free region of the L-function L(s) =Y - (=2)/n°,
where (;) is the Kronecker symbol, and proved that
the list (1-2) contains the all disjoint discriminants
less than 10'' and there is exactly one more pos-
sible exception, which must be greater than 10'!.
The exception actually comes from the possible ex-
istence of the Siegel zero of the above L-function.
Thus, if we further assume GRH (in fact, we only
need to assume the Siegel zero doesn’t exist), then
the list (1-2) is indeed complete. In our Theorem
Theorem 3.1 below, we prove that a square-free NV
is not of the form of zy + zy + xz if and only if
—4N is a disjoint discriminant. Hence, using this
and Weinberger’s result, we derive Theorem 1.1 for
the square-free case.

2. THE NON-SQUARE-FREE CASE

Let f be the ternary quadratic form zy+zz+zy. An
integer N is representable by f if there are positive
integers =, y and z such that

N = f(x,y,2) = zy + zz + yz.

Lemma 2.1. An integer N is representable by f if and
only if there exist integers k,d; and dy with 1 <k <
dy,dy such that

N + k? = d,d,. (2-1)

Furthermore, if N s representable by f, we can
choose dy,dy > 2k > 1.

Proof. Suppose there are positive integers x,y and
z such that N = xy + 2z + zy. Without loss of
generality, we assume that « > y > z. Let d; =
y + z. Then

N=yz=2(d, —2)=—2* (mod d,)

and thus we can find a positive integer d» such that
N + 22 = d]_dz. Then d]_ Z 2z. Also
N+z2 N+2°
d2 = =
d, y+z

> 2z,

as x > z. Hence condition (2-1) is satisfied with
k = z and 2k < d,,d,. Conversely, if N + k* = d,d,
for some £ satisfying the ostensibly weaker condition
1<k <d,d,, then

N =didy — k* = dy(dy — k) + (dy — k)k
=(dy —k)-(dy = k) + (do — k) - k + (d1 — k) - k,

and hence N is representable by f. U

Lemma 2.2. If N is a positive integer satisfying one
of the following conditions, then N is representable

by f:

(i) N is odd;

(i) N =0 (mod 4), and N > 4;
(iii) N + 1 is not a prime.

Proof. The lemma follows easily from Lemma 2.1
with £ =1 and 2. O

We first prove that the numbers 4 and 18 are the
only non-square-free integers which are not repre-
sentable by f. It is easy to check 4 is not repre-
sentable by f. So we suppose N > 5.



Lemma 2.3. If N is not representable by f, then either
N is square-free or N = Mp? with prime p, square-
free integer M and M < p.

Proof. Suppose N is not square-free. Let p? divides
N and write N = p?M. If M > p, then

N +p* =p’M +p* =p*(M +1).

So the condition (2-1) is satisfied with £ = p and
this contradicts our assumption by Lemma 2.1. Thus
M must be less than p. If M is not square-free, say
q* | M, then we may assume q < p, and Mp?/¢*+1 >

q. Thus,
M2
N+q2=q2( f +1>
q

shows that the condition (2-1) is satisfied with k = ¢
and from Lemma 2.1, N is representable by f. This
completes our proof. Il

Lemma 2.4. If N = 2p? then

p =3 and hence N = 18.

18 not representable,

Proof. From Lemma Lemma 2.2 (ii) and (iii), N 4+ 1
must be a prime and p > 2. If p > 3, then p*? =
(mod 3) and hence

N+1=2+1=0 (mod 3).

This contradicts N + 1 being prime and so p = 3. U

In the quadratic field Q (\/—N ), we factor the alge-
braic integer —k + v/ —N as

—k+V-N= (Al + \/—B1) (A2 + \/—32)

where A; and B; are integers. If both the norms of
A, + \/—kB; are greater than k then the condition
(2-1) will be satisfied and so N is representable by f.
The following lemma tells us the above factorization
is possible when N = Mp? with M > 2.

Lemma 2.5. Let M be a square-free integer greater
than 1 and p be any integer. Suppose there are co-

prime ntegers By > By > 0 such that
min{4M B?B?, 4M B}(B, — B,)*} > p?, o)
p? > 4(M +1)B2(B, — B,)%.

Then there exist integers A, and Az such that

—k+pvV-M = (A1 + V—MB1)(A2+ V—MB2)

and N(AZ- + \/—MBZ-) >k >0 fori=1,2, where
k == MB]_B2 - A]_Az.
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Proof. Given B; and B, in the lemma, we define
fo(z) == Box® — px + M B} B,
9p(z) := (B, — Bo)2® + pr + M B} (B, — By),
h,(z) := (By — By)z? + pxr + M B3 (B, — By).
Using (2-2), we have
f.(z) > f, (L> L umBB—p) >0
2B, 4B,

for any x. Suppose A; and A, are any integers sat-

isfying A, B, + A, B; = p. Thus
- A B
k == MBlBQ - AlAQ == MBlBQ - Al (%)
1
1
Similarly,
p
> -
gp($) = gp ( 2(B1 —Bg))
1
= _(4MBB, - B, —p®
4:(B1—B2)( 1( 1 2) p)
>0

from (2-2). Hence

1

So N(A4; + V—MB;) > k. We now consider h,(z)
and let o and 8 (o < ) be the positive real roots
of h,(xz) = 0. In fact,

p—\/p? —4MB3(B, — B,)?

a = 5
2(B, — B,)

g_bt Vp? —AMB3(B, — By)?
2(B, — B»)

Again using (2-2), we know that
, ( P ) _ (P —4MB(B, — B,)*)
P\ 2(B,—B,) 4(B,—B,)

It follows that h,(z) > 0 for any a < z < 5. Con-
sider the linear diophantine equation

> 0.

Bz 4+ By =p.
Since d := gcd(By, By) = 1 (in fact we only need
ged(By, Bz) | p), so all the solutions of the above dio-
phantine equation is given by

B
x—xo—i—% and yzyo—%1
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for any integer k and some integers x, and yo. Now
since

_ \/P*—4MB:(B, — B,)?

- > B
ﬁ (B1 — B2) 2
from (2-2), we can always choose A between o and

[ and some A; such that
BiA, +BA; =p

but for this particular A,, we have h,(A4,) > 0 and
hence

1
Ag + MB; - MBlBQ + AlAQ == _hp(A2) > 0

B,

Therefore,

—k+pV-M = (A1 + V—MB1)(A2 + V—MB2)

and N(A; + V-MB;) > k > 0 for ¢ = 1,2. This
proves the lemma. [l

Theorem 2.6. The numbers 4 and 18 are the only
non-square-free integers not representable by f.

Proof. We suppose N > 4. Then from Lemma 2.3,
N = Mp? with M < p where p is a prime and M is
square-free. From Lemma 2.2 (i), M must be even.
If M = 2 then by Lemma 2.4, N = 18. Suppose
M > 4. By direct checking, we can assume that
p > 2305. For any integer L > 5, we let B; = 2L and
B, = L 41 so that ged(B,, By) = 1. The condition

(2-2) in Lemma 2.5 now becomes
16ML*(L —1)> > p* > 4(M + 1)(L* — 1),

Note that for M > 4 and L > 5 we have

(2-3)

16ML*(L — 1) > 4(M + 1)((L + 1)> — 1)*,
and hence
U{ (M +1)(L* — 1), 16ML*(L — 1))}

— (2304(M + 1), 00).
If p* < 2304(M + 1), then

M <p<+/2304(M +1).

It follows that M < 2305 and thus p < 2304. There-
fore, p? > 2304(M + 1) and there is L > 5 such that
condition (2-3) is satisfied. From Lemma 2.5, we
now have

—k+pV—M = (A; + BiV—M ) (A, + BovV—-M )

and k < N(Ai + Bi\/—M) for i = 1,2, where k =
MB]_Bz —A]_Az. Thus
N +k? = Mp? + k?
- N(A]_ + B]_\/ —M)N(AZ +Bz\/ —M),

and this shows that condition (1.1) is satisfied for
this k. This proves our theorem. [l

3. THE SQUARE-FREE CASE

In this section, we assume N is even and square-
free. The main result in this section is to show that
N is not representable by f if and only if —4/N is
a disjoint discriminant. Crandall [1999] gave a new
representation for the Madelung constant based on
Andrews’ identity for the cube of the Jacobi theta
function 6. Crandall observed that

_1_62 J;er
z,y>1
—4 Z

,y,2>1

a:+y+z xy+a:z+yz

He also observed that this identity relates to the
number of representations of f(x,y, z) = zy+xz+yz
as follows:

(—=1)"rs(V)

R N D D s
z,y>1 z,y,z2>1
zy=N cytez+yz=N

where r3(N) is the number of representation of N
as a sum of three squares.
Using (3-1), we establish:

Let N = 2pipy---p, for distinct odd
PrImes pi,Pa,- -+, Pr. Then N is not representable if
and only if —4N s a disjoint discriminant.

Theorem 3.1.

Proof. Let r,(n) be the number of representations of
N as zy + yz + xz for positive integers x,y and z.
Then from (3-1), we have

ry(N) = 6d(N

because N is even. But N =2 (mod 4) and if N =
xy + yz + xz then exactly two of xz,y, z are even.
It was proved by Gauss (see [Rose 1994, 170-171])
that r3(N) = 12h(—4N). Hence r(N) = 0 if and
only if

) +4r (N) =12-2" + 4r,(N)

h(—4N) = 2".



Let m be the number of genera for discriminant
—4N. From the formula for m in [Rose 1994, page
198], we have m = 2". Also, we have h(—4N) = mg
where ¢ is the number of forms in a genus. There-
fore, h(—4N) = 2" = m if and only if ¢ = 1, or
equivalently if and only if d is disjoint. O

Using Weinberger’s result and Theorems 2.6 and 3.1,
we may now complete the proof of Theorem 1.1.

It is still an open problem as to whether the 19th
integer exists. For computational purposes, the fol-
lowing result is useful.

Theorem 3.2. A square-free integer N is representable
by f if and only if there is an odd prime p with
p < \/g—N such that —N 1s a quadratic residue mod
p. (See [Zhu and Shao 1988, Theorem 4].)

Proof. Suppose N is representable by f. Then from
Lemma 2.1, we have

N+k2 :d1d2

for some 1 < 2k < d;,d,. Suppose d; > d,. Then we
claim that there is a prime p such that p | d, but pfN.
Suppose not, then d, must be square-free otherwise
N is not square-free. It follows that every prime
dividing d, must also divide k£ and hence d, < k.
This contradicts the condition 2k < d,. This proves
the claim. Hence from (3-2), we see that —N is a
quadratic residue modulo p and

N =did, — k> > & — 1d2 > 3p°,

This proves that p < \/%—N .

Conversely, if there is a prime p < \/%—N such that
—N is a quadratic residue modulo p, then we choose
p to be the smallest among all such primes. Then
we can find an integer k such that 1 <k < 1(p—1)
and N + k* = pd, for some d;. Suppose d; < p.
If there is a prime ¢ such that ¢ |d; but ¢{ N, then

(3-2)

A
%S
%N
%0
%K
%A
%E

A025052
A025052
A025052
A025052
A025052
A025052
A025052

1,2
nonn,fini
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q < d; < pand —N is a quadratic residue modulo g,
which contradicts p being the smallest such prime.
Hence every prime dividing d; must also divide N
and k. Since N is square-free, so is d; and hence
d; < k. It follows that

N:pdl—k2§pd1—d§§ip2

which contradicts p < v/ %N . Thus we must have
dy > p and using Lemma 2.1, N is representable by
f. This completes our proof. O

4. ADDITIONAL COMMENTS

Our root to this development was reflective of the
changing nature of mathematical research. A copy
of the preprint of [Crandall 1999] was sent by the
first author to Roalnd Girgensohn in Munich who
reported the next morning that numerical compu-
tation showed the only square-free counterexamples
less than 5,000 were the ones listed in equation (1.1).
These numbers (1, 4 and 18 excluded) were familiar
to the first author as corresponding to disjoint dis-
criminants of the second type, P which give rise to
singular values kyp expressible as products of funda-
mental units [Borwein and Borwein 1987, pp. 296—
300]. The most famous of these is

kaio = (\/5_ 1)2(2 - ﬁ)(ﬁ_ \/6)2(8 - 3ﬁ)
(V10 - 3)*(V15 — VI4)(4 — VI5)*(6 — V35),

given in Ramanujan’s first letter to G. H. Hardy.
The two larger values k33 and ks are listed in
[Borwein and Borwein 1987, (9.2.11) and (9.2.12)].
Theorem 1.1 was now irresistible as a conjecture.
After establishing Theorem 1.1, it occurred to us
to consult Neil Sloane’s marvelous On-line Encyclo-
pedia of Integer Sequences (www.research.att.com/
~njas/sequences/eisonline.html). We typed the first

1,2,4,6,10,18,22,30,42,58,70,78,102,130,190,210,330,462
Numbers not of form ab + bc + ca for 1<=a<=b<=c (probably list is complete).

Clark Kimberling (ck6@cedar.evansville.edu)
Corrected by Ron Hardin (rhh@research.att.com)

Reply given by Sloane’s On-line Encyclopedia of Integer Sequences to the input 1, 2, 4, 6, 10, 18, 22, 30, 42, 58,

70, 78, 102.
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thirteen terms of (1.1) with 4 and 18 included, ob-
taining the result shown at the bottom of the pre-
ceding page.

Had we at the time asked for the square-free mem-
bers, we would have drawn a blank. This is no longer
the case. Had we checked Sloane’s website initially,
we would almost certainly not have thought further
on the matter. After all, the answer had been found.
That said, there appears to be little published liter-
ature on the subject. Some related references are to
be found in [Chen and Le 1998].
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