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It is known that the Hausdorff dimension of the invariant set A;
of an iterated function system F; on R" depending smoothly on
a parameter t varies lower-semicontinuously, but not necessarily
continuously. For a specific family of systems we investigate
numerically the conjecture that discontinuities in the dimension
only arise when in some iterate of the iterated function system
two or more branches coincide. This happens in a dense set of
codimension one. All other points are conjectured to be points
of continuity.

1. INTRODUCTION

Let F = {f;}, be a collection of smooth contract-
ing diffeomorphisms of R". Such a collection is often
called an iterated function system, since we are inter-
ested in its properties under iteration. There exists
a unique compact invariant set A with the property

A=Uﬁ@%

and this set supports a natural invariant probability
measure v; (see Section 2 for the meaning of natu-
ral). For all these statements, see [Hutchinson 1981],
for example.

We now consider a family {F,} of iterated func-
tions systems, depending smoothly on a real pa-
rameter ¢, together with the associated invariant
sets A; and probability measures v;. Under certain
weak conformality conditions for systems in dimen-
sion greater than 1, the Hausdorff dimension and
the Lebesgue measure of A, vary semicontinuously
[Veerman and Jonker 1997]. That this is the best
possible general result is illustrated by the family of
systems discussed in this paper (see Theorem 1.1).
The question that arises is: where and how often do
the discontinuities arise? Can we say that in some
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sense the dimension and the measure of the set are
typically continuous?

The example family we will discuss in this paper
is F;, for ¢t € [0,1/2], where F = {f;}7_, is given by

fo(z) = %3«",
filz) = 3(z +1), (1-1)
folx) = %(x+ 1).

The Hausdorff dimension Hdim and the Lebesgue
measure p of the invariant set depend on t. The
following striking result was stated in [Veerman and
Jonker 1997], although the most important parts of
it were proved in older papers (referenced there). A
proof can also be found in [Kenyon 1997].

Theorem 1.1. Let F; be the system just described.
Then:

(i) If t = p/q is rational and pg = 2 mod 3 then

u(t) =1/q.
(i) If t = p/q is rational and pg # 2 mod 3 then
Hdim(¢) < 1.

(iii) For all irrational t, p(t) = 0.
(iv) For almost all t, Hdim(t) = 1.

We shall see in Section 2 that whenever the system
respects an (invertible) affine image L of Z" in the
sense that |J, f; (L) C L (we call this commensu-
rably constructed), then efficient algorithms to cal-
culate, or estimate, the dimension are available. For
the family under consideration, it is easy to see that
A; is commensurably constructed if and only if ¢
is rational. The following conjecture (attributed to
Furstenberg in [Kenyon 1997]) stipulates that dis-
continuities should only occur at rational values of ¢.

Conjecture 1.2. For all irrational t, Hdim(t) = 1.

(Note that Theorem 1.1 already guarantees the con-
tinuity of the measure at irrational values of ¢.)

This article provides numerical and heuristic ev-
idence that for irrational values of ¢ (in particular
the golden mean) the dimension of the invariant set
equals 1. Thus in Section 2 we outline our algo-
rithms used to do the numerics. In Section 3 we
prove that for certain Liouville numbers ¢, the in-
variant set indeed has dimension 1. The main pur-
pose of this paper is to present evidence in support
of Conjecture 1.2. This is done in Section 4.

2. METHODS FOR COMMENSURABLY CONSTRUCTED
SETS

This section lists some methods to calculate or es-
timate the dimension for rational values of t. As
proved in [Veerman and Jonker 1997] (see also Sec-
tion 3), the Hausdorff dimension of the invariant set
(for the sets under consideration) is equal to its limit
capacity. The algorithms we discuss will thus only
have to calculate the limit capacity (or box dimen-
sion).

Suppose t is rational, say p/q. Then by the affine
coordinate transform z — z/q we may map the it-
erated function system to the following:

fo(z) = 32,
fi(z) = 3(z +p),
fa(z) = 5(z + q).

An equivalent definition of the invariant set of this
system is the set of points

1
3
1
! (2-1)

A(37 {Oapa Q}) = {m eR: x:Z 3_i71i7 T € {07p7 q}}
=1
(2-2)

We can thus approximate the set by considering
the points that can be written as Zi:ol 37ry, Ty €
{0,p,q} = R. A simpler way of stating this is

k-1

Ay =3"%) 3'Rand A =lim A,

=0
where the summation here is a sum of sets. The sum
of two sets A and B is defined as follows:

Z=A+B¥{z:2=a+b,ac A be B}

(See [Hacon et al. 1994; Veerman 1995; 1998 for de-
tails.) The box dimension is calculated by counting
the number of distinct integers in {Zf:_ol 3'R}. Let
7 denote this number.

Proposition 2.1. The Hausdorff dimension of the in-
variant set of the system (3,{0,p,q}) is

log Y
k—oo log 3k

The method of calculating the dimension in which
we are interested here is a refinement of this. It was
developed independently (and slightly earlier) by
Rao and Wen [1998] and proved by different meth-
ods.
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Note that if R consists of integers, the expressions
in {Zi:ol 3'R} have integer values. In these cases we
may define the maps T} and t; from the integers to
the nonnegative integers:

T (1) = #{23% = l},

tx(1) = min{T}(1), 1}.

By a word w (in t;) we mean an ordered set of con-
secutive values of t,

{tk<i0), tk(lo+1), ey tk(Z0+|w|_1)};

where |w| is the length of the word, and such that
io, 1o+ 1, ..., ip + |w| — 1 is maximal with respect
to the condition that less than ¢/2 — 1 consecutive
values are zero. Similarly we can define words in 7},

The sentence t; is created from the sentence
by multiplying by 3 and adding R. If we apply this
operation to a word w in t; we refer to the resulting
part of ¢, as the offspring of w. It is easy to see
that if w; and wy are consecutive words in ¢, then
3w; 4+ q and 3w, are separated by ¢/2 — 1 or more
zeros. Thus the offspring of a word must consist of
words.

If we let {w;} be a list of all the words occurring
in |J,, tk, then we can write the offspring of w; as a
(finite) linear combination ) . d;;w;. Let Ap be the
leading eigenvalue of the matrix D = ((d;;)).

Theorem 2.2. If the number of words in the develop-
ment of the system (3,{0,p,q}) is finite, then the
invariant set of that system has Hausdorff dimen-
sion equal to log Ap/log 3.

Remark. The numerical algorithm we used to cal-
culate Ap does not terminate unless the number of
distinct words in [ J, T} is finite and smaller than a
realistic limit set by memory limitations: if this is
not the case, the algorithm does not finish its cal-
culation of the values of the entries of the transi-
tion matrix D. In fact, in [Rao and Wen 1998] it is
proved that if the dimension of the invariant set of
the system (3, {0,p,q}) is smaller than 1, then the
number of words is always finite. We do not include
this proof here, since in practice the calculational
limits are quickly exhausted (see Section 4).

Proof of the theorem. Supposing the number of dis-
tinct words is finite, we obtain a finite matrix D.

Moreover, the matrix is primitive, since all words
were constructed from the initial word {0}. By the
Perron—Frobenius theorem, there is a unique lead-
ing eigenvalue Ap > 0. The associated eigenvector
v gives the asymptotic distribution of words. For
large k, the number of occurrences of every type of
word is multiplied by Ap from one level to the next.
But that means that the number v, is multiplied by
Ap. Now apply Proposition 2.1. ]

The new method thus consists in identifying words
and expressing its offspring in terms of the original
words and calculating the eigenvalue of the corre-
sponding transition matrix. If

w = {t (%), tr(io+1), ..., ti(io+|w|—1)}

is a word, we can specify this word by listing, in or-
der, the distances of the non-zero entries from the
first entry. For example, the word {1,1,0,1,0,1} for
(3,{0,1,5}) would be denoted as {0,1,3,5}. Using
this notation, we see that for the system (3, {0, 1, 3}),
where no consecutive zeroes are allowed, the devel-
opment yields only 2 distinct words, namely {0,1}
and {0}. This line of reasoning leads to the follow-
ing.

{0} =+ {0,1,3} = {0} U {0, 1},
{0,1} — {0,1,3,4,6} = {0} u2{0,1}.

We can write down the transition matrix D as

1 1
D= (1 2) |
We conclude that the dimension of this set equals
Hdim(A,3) = log((3+V/5)/2)/log3 ~ 0.867....,

since (3 + v/5)/2 is the leading eigenvalue of the
matrix D. The same result was obtained earlier in
[Keane and Smorodinski 1997].

As we noted earlier, and can be checked in Section
4, the algorithm above rather quickly exhausts our
computational limits. For our purposes, it is suffi-
cient to have a lower bound estimate of the Haus-
dorff dimension. This can be done much more effi-
ciently as we shall now see.

We may follow [Hutchinson 1981] and adopt the
view that the system JF;, as given in (1-1), acts lin-
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early on the space of probability measures on the
interval as follows (V is an interval):

TalV) = 5 3 us,

where the f, are given in equation (1-1). If we put
an appropriate metric on the space of measures, F;
is a (uniform) contraction (see [Hutchinson 1981]).

Define a sequence UI()I/C()] of probability measures as-

sociated with the system (3, {0,p/q, 1}).

;ﬁ;(v)_yk Z T, (3),

q—13-kicV

(2-3)

(2-4)

where T;, is the function defined before for the sys-
tem (3, {0,p, ¢}) (note the difference in the systems).

The next result can be found in [Hutchinson 1981],
for example.
Lemma 2.3. The limit limy,_, o VI()];; s the unique fized
point of Fp/q.

(k+1)

Proof. 1t is sufficient to prove that 3"p/q p/q =V -
Write R = {0,p,q} and observe that it consists of
integers. From the definition of T', we see that

k-1
T (1) = #{Z 3R+3"R= l}

)#{j +3*R =1}.

=2 B0
Combining this Wlth (2-4) we obtain
V(k+1) (V) — 3—k—1 Z Tk+1(i)

q-13-k-1cV

S Y Ymg

q-13~k—1icV j

)#{i + 3R =i}.

We may rewrite this as

k+1 :13 ZTk

JEQ

where the summation set () consists of those j such
that ¢ '3 1(j + 3*R) = ¢ '37%i € V implies

¢ '37%j €3V - R/q.
Thus by (1-1) we see that

k:+1 Z V(k)

in accordance with (2-3). Together with the fact
that F is a contraction this proves the result. O

Returning to the invariant set of (2-1), define

SE (A A NZ;

that S is the set of integer differences contained in
A. Writing A — A as a set of numbers on the base
3, as in (2-2), we easily see that A — A is the in-
variant set of the system (3, {0,£p, £(¢—p), £q}).
An easy argument shows that this is the same as
the invariant set of (3, {0,%gq}), which is given by
[—a/2,q/2].

Let R® be the vector space obtained by associat-
ing a basis vector e; to each element [ of S. Following
[Veerman 1998], define a linear map T : R® — R*,
the transition operator for the differences, whose
matrix elements are given by:

Ty =Y T+ — 39), (2-5)

1

where ¢ and j are in S. This operator plays a fun-
damental role in the theory of iterated function sys-
tems, although it goes by very different names and
formulations in different works such as [Pollicott
and Simon 1995; Lagarias and Wang 1996; Veer-
man 1996; 1998; Kenyon 1997; Solomyak 1995]. In
words, it is the matrix whose (7, )-th entry corre-
sponds to the number of differences in R that are
equal to 7 — 3j. We will call this operator the dif-
ference operator. One may reduce the dimension of
the matrix by a factor of almost 2, by exploiting the
fact that we are interested only in how T operates
on even vectors, v_; = v;. This is because for every
difference r; — r, = d, we must have a difference —d
in the sequence; see [Veerman 1998]. Define the re-
duced difference operator 79 by setting, for i > 0,

gim _ | T T
‘ T =17,

if 7 >0,
if j = 0.

Then TU acts on the reduced space as the original

T does on symmetric vectors. From now on we use
the abbreviation T for this operator as well.

The content of the next lemma is that the number
of differences in {Z 31R} equal to d may be cal-
culated by iterating the matrix T. This is very sim-
ilar to what is proved in [Veerman 1998, Section 3]
in greater generality. We give a simplified proof for
completeness. Recall that e, is the standard basis
vector in R® associated with 0 € S.
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Lemma 2.4. The growth rate of >, Ty (i)* (as k — oo)
is equal to the growth rate r of | T eg|.

Proof. Start by observing that

Torr (i) = #{R+3Z3R—z}

—Zﬂ%%ﬂ)

Using this formula, we see that for each d € S
> Toa(i)Tisa(i+ d)

=3 ) Ti(i — 3)Tu(d +i — 3n)Ti(5)Ti(n),
i j,m
where all the summations are over Z. Eliminate ¢
and j in favor of p and r by setting:

t=p+3n—3r, j=n-—r
obtaining
> Tosr (i) T (i+d)
i€z

= Z T (p) T (p+d—3r)Ti(n) Ty (n—r)

n,p,r€L
_Z(ZTl (p+d— 37") (ZT’“ VT (n— 7’))
r€L “pEL nez

By symmetry, we may change r to —r in the right-
most sum. Also, T7(p)Ti(p + d — 3r) is non-zero
only if s — Mr € R — R. Since d — 3r must be in
R— R C[—q,q] and d € §, it is easy to see that r
must be in [—¢/2,¢/2]. Thus by using (2-5) we see
that

D Ti1 ()T (i + d)

| _Z%T<ZT,€ Tkn—i—r))

resS nez

By a recursion argument we get

ZTk(i)Tk(i +d) =

(Tkeo)d—th component - (2_6)
To derive the lemma it is sufficient to notice that
the growth rate of this expression is independent of

d, because it is an eigenvalue of T. Thus we may set
d=0. O

We note that one can easily prove that the eigen-
value of T referred to in this proof is the leading one.

However, this fact will not be used in the numeri-
cal part of this work. In fact, the algorithm we will
be using (see equation (4-1)) is based on equation
(2-6).

The next result gives an efficient way to estimate
the dimension of the sets under consideration. It
is apparently new, although a related one has ap-
peared in [Lau 1993], where a very different method
of proof is used.

Theorem 2.5. Denote by k the leading eigenvalue of
the difference operator associated with the system

(3,{0,p,q}). Then

log(9/k)

Hdim(A(3, {0,p,q})) > log 3

Proof. Note that I/IE%(A) = 1 for all n. Denote by
z™(A) and v(™(A) the restrictions of 7, and ¢,
to the i-th components where ¢7'37"i € A. Now

Holder’s inequality gives us the estimate

def vz >
VoINS a? \/ UZ\/ZQ? B

where we have dropped the superscripts (n) and
where, of course, the summations are over the in-
dices 7 such that ¢~ '37"¢ € A. From the deﬁnitions
above we know that 37" > x; estimates v (A). To
take the limit as n — oo recall that v(™ converges
to v by Lemma 2.3. Also note that > v, estimates
the number N, of intervals of size ¢ '3~ ™ needed
to cover A. According to the previous lemma, the
growth rate of Y 27 is given by &, the leading eigen-
value of 7.

cos b,

1 3 A
lim —logcos@, = hm log ( p/q( ) )

n—oo N, \/_ /K"
_ log3 rlog9/k i
== ( log3 box dlm(A))
<0.

This gives an estimate for the box dimension of A:

log(9/k)

box dim(A) > log 3

Since A is contained in A it also is an estimate for
the box dimension of A. But the box dimension of
A equals its Hausdorff dimension by [Veerman and
Jonker 1997]. O
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By way of illustration, we work out one example.
The reduced difference operator associated with the
system (3, {0,1,3}) is easily calculated, noting that
S ={0,1} (for the reduced difference operator):

50 7:(3 D
7(0)= () w7 ()= (5)

Since in this case we have k = 2 + /3, the lower
estimate is

5 log(9/@ + V3))

d
log 3

= 0.801253262.

This is less than the exact value of the dimension of
this invariant set found before.

When the invariant set has positive measure (see
Theorem 1.1), its dimension is trivially equal to 1.
In this case we may calculate the dimension of the
boundary of the invariant set (this idea was first
developed in [Veerman 1998] in a more general con-
text). An eigenvalue of T is called special if it is real
and contained in [1, 3).

Theorem 2.6. Let (3,{0,p,q}) be such that pqg = 2
mod 3. The associated matrix T always has at least
one special eigenvalue. If we call the leading special
eigenvalue A, then the Hausdorff dimension of OA
(the boundary of A) is given by

log A

Hdim(0A) = .
im(9A) log 3

Since the system (3, {0,1,3}) is not of the form re-

quired by the theorem, we consider instead the sys-

tem (3, {0,8,13}). With a little work one can see

that the reduced difference operator becomes:

300 0 0 0O
001 1100
0110010
J=]10 3 0 0 0 0 O
0 002100
110 0 0 01
0 03 0000

To obtain the next-to-leading eigenvalue, one may
set the Too = 0 as in [Veerman 1998] and use the
same algorithm as in equation (4-1).

3. METHODS FOR INCOMMENSURABLY
CONSTRUCTED SETS

We present an estimate for the dimension for ¢ in a
certain class of irrationals. This estimate is a simple
consequence of a general result which we give first.

Theorem 3.1 [Veerman and Jonker 1997]. (i) For the
set Ay, the Hausdorff dimension equals the limit
capacity (or bozr dimension).

(ii) The Hausdorff dimension is a lower semicontin-
wous function of t.

(iii) The Lebesgue measure of A, is an upper semi-
continuous function of t.

(iv) For d greater than the upper box dimension of
OAN(F,), and for any € > 0 and t sufficiently close
to tg, we have true:

pu(t) < plto) + elt —to| .
Let O, be the subset of reals t € [0, 1] such that
(i) ¢ is irrational and for some C > 0 there is an
infinite number of rationals satisfying |t —p/q| <
C/q”, and
(ii) the equation above has an infinite number of so-
lutions p/q with pg = 2 mod 3.

Theorem 3.2. When t € O,,, the Hausdorff dimension
of A; is greater than or equal to 1 —1/v.

Remark. In [Kenyon 1997] the same statement is
proved differently.

Proof. Suppose that ¢t in O,, and let dy be the box
dimension of A;. By Theorem 3.1, dy = Hdim(%).
By the same theorem, and using the definition of
O,, we conclude that for d > d

M(%) < u(t)—l—a‘tfg

% < (qgl,)ld,

Here we have also used Theorem 1.1 twice, namely
u(t) =0, and ,u(g) = 1/q. The last equation implies
the result. O

Corollary 3.3. If t € (), O, then Hdim(t) = 1.

1-d

implies

The set (), O, is contained in the set of Liouville
numbers, which though uncountable has Hausdorff
dimension zero [Oxtoby 1980]. This is different from
statement (iv) of Theorem 1.1, since now we identify
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a set of irrationals where the dimension is one. In
the proof of the theorem it is important that the ir-
rational number ¢ for which we obtain an estimate is
close to certain rationals. In particular, the theorem
does not apply to ¢t = (v/5—1)/2, the golden mean.

4. NUMERICAL RESULTS

We now describe certain numerical computations,
performed using the methods outlined in the previ-
ous sections, which support the conjecture that the
Hausdorff dimension of the invariant set for the sys-
tem (3, {0,¢,1}), where t = g is the golden mean,
equals 1. We discuss each figure and summarize our
results.

In these numerical calculations we employ a con-
venient algorithm to calculate the appropriate eigen-
value A of a matrix D:

. |Dn+1,U|
A= lim —— 4-1
n— oo |Dn1)| ’ ( )
where, of course, v = (1,0,...,0)", represents the

word {0} (in the calculation according to Theorem
2.2) or the difference vector whose only difference is
zero (in the calculation according to Theorem 2.5).

To create Figure 1, 3'®* ~ 4 - 10% points of the
invariant set for the system (3, {0,¢9,1}) were laid
out on the interval. We then performed a standard
box-counting procedure to estimate the dimension.
As can be seen in Figure 1, the estimate on the
dimension is not very accurate and even seems to
converge to a number less than 1.

Claim. The conventional box-counting procedure to
estimate the dimension may occasionally lead to er-
roneous conclusions, even when applied to relatively
simple subsets of the line (such as the one under con-
sideration).

For lack of reliable computational methods appli-
cable to the incommensurate case, we study the
dimensions of a sequence of commensurably con-
structed sets converging to the desired set (with
t = g). The results are displayed in Figure 2. First
we calculated the exact dimension of the invariant
sets associated to the systems (3, {0, f,,_1/fn,1}) us-
ing the word counting algorithm of Section 2. Here
frn_1/fn is the n-th Farey approximant to the golden
mean (f; = 1, fo = 2 are the Fibonacci numbers).

0.95

0.85 |

0.75

419

dn

1/

0.9 1

0.8 1

0.7 : : : ; —1/n

0 0.1 0.2 0.3 0.4 0.5

FIGURE 1. Direct calculation of the box dimension.
Top curve: log(N,,)/log((3™+1)/2). Bottom curve:
log(N,)/(nlog 3).

The number of distinct words in its grammar in-
creases dramatically and the algorithm ceases to
be practicable beyond n = 10. In fact, forn = 9
the grammar consists of 8954 words with the max-
imum word length of 20794 letters (integers), the
main restriction in continuing the sequence being
the available computer memory for dictionary stor-
age. Finding the corresponding point in Figure 2
therefore involves calculating the leading eigenvalue
of a 8954 x 8954 transition matrix. To continue the
sequence, we used the more efficient algorithm de-
scribed in Theorem 2.5 giving the lower bound of
the dimension. In this case, the computational dif-
ficulties arise from computational time rather then
memory requirements, and here we have performed
calculations up to n = 18. Note that every fourth
dimension is equal to 1 as it satisfies the criterion
given in Theorem 1.1(i).

The apparent convergence of the sequence of di-
mensions in Figure 2 is of course no proof that the
dimension is continuous at ¢t = g. We set out to
compare its behavior with that of at least two other
sequences, namely one for which we know the di-
mension is continuous at its limit point (¢t = 1/2),
and one for which we know that there is a disconti-
nuity (¢t = 0).

At t = 1/2 the dimension is continuous, by Theo-
rem 1.1. Figure 3 displays the dimensions of the
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A At t = 0 the dimension is discontinuous. Figure 4
- plots both the exact values and the lower bounds of
the dimensions of the invariant sets associated with
the systems (3, {0,1/n,1}). First, if n = 2 mod 3,
the dimension of the sets is 1, by Theorem 1.1. In
addition if n = 3* one can show (as in the calculation
for n = 3 done in Section 2) that the dimension of
the set is approximately 0.876; this is also mentioned
in [Kenyon 1997]. Therefore the displayed sequence
cannot converge. Indeed, from its appearance, it
might have many limit points.

0.95 ¢

0.9 r

0.85 1

0.8 1

0 5 10 15
FIGURE 2. Dimension calculation when ¢ — g. The 095 |
system is {3, 0, fn—1, fn}; the solid curve gives the

actual dimension, and the dashed curve the lower

bound of the text.
0.9

invariant sets of the systems (3, {0,n/(2n+1),1}).
Although only relatively few exact dimensions could
be calculated, they do appear to converge to 1. The o385 |
sequence of lower bounds displayed in the same pic-
ture clearly converges to 1. (In fact, we calculated
the lower bounds for the dimensions up to n = 500
and the convergence persists, the last value for the ‘ ‘ ‘ ‘ ‘ : : : : :
bound being 0.999507.) 0 10 20 30 40 50 60 70 8 90 100
FIGURE 4. Dimension calculation when ¢ — 0. The
system is (3, {0,1,n}); the upper (solid) curve gives
the actual dimension, and the dashed curve gives the
lower bound.

To make this more apparent, we calculated the
lower bounds for the dimension for all n < 1000
for these systems and displayed them in Figure 5,
which also shows the (exact) values for the dimen-
sion of the boundary of the invariant sets associated
with the systems (3, {0,1/n,1}) when n = 2 mod 3
(compare Theorem 2.6). They apparently converge
(slowly) to 1; this was proved in [Kenyon et al. 1999].
From [Veerman and Jonker 1997], one can conclude
that these boundaries as sets converge to A,—g in
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ n the Hausdorff metric.
0 10 20 30 40 50 60 70 8 90 100 There is a striking difference in the behavior of the
FIGURE 3. Dimension calculation when t — 1/2. dimension function dependipg on.the limiting value
The system is (3, {0,n/(2n+1), 1}); the upper (solid) of t: when ¢t — 1/2 the dimension converge, and
curve gives the actual dimension, and the dashed when ¢ — 0 they do not. From this we formulate a
curve that extends to the right gives the lower bound. conjecture:

0.95 |

0.9 1

0.85

0.8
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FIGURE 5. Dimension calculation when ¢ — 0 for large n. The system is (3, {0,1,n}); the black dots give the
dimension of the boundary, and the gray dots give the lower bound for the dimension. Not shown are the gray

dots at (n,1) for n =2 mod 3.

Conjecture 4.1. If lim, ,,, Hdim(¢) exists, Hdim(t) is
continuous at tgy.

Based on this criterion we may now take the fact
that the limit of the dimension as t — g appears to
exist (see Figure 2), as evidence that Hdim(A;) is
continuous at the golden mean.

Because our main conjecture relies crucially upon
this second conjecture, we felt it was necessary to
provide additional evidence for it. Thus we tested
the convergence of the bounds for the dimensions of

the invariant of the system
(3, {0, (24m)/(9+5n),1}),

where t converges to 1/5 and we expect the dimen-
sions to converge to 1 (Figure 6), and those of the
system

(3, {0, (3+2n)/(8+5n),1}),

where ¢ converges to 2/5 and the dimensions are not
expected to converge (Figure 7).

1
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095 b b

TVEW TR RER T R TR R

n
1 L L L L 1

0 500 1000 1500

L L L 1 L L |
2000 2500 3000 3500

FIGURE 6. Dimension calculation when ¢ — 1/5. The system is (3, {0,2+n,9+5n}); only the lower bound of the

dimensions is given.
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FIGURE 7. Dimension calculation when ¢ — 2/5. The system is (3, {0, 3+2n,8+45n}); only the lower bound of the
dimensions is given. For clarity, those n where the value is 1 are not shown.

The task of producing data for reasonable conclu-
sions turned out to be computationally formidable.
Only after a very careful, low level optimization of
the C program (including consideration of register
versus memory variable storage, inline function ex-
pansion, and substitution of algebraic operations by
logical instructions), using two processors of the 64
bit UltraSparc HPC 3000 continuously for over forty
days (60,000 minutes for each of the two processes,
equivalent to three months CPU time), were we able
to produce the data of Figures 6 and 7.

These figures show only the lower bound, since the
word algorithm that gives us the exact values of the
dimension is not practicable except for very small
values of n. However from the other figures it is
apparent that the tendencies of the exact dimension
are reflected in the behavior of the bound.

Finally, we also consider the invariant sets associ-
ated to the systems (3, {0, ¢,_1/cn, 1}), where
co =1, (4-2)

Cn = 3cn71 + Cn—2, C1 = 37

converging to the value t = (v/13—3)/2 ~ 0.3027.
This should be similar to the golden mean case, ex-
cept that now pg = 0 mod 3 for all approximants.
Numerically, this is a much harder problem than the
case t = g; we were able to calculate only the lower
bound of the dimension up to n = 7. The re-
sults are shown in Figure 8, where it is seen that
the dimension also seems to converge to 1. The

general behavior of successive approximants is sim-
ilar to that in the golden mean case, except for the
absence of points with Hdim(¢) = 1 which satisfy
the criterion given in Theorem 1.1(i).

In all rational cases that we have been able to
check, we find that whenever Hdim(A,,,) < 1 we
also have that the lower bound of the dimension is
strictly smaller than the (exact) dimension. This
leads us to believe that in these cases the dimension
of the support of the invariant measure is strictly
smaller than the dimension of the set. That this
should occur in one-dimensional systems was ap-
parently not known, although it has been observed

1

0.95 s

0.9 ,

0.85 /

0.8 / n

FIGURE 8. Dimension calculation when ¢ approaches
(v/13 —3)/2. The system is (3, {0,¢,_1,¢n}), where
the ¢; are defined in (4-2); the dots show the lower
bound of the dimension.
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for two-dimensional iterated function systems [King
1995]. It is interesting to note that since the esti-
mate of the dimension tends to 1 (in the third se-
quence) apparently the dimension of the measure in
the irrational case equals the dimension of the set.

Conclusion. Our numerical work indicates that
Hdim(A,) = Hdim(y,) =1,

where g is the golden mean.
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