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MICROLOCALIZATION AND STATIONARY PHASE∗

RICARDO GARĆıA LÓPEZ†

Respectfully dedicated to the memory of Armand Borel

0. Introduction. In [6], G. Laumon defined a set of functors, called by him
local Fourier transformations, which allow to analyze the local structure of the ℓ-adic
Fourier transform of a constructible ℓ-adic sheaf G on the affine line in terms of the
local behaviour of G at infinity and at the points where it is not lisse. These local
Fourier transforms play a major rôle in his cohomological interpretation of the local
constants and in his proof of the product formula (see loc. cit. and [5]).

In this article, we are concerned with differential systems defined over a field K of
characteristic zero. We define a set of functors which allow to prove a stationary phase
formula, expressing the formal germ at infinity of the D-module theoretic Fourier
transform of a holonomic K[t]〈∂t〉-module M in terms of the formal germs defined by
M at its singular points and at infinity. These functors might therefore be regarded
as formal analogues of Laumon’s local Fourier transformations.

When the module M is of exponential type (in Malgrange’s sense, see [8]), such
a stationary phase formula is implicit in the work B. Malgrange (loc. cit. and [7]).
In this case, the only transformation needed is the one given by the functor of formal
microlocalization which, as it is probably known, should correspond to the transfor-
mation labelled (0, ∞′) by Laumon. The main point of section 1 below is to treat
the case of a K[t]〈∂t〉-module with arbitrary slopes at infinity. In this case, one is
forced to introduce another functor (corresponding to Laumon’s (∞,∞′) transforma-
tion) to keep track of the contribution coming from the germ at infinity defined by
M. A transcendental construction of this functor was explained by B. Malgrange to
the author, however, the construction we give here is algebraic. The main advantage
of having an algebraic definition is that, in spite of the fact that we cannot avoid
some transcendental arguments in the course of the proof of the stationary phase
formula, the final statement is valid for any field of characteristic zero. We point up
that, independently, S. Bloch and H. Esnault have defined in [2] formal analogues of
Laumon’s local Fourier transformations for germs of meromorphic connections. In
this case, their constructions give the same objects as ours, but both their methods
and their applications significatively differ from those in the present article.

When the base field K is the field of complex numbers, from the formal statements
we can obtain a 1-Gevrey variant of the stationary phase formula, and we use it to give
a decomposition theorem for germs of meromorphic connections (the decompositions
obtained are much rougher than the decomposition according to formal slopes, but
they hold at the s-Gevrey level, s > 0). In section 2 we define an analogue of Laumon’s
(∞, 0′) local Fourier transform, and we use it for the study of the singularity at zero of
the Fourier transform of M and to establish a long exact sequence of vanishing cycles.
In section 3 we make a modest attempt to transpose part of the above constructions
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into the p-adic setting. We define a ring of p-adic microdifferential operators of finite
order, we prove a division theorem for them and we show that, in some cases, the
corresponding microlocalization functor has the relation one would expect with the p-
adic Fourier transform (in a sense which is made precise in the introduction to section
3).

We will use some results from D-module theory for which we refer e.g. to [14],
[15]. Our proof of the formal stationary phase formula follows the leitfaden of the one
given by C. Sabbah in [15] for modules with regular singularities. I thank C. Sabbah,
B. Malgrange, G. Christol and W. Messing for their useful remarks. I thank also G.
Lyubeznik and S. Sperber for their invitation to the University of Minnesota, during
which part of this work was done.

1. Formal stationary phase. We will use the following notations:

i) Unless otherwise stated, all modules over a non-commutative ring will be
left modules. We denote by M a holonomic module over the Weyl algebra
Wt = K[t]〈∂t〉 (that is, we assume that M is finitely generated over Wt and
for each m ∈ M there is an operator P ∈ Wt − {0} such that P · m = 0).
The rank of M is defined as rank(M) := dimK(t) K(t) ⊗K[t] M. Let K be an
algebraic closure of K. There is a maximal Zariski open subset U ⊂ A1

K
such

that the restriction of M to U is of finite type over the ring of regular functions
on U , by definition the set of singular points of M is Sing(M) = A1

K
−U . We

will assume the points of Sing(M) are in K.
ii) The Fourier antiinvolution is the morphism of K-algebras Wt → Wη given by

t 7→ −∂η , ∂t 7→ η. The Fourier transform of M is defined as the Wη-module

M̂ := Wη ⊗Wt
M, where Wη is regarded as a right Wt-module via the Fourier

morphism. If m ∈ M, we put m̂ = 1 ⊗ m ∈ M̂.
iii) We will set Kη−1 := K[[η−1]][η] and we consider on this field the derivation

∂η−1 = −η2∂η. If V is a Kη−1 -vector space, a connection on V is a K-linear
map ∇ : V → V satisfying the Leibniz rule

∇(α · v) = ∂η−1(α) · v + α · ∇(v) for all α ∈ Kη−1 , v ∈ V .

iv) We set M∞ = K[[t−1]]〈∂t〉⊗K[t−1]〈∂t〉M [t−1], and for c ∈ K we put tc = t−c,
M c = K[[tc]]〈∂tc

〉 ⊗Wt
M.

We will consider the following rings:

i) The ring F ( c,∞) of formal microdifferential operators:
Let c ∈ K. For r ∈ Z, we denote by F ( c,∞)[r] the set of formal sums

∑

i≤ r

ai(tc) ηi where ai(tc) ∈ K[[tc]] , r ∈ Z.

We put F ( c,∞) = ∪r F ( c,∞)[r]. For P, Q ∈ F ( c,∞), their product is defined
by the formula

P · Q =
∑

α> 0

1

α !
∂ α

η P · ∂ α
tc

Q ∈ F ( c,∞) ,

where the product on the right hand side is the usual, commutative product.
With this multiplication, F ( c,∞) becomes a filtered ring and F ( c,∞)[0] is a
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subring. One has a morphism of K-algebras given by

ϕ( c,∞ ) : Wt −→ F ( c,∞)

t 7→ tc + c

∂t 7→ η

which endows F ( c,∞) with a structure of (Wt, Wt)-bimodule.
ii) The ring F (∞, ∞):

For r ∈ Z, we denote by F (∞,∞)[r] the set of formal sums

∑

i≤ r

ai(t
−1) ηi where ai(t

−1) ∈ K[[t−1]] , r ∈ Z.

We put F (∞,∞) = ∪r F (∞,∞)[r]. If P, Q ∈ F (∞,∞), their product is given
as above by

P · Q =
∑

α≥ 0

1

α !
∂ α

η P · ∂ α
t Q .

Again, F (∞,∞) is a filtered ring and F (∞,∞)[0] is a subring. One has a
morphism of K-algebras

ϕ(∞,∞ ) : K[t−1]〈∂t〉 −→ F (∞,∞)

t−1 7→ t−1

∂t 7→ η

(notice that on the ring K[t−1]〈∂t〉, one has the relation [∂t, t
−1] =

−t−2). The morphism ϕ(∞,∞ ) endows F (∞, ∞) with a structure of
(K[t−1]〈∂t〉 , K[t−1]〈∂t〉 ) - bimodule.

If P =
∑

i∈Z
ai(tc) ηi ∈ F ( c,∞), the order of P is the largest integer r such that

ar(tc) 6= 0, and we define the principal symbol of P as σ(P ) = aord(P )(tc). We define

similarly the order and the principal symbol of an operator P ∈ F (∞,∞). Principal
symbols are multiplicative, in the sense that σ(P · Q) = σ(P ) · σ(Q).

We recall next some results which are well-known for the rings F ( c,∞). The proofs
for F (∞,∞) follow a similar pattern (using the fact that the graded ring associated
to the filtration on F (∞,∞) is isomorphic to K[[t−1, x]][x−1]), and therefore they are
omitted.

(1.1) Division theorem (see e.g. [1, Ch.4, 2.6.]). Let F ∈ F ( c,∞) and assume
that σ(F ) = tmc b(tc) where b(0) 6= 0. Then, for all G ∈ F ( c,∞), there exist unique
Q ∈ F ( c,∞) and R0, . . . , Rm−1 ∈ Kη−1 such that

G = Q · F + Rm−1 tm−1
c + . . . + R0.

The same statement holds for the ring F (∞,∞), replacing tc by t−1.

Proposition ([1, Ch.4, 2.1 and 2.9]). The rings F ( c,∞) and F (∞,∞) are left
and right noetherian.

Proposition ([1, Ch.5, §5]). F ( c,∞) is a flat left and right Wt-module. F (∞, ∞)

is a flat left and right K[t−1]〈∂t〉-module.
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We will consider the following modules:

i)The (ordinary) microlocalization of M at c ∈ K: It is defined as

F ( c,∞)(M) := F ( c,∞) ⊗Wt
M.

where F ( c,∞) is viewed as a right Wt-module via ϕ(c,∞). It has a structure of Kη−1 -
vector space with a connection given by left multiplication by
η2 · (tc + c) = η2 · t. Notice that

F ( c,∞)(M) ∼= F ( c,∞) ⊗K[[tc]]〈∂tc 〉
(K[[tc]]〈∂tc

〉 ⊗Wt
M) = F ( c,∞) ⊗K[[tc]]〈∂tc 〉

Mc ,

thus F ( c,∞)(M) depends only on the formal germ Mc.

ii)The (∞ ,∞ )-microlocalization of M : It is defined as

F (∞, ∞)(M) := F (∞,∞) ⊗K[t−1]〈∂t〉 M [t−1] ,

where F (∞, ∞) is viewed as a K[t−1]〈∂t〉-module via the morphism ϕ(∞,∞ ). Again,
it has a structure of Kη−1 -vector space with a connection defined by

∇(α ⊗ m) := ∂η−1(α) ⊗ m + η2α ⊗ t · m ,

and it depends only on M∞, since one has

F (∞,∞)(M) := F (∞,∞) ⊗K[[t−1]]〈∂t〉 M∞ .

By flatness of ϕ( 0,∞ ) and ϕ(∞,∞ ), both microlocalizations define exact functors.

For the proof of the formal stationary phase formula we will need the following
result:

Proposition 1. Let Q(t−1, ∂t) =
∑n

v=1 bv(t
−1) ∂v

t ∈ K[t−1]〈∂t〉 be such that there
is at least one index v ∈ {1, . . . , n} with bv(0) 6= 0. Then, there is an isomorphism of
K[t−1]〈∂t〉-modules

F (∞, ∞) ⊗K[t−1]〈∂t〉
K[t−1]〈∂t〉

K[t−1]〈∂t〉 · Q
∼= F (∞, ∞) ⊗K[t−1]〈∂t〉

K[t, t−1]〈∂t〉
K[t, t−1]〈∂t〉 · Q

.

Proof. We show first that the natural map

ג :
K[t−1]〈∂t〉

K[t−1]〈∂t〉 · Q
−→ K[t, t−1]〈∂t〉

K[t, t−1]〈∂t〉 · Q

is injective. Assume we have A(t, t−1, ∂t) ∈ K[t, t−1]〈∂t〉 such that A(t, t−1, ∂t) ·
Q(t−1, ∂t) ∈ K[t−1]〈∂t〉, we have to show that in fact A ∈ K[t−1]〈∂t〉. Write A =∑

u au(t, t−1) ∂u
t with au(t, t−1) ∈ K[t, t−1]. Let v0 be the largest index with bv0(0) 6=

0 and let k0 ∈ N be the largest exponent of t appearing in the Laurent polynomials
{au}u (if au ∈ K[t−1] for all u, we are done). Let u0 be the largest index such that
au0 contains a monomial βtk0 6= 0, β ∈ K. Set j0 = u0 + v0. The coefficient of ∂j0

t in
A · Q is

∑
u,v,α

j0=u+v−α

1

α !
u(u − 1) . . . (u − α + 1) au

dαbv

d tα
.



MICROLOCALIZATION AND STATIONARY PHASE 751

The monomial βbv0(0)tk0 appearing in the summand corresponding to u = u0, v =
v0, α = 0 cannot be cancelled, because in the other summands either u > u0, and then
in au dαbv/d tα all powers of t appear with exponent strictly smaller than k0 , or else
u 6 u0, and then dαbv/d tα ∈ t−1K[t−1], thus the exponents of t in these summands
are also strictly smaller than k0. Since A · Q ∈ K[t−1]〈∂t〉, we conclude that k0 = 0,
which proves the injectivity of .ג

By flatness of F (∞,∞) over K[t−1]〈∂t〉, the map IdF (∞, ∞) ⊗ ג is injective as well.
In order to show that it is a surjection, we prove first the following statement:

Claim: For all P ∈ K[t, t−1]〈∂t〉 , there exists a polynomial

p(x) ∈ K[x] − {0} such that p(∂t) · P ∈ K[t, t−1]〈∂t〉 · Q + K[t−1]〈∂t〉.

Proof of the claim. Let us denote by Ω ⊆ K[t, t−1]〈∂t〉 the set of differential
operators P ∈ K[t, t−1]〈∂t〉 satisfying the condition of the claim, notice that Ω is
closed under addition. It suffices to show that ti ∈ Ω for all i > 1, because if there is
a p(x) with p(∂t) · ti = α(t, t−1, ∂t) · Q + β(t−1, ∂t) then, multiplying on the right by
∂j

t , we obtain that ∂j
t · ti ∈ Ω for all i, j > 0, and then we are done. We prove ti ∈ Ω

by induction on i > 1: By our hypothesis on Q there exists a non-zero polynomial
p(x) ∈ K[x] such that Q = p(∂t) + β(t−1, ∂t) with β(t−1, ∂t) ∈ t−1K[t−1]〈∂t〉 (we
will denote p ′ = dp

dx). Now, multiplying this equality on the left by t and using
t p(∂t) = p(∂t) t − p ′(∂t), case i = 1 follows. For the induction step, assume we have

p(∂t) · ti = α(t, t−1, ∂t) · Q + β(t−1, ∂t).

Since we have also p(∂t) ti+1 = t p(∂t)t
i + p ′(∂t) t, substituting we get

p(∂t) ti+1 = t(α Q + β) + p ′(∂t) t

Now, from the case i = 1 it follows that we have t β(t−1, ∂t) ∈ Ω and p ′(∂t) t ∈ Ω, so
the claim is proved. Given

F (t−1, η) ⊗ P (t, t−1, ∂t) ∈ F (∞, ∞) ⊗ K[t, t−1]〈∂t〉
K[t, t−1]〈∂t〉 · Q

choose p(x) 6= 0 such that p(∂t) · P ∈ K[t, t−1]〈∂t〉 · Q + K[t−1]〈∂t〉. By the division
theorem p(η) is invertible in F (∞,∞), thus we have F ⊗ P = F · p(η)−1 ⊗ p(∂t)P ∈
Im [ IdF (∞, ∞) ⊗ ,[ג and then the proposition is proved.

Definition. If N is a Wη-module, its formal germ at infinity is the Kη−1 -vector
space N∞ = Kη−1 ⊗K[η] N, endowed with the connection defined by

∇(α ⊗ n) = ∂η−1(α) ⊗ n − α ⊗ η2∂ηn .

The main result of this section is:

Theorem (formal stationary phase). Let K be a field of characteristic zero, let
M be a holonomic K[t]〈∂t〉-module. Then, after a finite extension of the base field K,
the map

Υ : M̂∞ −→
⊕

c∈SingM∪{∞}

F ( c,∞)(M)
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given by Υ(α ⊗ m̂) = ⊕c α ⊗ m is an isomorphism of Kη−1-vector spaces with con-
nection.

Proof. The connections on the right hand side have been chosen so that the
map is a morphism of Kη−1 -vector spaces with connection, we have to show it is an
isomorphism. We will assume all Wt-modules appearing in what follows have K-
rational singularities (which can be achieved after a finite extension of K). Consider
first the Dirac modules δc = Wt/Wt(t − c). It is easy to check that we have

F (∞,∞)(δc) = 0 , F ( d,∞)(δc) = 0 if d 6= c ,

Kη−1 ⊗ δ̂c = Kη−1 = F ( c,∞)(δc) ,

so the theorem follows in this case.

For an arbitrary holonomic module M, there is a differential operator P ∈ Wt

and a Wt-module with punctual support K so that one has an exact sequence

0 −→ K −→ Wt/Wt · P −→ M −→ 0 .

A holonomic module with punctual support is a finite direct sum of Dirac δ-modules.
Since both the global and the local Fourier transforms are exact functors, it will
suffice to consider the case of a quotient of Wt by an operator. Moreover, given
M = Wt/Wt · P1, there is an operator P2 ∈ Wt such that one has

0 −→ K1 −→ M −→ M [t−1] = Wt/Wt · P2 −→ K2 −→ 0

where Ki are supported at zero for i = 1, 2 ([14, 4.2]). Thus, we will assume in

what follows that M = M [t−1] = Wt/WtP , we write P (t, ∂t) =
∑d

i=0 ai(t)∂
i
t with

ai(t) ∈ K[t].

Step 1: The map Υc : M̂∞ → F ( c,∞)(M), given by the composition of Υ with the
projection onto F ( c,∞)(M), is exhaustive for all c ∈ Sing(M) ∪ {∞}.

Assume first that c = 0. Then P (t, η) ∈ F ( 0,∞) has a principal symbol of the
form σ(P ) = tm0 b(t) with b(0) 6= 0, m0 > 0, and we have

F ( 0,∞)(M) = F ( 0,∞)/F ( 0,∞) · P.

Given G ∈ F ( 0,∞), by the division theorem

G ≡
m0−1∑

i=0

Ri · ti (mod F ( 0,∞) P )

where Ri ∈ Kη−1 (0 ≤ i ≤ m0 − 1). Then, a preimage of the class of G in F ( 0,∞)(M)
under Υc is given by

m0−1∑

i=0

Ri ⊗ t̂i ∈ Kη−1 ⊗ M̂ ,

where t̂i denotes the element 1 ⊗ ti ∈ M̂ = Wη ⊗ M. The proof for arbitrary c ∈
K is done in the same way, using the division theorem in F ( c,∞) (notice that the
assumption M = M[t−1] has not been used up to now).
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We consider now the case c = ∞. Write d̂ = maxd
j=1{deg aj(t)}, set Q(t−1, ∂t) =

t−
bdP (t, ∂t). Since Q satisfies the hypothesis of proposition 1 above, we have

K[t−1]〈∂t〉
K[t−1]〈∂t〉 · Q

∼= K[t, t−1]〈∂t〉
K[t, t−1]〈∂t〉 · Q

= M

as K[t−1]〈∂t〉-modules. Then we have

F (∞,∞)(M) ∼= F (∞, ∞)

F (∞,∞) · Q ,

and notice that the principal symbol of Q is of the form σ(Q) = t deg(ad(t))−bd · b(t−1)
with b(0) 6= 0. Given G ∈ F (∞,∞), by the division theorem

G ≡
∑

i

Ri · t−i (mod F (∞,∞) Q)

where i ∈ {0, . . . , d̂−deg(ad(t))}. Since M = M [t−1], we have that
∑

i Ri ⊗ t̂−i ∈ M̂∞

is a preimage of G under Υ∞.

Step 2: dimK
η−1 M̂∞ = dimK

η−1

[(⊕
c∈Sing M

F ( c,∞)(M)
)
⊕ F (∞,∞)(M∞)

]
.

Put ad(t) =
∏

c∈Sing M
(t − c)mc . It follows from the existence and uniqueness

of division for F ( c,∞) and F (∞,∞) that we have dimK
η−1

F ( c,∞)(M) = mc,

dimK
η−1

F (∞, ∞)(M) = d̂ − deg(ad(t)). Since d̂ = rank(M̂) = dimK
η−1

M̂∞, the
claimed equality follows.

Step 3:

a) All slopes of F ( 0,∞)(M) are strictly smaller than +1.
b) For c ∈ K − {0}, all slopes of F ( c,∞)(M) are equal to +1.
c) All slopes of F (∞,∞)(M) are strictly greater than +1.

We assume first that the base field K is the field C of complex numbers. Then,
there is a holonomic C[t]〈∂t〉-module N which is only singular at 0 and ∞, the singu-
larity at infinity is regular and for the singularity at zero we have C[[t]]〈∂t〉 ⊗Wt

N ∼=
C[[t]]〈∂t〉 ⊗Wt

M (this is the transcendental step in the proof, see [7], it follows that
F ( 0,∞)(M) ∼= F ( 0,∞)(N)). Let L ։ N be a surjection where L is the quotient of
C[t]〈∂t〉 by the left ideal generated by a single differential operator. Then we have

F ( 0,∞)(L)

Kη−1 ⊗C[η−1] L̂

F ( 0,∞)(N)

Kη−1 ⊗C[η−1] N̂

--

--

? ?

ΥL
0 ΥN

0

where we denote ΥL
0 (respectively, ΥN

0 ) the map defined in step 1 for the module L
(resp., for N) and the horizontal arrows are surjective. By step 1, the map ΥL

0 is
onto, and then so is ΥN

0 . But the behavior of formal slopes under Fourier transform

is well-known (see e.g. [8, V.1]), in particular the slopes of Kη−1 ⊗C[η] N̂ are strictly
smaller than +1, and a) follows.
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For b), take now a C[t]〈∂t〉-module Nc with singularities only at c ∈ C − {0} and
at infinity, and such that one has an isomorphism of formal germs C[[tc]]〈∂tc

〉 ⊗Nc ∼=
C[[tc]]〈∂tc

〉 ⊗M and the singularity at infinity of Nc is regular. Then (as in a) above)

the corresponding map ΥN
c

c is onto, and since Kη−1 ⊗C[η] N̂c has only slope +1 at
infinity, b) follows.

For the proof of c) consider first a C[t]〈∂t〉-module N0 with a regular singularity at
zero, no other singularity in C, and N0

∞
∼= M∞ (then F (∞,∞)(M) ∼= F (∞, ∞)(N0)).

Let L0 ։ N0 be a surjection where L0 is the quotient of C[t]〈∂t〉 by a single differential
operator. Then L0[t−1] is given by a single differential operator as well and, as in case
a) above, the map

ΥN
0[t−1]

∞ : Kη−1 ⊗C[η] N̂0[t−1] −→ F (∞,∞)(N0[t−1]) ∼= F (∞,∞)(M)

is onto (the last isomorphism holds because M∞
∼= N0

∞ = N0[t−1]∞).

Since the slopes of Kη−1 ⊗C[η] N̂0[t−1] are either zero or strictly greater than +1,

the same holds for F (∞,∞)(M).

Let now N1 denote the pull back of N0 by the translation t 7→ t + 1. In the same
way we get a surjection

ΥN
1[t−1]

∞ : Kη−1 ⊗C[η] N̂1[t−1] −→ F (∞,∞)(N1[t−1]) ∼= F (∞,∞)(M)

and the slopes of Kη−1 ⊗C[η] N̂1 are greater or equal than +1. Thus all slopes of

F (∞,∞)(M) must be strictly greater than +1, and then we are done when the base
field is C.

In the general case, there is a subfield K1 ⊂ K of finite transcendence degree
over Q such that the module M is defined over K1 and all its singular points are
K1-rational. Choosing an embedding of fields K1 →֒ C, the statement follows from
the complex case treated above.

If N is a Kη−1 -vector space with connection and q ∈ Q, we denote by Nq its
subspace of formal slope q (see e.g. [14, 5.3.1]), and we denote N<q its subspace of
slopes strictly smaller than q. If ϕ : L → N is a morphism, we denote by ϕ<q :
L<q → N<q the induced morphism (and similarly, we let ϕ>q denote the restriction
of ϕ to the subspaces of slopes strictly bigger than q). For c ∈ C, let Ec denote the
one dimensional Kη−1 - vector space with connection given by ∇(1) = c · η2. It is easy
to see that, if c 6= 0, then Ec has slope +1. Let τc : K[t] → K[t] the translation
given by t 7→ t + c. One has an isomorphism of Kη−1 - vector spaces with connection

Ec ⊗F ( c,∞)(M) ∼= F ( 0,∞)(τ∗
c M) (from this isomorphism one can get an alternative

proof of b) above). Notice also that Ec ⊗ E−c ∼= (Kη−1 , ∂η−1).

Step 4: Υ is an isomorphism. We remark first that if M is Kη−1 - vector space with
connection such that all its slopes are strictly smaller than +1, then for c 6= 0 the
twisted vector space with connection Ec⊗K

η−1
M has only slope +1 (this can be easily

seen using the structure theorem of formal meromorphic connections, [14, Theorem
5.4.7]).
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Set M̂c
∞ := E−c ⊗ (Ec ⊗M̂∞)<1 ⊂ M̂∞. If c, d ∈ Sing(M) are distinct, then the

map

id ⊗ Υc |Md
∞

: Ec ⊗ M̂d
∞ −→ Ec ⊗F ( c,∞)(M) ∼= F ( 0,∞)(τ∗

c M)

is the zero map, because its source is purely of slope +1 and its target has slopes
strictly smaller than +1. Tensoring with E−c, it follows that Υc |Md

∞

: M̂d
∞ →

F ( c,∞)(M c) is the zero map as well.

Since by step one Υc is onto, also is the map id ⊗ Υc : Ec ⊗ M̂∞ → Ec ⊗
F ( c,∞)(M). Since Ec ⊗F ( c,∞)(M) ∼= F ( 0,∞)(τ∗

c M) has slopes strictly smaller than
+1, the restriction

( id ⊗ Υc)<1 : (Ec ⊗ M̂∞)<1 −→ Ec ⊗F ( c,∞)(M)

is onto as well, thus tensoring with E−c follows that Υc |Mc
∞

is onto.

Let Υ∞ denote the composition of Υ with the projection onto F (∞,∞)(M). The

restriction Υ∞, >1 : M̂∞, >1 → F (∞,∞)(M) is onto while for c ∈ K, the maps Υc, >1

are zero. Notice also that if c ∈ Sing(M), then

M̂c
∞ ∩ (⊕d 6=cM̂d

∞ ⊕ M̂∞, >1) = {0},

because tensoring both M̂c
∞ and ⊕d 6=cM̂d

∞ with Ec, one obtains two subspaces of

Ec ⊗ M̂∞ with different slopes. Also, M̂∞, >1 ∩ (⊕cM̂c
∞) = {0}. Thus the map

(⊕cΥc) ⊕ Υ∞, >1 : (⊕c M̂c
∞) ⊕ M̂∞, >1 → (

⊕

c∈ SingM

F ( c,∞)(M c)) ⊕ F (∞,∞)(M∞)

is an epimorphism, and then

dimK
η−1 (⊕c M̂c

∞) ⊕ M̂∞, >1 >

dimK
η−1

(
⊕

c∈SingM

F ( c,∞)(M c)) ⊕ F (∞,∞)(M∞)= dimK
η−1

M̂∞,

the last equality by step 2. It follows that M̂∞ = (⊕cM̂c
∞)⊕M̂∞,>1 , Υ = (⊕cΥc)⊕

Υ>1 and Υ is an isomorphism, as was to be proved.

For the rest of this section we will assume that the base field K is the field C of
complex numbers. In this case, one can consider the subrings of F ( c,∞) (c ∈ C∪{∞})
consisting of convergent microdifferential operators. These rings are well known for
c ∈ C, see for example [11] or [1], we will show that an analogous definition can be
given for c = ∞.

Definition. We denote by E the set of formal series

∑

i≤ r

ai(z) ηi , r ∈ Z ai(z) ∈ C[[z]]

such that
a) There exists a ρ0 > 0 such that all series ai(z) are convergent in the disk

| z |< ρ0.
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b) There exists a 0 < ρ < ρ0 and a θ > 0 such that the series

∑

k>0

‖a−k(z)‖ρ
θk

k !

is convergent, where ‖a−k(z)‖ρ = sup|z|6ρ | a−k(z) |.
Given c ∈ C, we denote E (c,∞) the image of E by the map

E −→ F ( c,∞)

∑

i≤ r

ai(z) ηi −→
∑

i≤ r

ai(tc) ηi

and similarly, we denote E (∞,∞) the image of E by the map

E −→ F (∞,∞)

∑

i≤ r

ai(z) ηi −→
∑

i≤ r

ai(t
−1) ηi .

One can prove that E (c,∞) is in fact a subring of F ( c,∞) and that the division
theorem (1.1) holds also for the rings E (c,∞) (see loci cit.). For c = ∞ these facts can
be proved in a similar way, only some small modifications are needed. To illustrate
them, we prove in some detail that E (∞,∞) is a ring using a slight variation of the
seminorms of Boutet de Monvel-Kree ([1, Chap. 4, §3]):

If (t, η) are coordinates in C2 and δ > 0, we denote ∆ δ ⊂ C2 the open subset
defined by the inequalities | η |< δ, | t |> δ−1. Given series am−k(z) ∈ C[[z]] ( k > 0 ),
convergent in some common disk | z |< δ0, put F =

∑
k>0 am−k(t−1)ηm−k and for

0 < δ < δ0 consider the series

Nm(F ; δ; x) :=
∑

k,α,β>0

2−k+1 k !

(k + α)! (k + β)!
‖∂α

t ∂β
η am−k(t−1)ηm−k‖∆δ

x2k+α+β

where ‖∂α
t ∂β

η am−k(t−1)ηm−k‖∆δ
:= sup(t,η)∈∆δ

{| ∂α
t ∂β

η am−k(t−1)ηm−k |} .

Proposition. i) If F ∈ E (∞,∞), then there exist δ, x > 0 such that Nm(F ; δ; x)
is convergent.

ii) If there exist δ, x > 0 such that Nm(F ; δ; x) is convergent, then F ∈ E (∞,∞).
iii) If F, G ∈ E (∞,∞), then there is a δ > 0 such that Nord(FG)(F · G; δ; x) 6

Nord(F )(F ; δ; x) · Nord(G)(G; δ; x), and thus F · G ∈ E (∞,∞).

Proof (cf. [1, Ch.4,§3]): i). If F ∈ E (∞,∞), then there exist constants A, C1, δ > 0
such that

‖am−k(t−1)ηm−k‖∆2δ
6 A · k ! · Ck

1 for all k > 0.

From Cauchy’s inequalities we get

‖∂α
t ∂β

η am−k(t−1)ηm−k‖∆δ
6 α ! · β ! · δ−α−β · ‖am−k(t−1)ηm−k‖∆2δ

(1)

for δ small enough. Since α! k! 6 (α + k)! , β! k! 6 (β + k)!, putting C2 =
max{√C1, δ

−1}, we get from (1) that Nm(F ; δ; x) 6 A
∑

2−k+1(C2 x)2k+α+β , and
this series is convergent for 0 < x < C−1

2 .
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Items ii) and iii) are proved as for the usual microdifferential operators, see loc.
cit.

The proof of the division theorem for the ring E ( 0,∞), as given in [1], relies on a
series of combinatorial identities and on Cauchy’s inequalities for analytic functions
defined in polydisks. For the ring E (∞, ∞), these arguments can be modified as done
above, and one obtains that the division theorem (1.1) holds also for the ring E (∞, ∞).

Definition ([12]). For s ∈ R+, we denote by Ks
x the field C{x}s[x

−1], where
C{x}s is the ring of s-Gevrey series on the variable x, this is the ring of series∑

i>0 ai xi, ai ∈ C, such that
∑

i>0(ai/(i!)s)xi has non-zero convergence radius. In

particular, K0
x will denote the field C{x}[x−1] of germs of meromorphic functions.

For later use, we briefly recall the behavior under ramification of vector spaces with
connection over these fields (cf. [7, (1.3)]): Let q be a positive integer, s ∈ R+ and set
σ = s/q. The assignment y 7→ zq defines a morphism of fields π : Ks

y −→ Kσ
z . Then:

i) If V is a Ks
y-vector space with connection ∇y, we put π∗(V) := Kσ

z ⊗Ks
y
V ,

and we endow this Kσ
z -vector space with the connection ∇ defined by

z∇(ϕ ⊗ v) = q (ϕ ⊗ y∇y(v)) + (z
dϕ

dz
⊗ v).

If the slopes of V are λ1, . . . , λr, those π∗(V) are q λ1, . . . , q λr.
ii) If V is a Kσ

z -vector space with connection ∇z , we denote π∗(V) the set V
regarded as a vector space over Ks

y by restriction of scalars and endowed with

the connection ∇ := 1
q zq−1 ∇z. If the slopes of V are λ1, . . . , λr, those π∗(V)

are λ1/q, . . . , λr/q (each one repeated q times).

Definition. If N is a Wη-module, the s-Gevrey germ at infinity defined by N
is the Ks

η−1 -vector space Ks
η−1 ⊗C[η] N, endowed with the same connection as in the

formal case (that is, ∇(α ⊗ n) = ∂η−1(α) ⊗ n − α ⊗ η2∂ηn).

As in the formal case, given a holonomic Wt-module M and c ∈ C, its microlo-
calization E (c,∞)(M) := E (c,∞) ⊗Wt

M is a K1
η−1 -vector space endowed with the

connection given by left multiplication by η2 t and one defines similarly E (∞, ∞)(M).
We have

Theorem (1-Gevrey stationary phase). Let M be a holonomic Wt-module. Then
the map

ΥGev : K1
η−1 ⊗C[η] M̂ −→

⊕

c∈SingM ∪{∞}

E (c,∞)(M)

given by ΥGev(α ⊗ m̂) = ⊕c α ⊗ m is an isomorphism of K1
η−1-vector spaces with

connection.

Proof. Again as in the formal case, the map ΥGev is a morphism of K1
η−1 -vector

spaces with connection, and we have to prove that it is an isomorphism. The case
of a module with punctual support is easy and left to the reader, so we assume that
M = Wt/Wt · P . Then, it follows from the division theorem for the rings E (c,∞)

(c ∈ Sing(M) ∪ {∞}), that the dimension of the source and the target of ΥGev are
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equal. So, it will be enough to prove that the map

idC[[η−1]][η] ⊗ ΥGev : M̂∞ −→ C[[η−1]][η] ⊗K1
η−1

(⊕c E (c,∞)(M))

is injective. But we have a commutative diagram of C[[η−1]][η]-vector spaces

M̂∞

id ⊗ ΥGev

Υ m

⊕cF ( c,∞)(M)

C[[η−1]][η] ⊗K1
η−1

(⊕cE (c,∞)(M))
-

@
@

@
@@R

�
�

�
��	

where m is given by m(ϕ⊗ (⊕c ξc)) = ⊕c ϕ · ξc. Since Υ is an isomorphism (by formal
stationary phase), we are done.

Remarks. i) The theorem is proved in [8] when Sing(M) = {0} and the singularity
at infinity of M has slopes strictly smaller than +1, by a different method.

ii) It is a consequence of the above proof that the map m is also an isomorphism.
Notice that this fails if M is not holonomic, for example the multiplication map
C[[η−1]][η] ⊗K1

η−1
E (c,∞) −→ F ( c,∞) is clearly not onto.

iii) Let M = Wt/Wt · P (t, ∂t) be a holonomic Wt-module such that its formal
slopes at infinity are smaller or equal than +1. Set Di = Ki

η−1〈∂η−1 〉 (i = 0, 1). For

some k > 0 we will have Q = η−kP (−∂η, η) ∈ C[η−1]〈∂η−1〉 (using ∂η = −η−2∂η−1).
Consider the two complexes of C-vector spaces

Ci : 0 −→ Ki
η−1

Q−→ Ki
η−1 −→ 0 (i = 0, 1).

There is an obvious morphism of complexes C0 → C1. Since the formal slopes at
infinity of M are smaller or equal than +1, it follows from the results of J.P.Ramis in
[12, 1.5.11, 1.5.14] that this morphism is a quasi-isomorphism. Since the complex Ci

is quasi-isomorphic to RHomDi(Ki
η−1 ⊗ M̂ , Ki

η−1 ), by the theorem above we have a
quasi-isomorphism of solution complexes

RHomD0(K0
η−1 ⊗ M̂ , K0

η−1) ∼= ⊕c∈SingMRHomD1(E (c,∞)(M) , K1
η−1) .

That is, we can compute microlocally the stalk at infinity of the complex of meromor-
phic solutions of M̂.

iv) The theorem above can be applied to study to which extent the formal de-
composition of a C{x}[x−1]-vector space with connection given by its slopes holds at
the s-Gevrey level, namely one has:

Theorem. Let s ∈ R+ − {0} and let V be a finitely dimensional Ks
x-vector space

with connection. Then there exist Ks
x-vector spaces with connection

V<1/s,V=1/s,V>1/s of formal slopes strictly smaller than 1
s (respectively, equal to 1

s ,

strictly greater than 1
s ) and an isomorphism of Ks

x-vector spaces with connection

V ∼= V<1/s ⊕ V=1/s ⊕ V>1/s.
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Proof. We consider first the case s = 1, set u = 1/x. From a theorem of
Malgrange–Ramis ([12, 3.2.13], [13, 7.1], cf. also [7]) on algebraization of s-Gevrey
spaces with connection, it follows that there is a holonomic C[u]〈∂u〉-module N and
an isomorphism of K1

x-vector spaces with connection V ∼= K1
x ⊗ N (the right hand

side denotes the 1-Gevrey germ at infinity defined by N, although the coordinate at
infinity is labelled now x instead of η−1). Let M denote the inverse Fourier transform
of N. Then, putting V<1 = E ( 0,∞)(M), V=1 = ⊕c∈SingM−{0}E (c,∞)(M) and V>1 =

E (∞,∞)(M), the claimed decomposition is the one given by the 1-Gevrey stationary
phase formula.

We consider next the case s = 1
q , q a positive integer (compare [7, (2.2)]). Consider

the map π : K1
y −→ Ks

x given by y 7→ xq. By the previous case, we will have

π∗(V) ∼= π∗(V)<1 ⊕ π∗(V)=1 ⊕ π∗(V)>1.

We have a surjective morphism of Ks
x-vector spaces with connection α : π∗(π∗(V)) =

Ks
x ⊗ π∗(V) −→ V given by α(ϕ ⊗ v) = ϕ · v. Notice that all formal slopes of

π∗(π∗(V)<1) are strictly smaller than q, those of π∗(π∗(V)=1) are equal to q, and
those of π∗(π∗(V)>1) are strictly bigger than q. Denote α<q the restriction of α to
π∗(π

∗(V)<1) (similarly in the cases = q, > q). Since the filtration by slopes is strict,
we have a decomposition

V ∼= α<q(π∗(π
∗(V)<1)) ⊕ α=q(π∗(π

∗(V)=1)) ⊕ α>q(π∗(π
∗(V)>1))

as desired.

Assume now s = p
q where p, q > 1 are integers. We consider the morphism

π : Ks
x −→ K1/q

z given by x 7→ zp. By the previous case we have a decomposition of

K1/q
z - vector spaces with connection

π∗(V) ∼= π∗(V)<q ⊕ π∗(V)=q ⊕ π∗(V)>q ,

and an injective morphism of Ks
x-vector spaces with connection β : V −→ π∗(π

∗(V))
given by v 7→ 1 ⊗ v. Denote β<q/p the composition of β with the projection
π∗(π

∗(V)) ։ π∗(π
∗(V)<q) and similarly for β=q/p, β>q/p. Again by strictness of

the filtration by formal slopes, we have a decomposition

V ∼= (Ker(β=q/p)∩Ker(β>q/p))⊕(Ker(β<q/p)∩Ker(β>q/p))⊕(Ker(β<q/p)∩Ker(β=q/p))

which, because of the behavior of slopes under π∗, fulfills the required conditions.

Finally, if s ∈ R+ − Q, choose a rational number 0 < p/q < s such that no
formal slope of V is in the interval [1/s, q/p]. By the Malgrange-Ramis algebraization

theorem we can assume V ∼= Ks
x⊗W , where W is a Kp/q

x -vector space with connection.
Then, the previous case applies to W and the proof is complete.

2. The singularity at zero of M̂ and an exact sequence of vanishing

cycles. In this section we introduce one more variant of the microlocalization functors
(which should correspond to Laumon’s (∞, 0′) local Fourier transform). Our aim is to
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establish the existence of a sequence of vanishing cycles analogous to [5, Theorem 10],
[6, proof of 3.4.2]. In this section we will work over the complex numbers and we will
consider only the convergent version of the (∞, 0)-microlocalization, the corresponding
formal version can be obtained just by dropping all convergence conditions.

Definition. We denote E (∞, 0) the set of formal sums

P =
∑

i6r

ai(η) ti , r ∈ Z

such that there exists a ρ0 > 0 so that all series ai(η) are convergent in the disk of
radius ρ0 centered at 0, and there exists a 0 < ρ < ρ0 and a θ > 0 such that the series

∑

k>0

‖a−k(η)‖ρ
θk

k !

is convergent, where ‖a−k(η)‖ρ = sup|z|6ρ | a−k(z) |. We consider in E (∞, 0) the
multiplication rule given by

P · Q =
∑

α> 0

1

α !
∂ α

t P · ∂ α
η Q

and the morphism of C-algebras

ϕ(∞, 0 ) : Wt −→ E (∞, 0)

t 7→ −t

∂t 7→ η

which endows E (∞, 0) with a structure of (Wt, Wt)-bimodule. It is not difficult to see
that ϕ(∞, 0 ) is flat.

Remark. While the ring E (∞, 0) is nothing but E ( 0,∞), with the rôles of the
variables t and η interchanged, the morphism ϕ(∞, 0 ) is not obtained in the same way
from ϕ( 0,∞ ) (the morphism we considered in section 1). The morphism we get from
ϕ( 0,∞ ) interchanging t and η will be denoted

µ : Wη −→ E (∞, 0)

η 7→ η

∂η 7→ t .

Definitions. i) Given a Wt-module M, we put

E (∞, 0)(M) := E (∞, 0) ⊗Wt
M

where E (∞, 0) is viewed as a left Wt-module via ϕ(∞, 0 ).
ii) Given a Wη-module N, we put

µ(N) := E (∞, 0) ⊗Wη
N

where now E (∞, 0) is viewed as a left Wη-module via µ.
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Both E (∞, 0)(M) and µ(N) have a structure of C{t−1}[t]-vector spaces and of
C{η}〈∂η〉-modules, where the action of ∂η is, by definition, given by left multipli-
cation by t. Notice that in fact µ(N) is nothing but E ( 0,∞)(N) with the variables
t and η interchanged. In section 1 we considered in the (0, ∞)-microlocalization
only the structure of C{η−1}[η]-vector space (i.e., of C{t−1}[t]-vector space after our
interchange of variables), while now the structure of C{η}〈∂η〉-module will be con-
sidered as well, and in fact it will play the major rôle. Notice also that E (∞, 0)(M)
depends only on the 1-Gevrey germ at infinity defined by M and µ(N) depends only
on N0 = C{η}〈∂η〉 ⊗Wη

N.

(2.1) Proposition. Let M be a holonomic Wt-module. Then the map

Υ0 : µ(M̂) −→ E (∞, 0)(M)

α ⊗ m̂ −→ α ⊗ m

is an isomorphism of C{η}〈∂η〉-modules and of C{t−1}[t]-vector spaces.

Proof. It is easy to check that the map is a morphism both of C{η}〈∂η〉-modules
and of C{t−1}[t]-vector spaces, we have to prove that it is an isomorphism. As for
the stationary phase formulas, the theorem reduces to the case of a Dirac δ-module
(then one has µ(M̂) = E (∞, 0)(M) = 0), and the case M = Wt/Wt · P (t, ∂t).

In this last case, we have M̂ = Wη/Wη · P (−∂η, η), and both the source and
the target of the map Υ0 are isomorphic to E (∞, 0)/E (∞, 0) · P (−t, η). The map Υ0

composed with these isomorphisms is the identity map, and the proposition is thus
proved.

Let τ be a coordinate in the affine line and let N be a holonomic C{τ}〈∂τ 〉-
module. We recall next the formalism of solutions and microsolutions of N, following
[8]: For r > 0, denote by Dr the disk in the complex plane centered at τ = 0 and of

radius r, by D̃∗
r the universal covering space of Dr −{0}, and by O(Dr) (respectively,

O(D̃∗
r )) the ring of holomorphic functions on Dr (respectively, on D̃∗

r). Put C̃(Dr) =

O(D̃∗
r )/O(Dr). Set O := indlimr→0 O(Dr)(= C{τ}), Õ := indlimr→0 Õ(Dr), C̃ :=

indlimr→0 C̃(Dr), D := O〈∂τ 〉. We denote by N 7→ DN the duality functor in the
category of holonomic left D-modules. Recall that if N = D/DP , then DN = D/D tP
where tP denotes the transposed differential operator (see e.g. [15, V.1]).

Following Malgrange, we put
i) Ψ(N) := HomD(DN, Õ) (the C-vector space of “nearby cycles” of N).

ii) Φ(N) := HomD(DN, C̃) (the C-vector space of microsolutions of N or “van-
ishing cycles”).

Between these vector spaces there are morphisms can : Ψ(N) 7→ Φ(N) (induced by

the quotient map can : Õ → C̃) and var : Φ(N) 7→ Ψ(N) (induced by the only map

var : C̃ → Õ such that var◦can = T−Id, where T is the monodromy on Õ). The map
can is an isomorphism if N ∼= µ(N), the map var is an isomorphism if N ∼= N[τ−1].
The assignment N 7→ (Ψ(N), Φ(N), can, var) is functorial. The behavior of this spaces
under localization and microlocalization is the following:

a) For the localization we have Φ(N[τ−1]) ∼= Ψ(N[τ−1]) ∼= Ψ(N).
b) For the microlocalization we have Ψ(µ(N)) ∼= Φ(µ(N)) ∼= Φ(N).

For a), recall that both the kernel and cokernel of N 7→ N [τ−1] are a direct sum
of Dirac δ0’s and Ψ(δ0) = 0 (δ0 = D/D · ∂τ ). Similarly, the kernel and cokernel of
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N 7→ µ(N) is a direct sum of copies of the D-module O (see e.g. [7, 4.11.b]) and
Φ(O) = 0, from which b) follows.

Given a holonomic Wτ -module M we denote by DR(M) its De Rham complex
(see e.g. [8, I.2]) and by Sol(M)0 = RHomD(O ⊗Wτ

M, ,O)[1] the stalk at zero of its
solution complex. We denote by H∗

c(A
1
C
, DR(M)) the hypercohomology with compact

supports of the De Rham complex of M.

The following proposition follows essentially from results of B. Malgrange. It
shows that the De Rham cohomology with compact supports of a holonomic Wt-
module which has slopes at infinity strictly smaller than +1 can be computed locally
in terms of the germs defined by M at its singular points and at infinity.

Proposition (exact sequence of vanishing cycles). Let M be a holonomic Wt-
module such that all its formal slopes at infinity are strictly smaller than +1. Then
there is an exact sequence of C-vector spaces

0 → H1
c(A

1
C,DR(M)) → ⊕c∈Sing(M)Φ(M c) → Φ(E (∞, 0)(M)) → H2

c(A
1
C,DR(M)) → 0

where Mc := C{tc}〈∂t〉 ⊗Wt
M.

Proof. From the exact sequence 0 −→ O −→ Õ −→ C̃ −→ 0, we get

0 → HomD(DM̂0,O) → Ψ(M̂ 0) → Φ(M̂ 0) → Ext1D(DM̂0,O) → 0

(since Ext1D(DM̂0,O) = 0, see e.g. [8, II.3]). We have also quasiisomorphisms

RΓc(A
1
C, DR(M)) ∼= Sol (D̂M)0 [−1] ∼= Sol(DM̂)0 [−1],

the first one follows from [8, VI, 2.9 and VII, 1.1] (since we assume that the slopes at
infinity of M are strictly smaller than +1), and the second one holds because Fourier
transform and duality commute up to the transformation given by t 7→ −t, ∂t 7→ −∂t

(see e.g. [15, V.2.b]).

From an element of ⊕c∈SingMΦ(M c) we get, by the Laplace transform considered

in [8, chap. XII], a multivaluated solution of M̂ defined on a half-plane in C [loc.cit.,

XII, 1.2]. Under our hypothesis, the module M̂ is singular only at zero and at infinity,
so this solution can be analytically prolonged and determines univocally an element
of Ψ(M̂ 0). This assignment establishes an isomorphism of complex vector spaces

⊕c∈SingMΦ(M c) ≃ Ψ(M̂ 0). On the other hand, by proposition (2.1) we have also an
isomorphism

Φ(M̂ 0) ∼= Φ(µ(M̂)) ∼= Φ(E (∞, 0)(M)),

and the proposition follows.

Remark. Using b) above, the long exact sequence in the proposition can be
rewritten in terms of spaces of nearby cycles instead of spaces of microsolutions,
namely one has an exact sequence

0 → H1
c(A

1
C, DR(M)) → ⊕c∈Sing(M)Ψ(µ(M c))

→ Ψ(E (∞, 0)(M)) → H2
c(A

1
C, DR(M)) → 0.
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3. p-adic microdifferential operators of finite order. B. Malgrange proved
in [7] (and it follows also from the 1-Gevrey stationary phase theorem proved in section
1) that if M is a holonomic Wt-module, singular only at zero and at infinity, and such
that the formal slopes of the singularity at infinity are smaller than +1, then one has
an isomorphism of K1

η−1 -vector spaces with connection

K1
η−1 ⊗C[η] M̂ ∼= E(0,∞)(M) .

Notice that, in case the singularity at infinity of M is regular, these Wt-modules are
analogous to the ℓ-adic canonical prolongations of Gabber and Katz, which play a
major rôle in G. Laumon work ([6], [5]). So, it might be of interest to find a p-adic
analogue of Malgrange’s result.

For the rest of this section we assume that K is a spherically complete p-adic field
(e.g., a finite extension of Qp), and we denote by | · | its absolute value, normalized by
the condition | p |= p−1. It seems that a reasonable p-adic version of the ring C{η−1}1

would be the ring of power series
∑

i>0 aiη
−i, aj ∈ K, such that

∑
i>0 i! ai η−i is

convergent for | η−1 |< 1. If we set ω = p−1
√

1/p ∈ R, it follows easily from the
classical bounds ωk−1 <| k! |< (k + 1)ωk that this ring is nothing but the ring
Aη−1(ω) of power series in η−1 convergent in the disk | η−1 |< ω. Pursuing this
analogy, to the field K1

η−1 would correspond the ring Aη−1(ω)[η], which for simplicity

will be denoted A(ω)[η] in the sequel. Its elements are the Laurent series
∑

j6r aj ηj

with aj ∈ K, r ∈ Z, such that for all 0 < ρ < ω, lim supj→−∞ | aj | ρ−j = 0.

In this section we define a ring Φ ( 0,∞) of p-adic microdifferential operators
and a corresponding microlocalization functor M 7→ Φ ( 0,∞)(M). Let MP =
K[t]〈∂t〉/K[t]〈∂t〉 · P be a holonomic K[t]〈∂t〉-module given by a single differential
operator. Assume MP is singular only at zero and infinity, the singularity at infinity
has formal slopes smaller or equal that +1, and the singularity at zero is solvable at ra-
dius 1 ([3, 8.7]). Then we will prove that there is an isomorphism of A(ω)[η]-modules
with connection

A(ω)[η] ⊗K[η] M̂P
∼= Φ ( 0,∞)(MP ) ,

where M̂P denotes now the p-adic Fourier transform of MP (defined below). This
isomorphism might be regarded as a p-adic analogue of the theorem of Malgrange
quoted above.

We denote by At(1) the ring of power series in the variable t with coefficients in
K which are convergent for | t |< 1. For all 0 < λ < 1, the ring At(1) is endowed
with the norm

|
∑

i>0

ai ti |λ = sup
i
{ | ai | λi } ∈ R+.

Let r ∈ Z be an integer, set ω = p−1
√

1/p ∈ R. We denote by Φ ( 0,∞)[r] the set of
all Laurent series

∑
j6r aj(t) ηj with aj(t) ∈ At(1), such that for all λ, ρ ∈ R with

0 < ρ < ω · λ < ω, one has

lim sup
j→−∞

| aj(t) |λ ρ−j = 0.
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Equivalently, for all λ, ρ in the range above there is a C > 0 such that for all j 6 r
one has | aj(t) |λ6 C · ρj (in fact, it is clear that given any 0 < λ0 < 1, it is enough
to check this condition holds for λ > λ0). We put Φ ( 0,∞) =

⋃
r∈Z

Φ ( 0,∞)[r].

Proposition. If F =
∑

fu ηu ∈ Φ ( 0, ∞) and G =
∑

gv ηv ∈ Φ ( 0,∞), then

F · G =
∑

α> 0

1

α !
∂ α

η F · ∂ α
t G ∈ Φ ( 0,∞).

Proof. Write F · G =
∑

rj(t) ηj . We have

| rj(t) |λ ρ−j
6 max

j=u+v−α

{
| 1

α !
u(u − 1) . . . (u − α + 1) fu

dαgv

dtα
|λ ρ−j

}

6 max
j=u+v−α

{
| u(u − 1) . . . (u − α + 1) | | fu |λ | gv |λ

1

λα
ρ−j

}

6 sup
u
{| fu |λ ρ−u} · sup

v
{| gv |λ ρ−v} · (ρ

λ
)α

where the second inequality follows from the Cauchy inequalities. If j 7→ −∞ then
either u 7→ −∞ or v 7→ −∞ or α 7→ ∞, and then we are done.

Definition. The filtered ring Φ ( 0,∞) will be called the ring of p-adic microdif-
ferential operators of finite order. The order and the principal symbol of a microdif-
ferential operator are defined as in the formal case. Notice that Φ ( 0,∞)[0] ⊂ Φ ( 0,∞)

is a filtered subring and that one has A(ω)[η] = K[[η−1]][η] ∩ Φ ( 0, ∞).

Definitions. If F =
∑

u6m fu(t) ηu ∈ At(1)[[η−1]][η] and 0 < ρ < ω · λ < ω, we
put

‖F‖λ,ρ = sup
u
{| fu(t) |λ ρ−u} .

Notice that we have F ∈ Φ ( 0,∞) if and only if ‖F‖λ,ρ < ∞ for all λ, ρ in the range
above. From the proof of the preceding proposition follows that if F, G ∈ Φ ( 0,∞), then
we have ‖F ·G‖λ,ρ 6 ‖F‖λ,ρ ·‖G‖λ,ρ. The subscript λ, ρ will be omitted if no confusion
may arise. We will say that F =

∑
u fu ηu ∈ Φ ( 0,∞) is dominant if there is a λ0 < 1

such that for all λ0 < λ < 1 and 0 < ρ < ω ·λ, one has | ford(F ) |λ ρ−ord(F ) = ‖F‖λ,ρ.

We want to prove a division theorem for p-adic microdifferential operators of finite
order. We will make implicit use of the following lemma, its proof is elementary and
left to the reader:

Lemma. Let f(t) = tm b(t) ∈ At(1), where b(t) is invertible in At(1) and m > 0.
Then, for each ϕ ∈ At(1), there are unique q ∈ At(1) and r ∈ K[t] of degree smaller
or equal than m− 1 such that ϕ = f · q + r, and for all 0 < λ < 1, | r |λ 6 | ϕ |λ, and
| f |λ · | q |λ 6 | ϕ |λ.

Theorem. Let F ∈ Φ ( 0,∞) be dominant and assume that σ(F ) = tm b(t) where
b(t) ∈ At(1) is invertible. Then, for all G ∈ Φ ( 0, ∞) there exist unique Q ∈ Φ ( 0,∞)

and R0, . . . , Rm−1 ∈ A(ω)[η] such that

G = Q · F + tm−1 Rm−1 + . . . + R0.
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The remainder tm−1 Rm−1 + . . .+R0 can also be written in a unique way in the form
Sm−1 tm−1 + . . . + S0 with Si ∈ A(ω)[η].

Proof. It is easy to see that if F is dominant, then the product η−ord(F )F is also
dominant, so we can assume F is of order zero. Multiplying G by a suitable power
of η we may also assume that ord(G) = 0. The existence of a unique formal solution
Q =

∑
j6 0 qj(t) ηj , Ri =

∑
j6 0 ri,j ηj (0 6 i 6 m − 1) to the division problem

formulated above is well-known, the solution can be obtained as follows (cf. [1, Ch.4,
Theorem 2.6]): One constructs inductively power series q0, q−1, . . . ∈ At(1) such that

G − (q0 + . . . + qj η−j)F = Hj−1 + Kj−1 with Hj−1 ∈ Φ ( 0,∞)[j − 1]

and Kj−1 ∈ tm−1 A(ω)[η] + . . . + A(ω)[η].

Assume q0, . . . , qj+1 have already been found and put

ϕj = gj −
∑

(j)

1

α!
v (v − 1) . . . (v − α + 1) qv

dαfu

dtα

where the sum runs over those v, u, α with j = v+u−α, α > 0 and j+1 6 v 6 0 (it is
understood that the product v (v − 1) . . . (v −α + 1) is replaced by 1 if α = 0). Then,
the next series qj is the quotient of the division of ϕj by σ(F ), that is, it is defined

by the equality ϕj = tm b(t) qj + rj , where qj ∈ At(1) and rj(t) =
∑m−1

i=0 ri,jt
i is a

polynomial of degree m − 1 at most. The formal solution to the division problem is
given by the quotient Q =

∑
j6 0 qj(t) ηj and the series Ri =

∑
j6 0 ri,j ηj ∈ A(ω)[η]

(1 6 i 6 m − 1).

We have to prove that this formal solution is convergent in our sense. Fix 0 <
ρ < ω · λ < ω and put Cλ, ρ = ‖G‖λ,ρ/‖F‖λ,ρ. Notice that because of our hypothesis
on F we have ‖F‖λ,ρ =| f0 |λ. We show next, by descending induction on j 6 0, that
| qj | ρ−j 6 Cλ, ρ. We have:

| qj |λ ρ−j
6 max

{
1

| f0 |λ
| gj |λ ρ−j ,

max
u,v,α

{ | v(v − 1) . . . (v − α + 1) |
| f0 |λ · | α ! | | qv |λ | dαfu

dtα
|λ ρ−j

}}

6 max
u,v,α

{ ‖G‖
‖F‖ ,

1

λα ‖F‖ | qv |λ | fu |λ ρ−j

}

= max
u,v,α

{
Cλ, ρ,

1

λα ‖F‖ (| qv |λ ρ−v) (| fu |λ ρ−u) ρα

}

6 max
{
Cλ, ρ, Cλ, ρ · (ρ

λ
)α

}
= Cλ, ρ ,

where the second inequality follows from the Cauchy inequalities. This proves the
convergence of the quotient as well as the first inequality of norms. The convergence
of the series R0, . . . , Rm−1 is proved similarly and it is left to the reader. For the
last statement, notice that there are unique Si =

∑
j60 si,j ηj ∈ K[[η−1]][η] (0 6 i 6

m − 1), such that the remainder tm−1 Rm−1 + . . . + R0 can be written in the form
Sm−1 tm−1 + . . . + S0, in fact one has

si,j =

m−j−1∑

k=0

(−1)k ri+k,j+k
(i + k)! · (j + k)!

k! · i! · j! .
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From this formula follows easily that Si ∈ A(ω)[η] for i = 0, . . . , m − 1.

Remark. It is unreasonable to expect a division theorem without some restriction
on the divisor, for example if α ∈ K and we take F = 1 − α η−1 ∈ Φ ( 0,∞)[0], its
formal inverse is

∑
i>0 αiη−i, which is not convergent in our sense for | α |> ω−1.

We will assume that there is a π ∈ K such that πp−1 + p = 0, which we fix from
now on. Then, the morphism of K-algebras defined by

ϕ( 0,∞ ) : Wt −→ Φ ( 0,∞)

t 7→ t/π

∂t 7→ π · η

endows Φ ( 0,∞) with a structure of (Wt, Wt)-bimodule.

Definition. Let M be a Wt-module. We define its p-adic (0,∞)-micro-
localization as the A(ω)[η]-module

Φ ( 0, ∞)(M) := Φ ( 0,∞) ⊗Wt
M ,

endowed with the connection given by left multiplication by η2 · t.

Definition ([4] and [9]). If M is a Wt-module, its p-adic Fourier transform is

defined as M̂ = Wη ⊗Wt
M, where Wη is regarded as a right Wt-module via the K-

algebra isomorphism given by t 7→ − ∂η/π, ∂t 7→ π ·η. If m ∈ M, we put m̂ = 1⊗m ∈
M̂.

If τ is a coordinate, we denote by Rτ (θ) the Robba ring of power series
∑

i∈ Z
ai τ i,

ai ∈ K, convergent in some annulus θ − ǫ < | τ |< θ, ǫ > 0, endowed with the

derivation ∂τ . Let P (t, ∂t) =
∑d

k=0 ak(t)∂k
t ∈ K[t]〈∂t〉, set MP := Wt/Wt P . We

make the following assumptions on the differential operator P :
i) P is singular only at zero and at infinity, and deg(ad(t)) > deg(ai(t)) for all

1 6 i 6 d (that is, the formal slopes of the singularity at infinity of P are
smaller or equal than +1).

ii) The Rt(1)−module with connection Rt(1) ⊗K[t,t−1] MP is soluble at 1 (see
[3, 8.7]).

As in the formal case, if N is a Wη-module, on the A(ω)[η]-module A(ω)[η]⊗K[η]N

we will consider the connection given by

∇(α ⊗ n) := ∂η−1(α) ⊗ n − α ⊗ η2∂ηn.

Theorem. Let P ∈ K[t]〈∂t〉 satisfy the conditions i) and ii) above. Then the
map

Υ : A(ω)[η] ⊗K[η] M̂P −→ Φ ( 0,∞)(MP )

given by Υ(α ⊗ m̂) = α ⊗ m is an isomorphism of A(ω)[η]-modules with connection.

Proof. It is easy to check that Υ is a morphism of A(ω)[η]-modules with connec-
tion, we have to prove that it is an isomorphism. We have

Φ ( 0,∞)(MP ) ∼= Φ ( 0,∞)

Φ ( 0,∞) · P (t/π, π η)
.
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By ii) we have (with the notations of [3]) Ray(Rt(1) ⊗K[t,t−1] MP , 1−) = 1, so for λ
close to +1 we have ‖ad−i(t)‖λ 6 λ−i ‖ad(t)‖λ ([3, Corollaire 6.4]). Since P (t, ∂t) is
singular only at zero and infinity, we have ad(t) = αd tδ, with αd ∈ K, so ‖ad(t/π)‖λ =
ω−δ ‖ad(t)‖λ and since δ > deg ad−i(t) for all i = 0, . . . , d, we get ‖ad−i(t/π)‖λ 6

ω−δ ‖ad−i(t)‖λ, so it follows that ‖ad−i(t/π)‖λ 6 λ−i ‖ad(t/π)‖λ. If 0 < ρ < ωλ and
λ is close to one,

‖ad(t/π)‖λ ωdρ−d
> ‖ad−i(t/π)‖λ ωd−i · (ω λ)iρ−d

> ‖ad−i(t/π)‖λ ωd−i · ρ−d+i ,

which is just the condition of dominance for the microdifferential operator P (t/π, π η).
As in the formal case, it follows now from the division theorem that Φ ( 0,∞)(MP ) is a
free A(ω)[η]-module with basis 1⊗ ti, i = 0, . . . , δ− 1, and since Υ(1⊗ (−1)i∂i

η/πi) =

1 ⊗ ti, the morphism Υ is surjective.

We compute next the rank over A(ω)[η] of A(ω)[η] ⊗C[η] M̂P . Denote by

αi ∈ K the (possibly zero) coefficient of tδ in ai(t) ∈ K[t]. The coefficient of

∂δ
η in the differential operator P̂ = P (−∂η/π, π η) will be the polynomial q(η) =

(−1)δ
∑

i αd−i πd−δ−i ηd−i ∈ K[η]. By condition ii), | αd |>| αi |, which implies that
the roots of q(η) are either zero or of absolute value smaller than ω−1. It follows that

q(η) is a unit of A(ω)[η], and then the rank of A(ω)[η] ⊗C[η] M̂P over A(ω)[η] equals
δ.

Thus Υ is an epimorphism between two A(ω)[η]-modules with connection of the
same rank. Since the ring A(ω)[η] is a localization of Aη−1(ω), it follows from [3, 8.1],
that its kernel is zero and then the theorem is proved.

Since A(ω)[η] is a subring of Rη−1 (ω), we have

Corollary. Under the same hypothesis of the theorem above, there is an iso-
morphism of Rη−1(ω)-modules with connection

Rη−1(ω) ⊗K[η] M̂P −→ Rη−1 (ω) ⊗A(ω)[η] Φ ( 0,∞)(MP ).

Remark. Given P ∈ K[t]〈∂t〉 verifying the conditions of the previous theorem,

one can consider as well the formal Fourier transform of M̂P

for
of MP (that is, the

one given by t 7→ −∂η, ∂t 7→ η). One can also define a variant Φ
( 0,∞)
1 of the ring

Φ ( 0,∞) (taking ω = 1), it is easy to check that one obtains also a ring for which the
division theorem holds. Then, similarly as in the theorem above, one can show that
there is an isomorphism of Rη−1(1)-modules with connection

Rη−1(1) ⊗K[η] M̂P

for −→ Rη−1(1) ⊗ Φ
( 0,∞)
1 (MP ).

However, unlike the p-adic Fourier transform, the formal Fourier transform does not
extend to the weak completion of the Weyl algebra considered in [10] and [4], and I
ignore whether it can be related to the sheaf-theoretic Fourier transform considered
in [4].
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