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ARMAND BOREL

JAMES ARTHUR

My topic is Armand Borel and the theory of automorphic forms. Borel’s most
important contributions to the area are undoubtedly those established in collaboration
with Harish-Chandra [Œ 54, 58]. They include the construction and properties of
approximate fundamental domains, the proof of finite volume of arithmetic quotients,
and the characterization in terms of algebraic groups of those arithmetic subgroups
that give compact quotients. These results created the opportunity for working in the
context of general algebraic groups. They laid the foundations of the modern theory
of automorphic forms that has flourished for the past forty years.

The classical theory of modular forms concerns holomorphic functions on the
upper half plane H that transform in a certain way under the action of a discrete
subgroup Γ of SL(2, R). The multiplicative group SL(2, R) consists of the 2 × 2 real

matrices of determinant 1, and each element γ =

(

a b
c d

)

of SL(2, R) acts on H by

the linear fractional transformation z → az+b
cz+d

. For example, one can take Γ to be the
subgroup SL(2, R) of integral matrices or, more generally, the congruence subgroup

Γ(N) = {γ ∈ SL(2, Z) : γ ≡ I mod N}

attached to a positive integer N . The theory began as a branch of complex analy-
sis. However, with the work of E. Hecke, it acquired a distinctive number theoretic
character. Hecke introduced a commuting family of linear operators on any space
of automorphic forms for Γ(N), one for each prime not dividing N , with interesting
arithmetic properties. We now know that eigenvalues of the Hecke operators govern
how prime numbers p split in certain nonabelian Galois extensions of the field Q of
rational numbers [Sh], [D]. Results of this nature are known as reciprocity laws and
are in some sense the ultimate goal of algebraic number theory. They can be inter-
preted as a classification for the number fields in question. The Langlands program
concerns the generalization of the theory of modular forms from the group of 2 × 2
matrices of determinant 1 to an arbitrary reductive group G. It is believed to provide
reciprocity laws for all finite algebraic extensions of Q.

Let us use the results of Borel and Harish-Chandra as a pretext for making a very
brief excursion into the general theory of automorphic forms. In so doing, we can
follow a path illuminated by Borel himself. The expository articles and monographs
of Borel encouraged a whole generation of mathematicians to pursue the study of
automorphic forms for general algebraic groups. Together with the mathematical
conferences he organized, they have had extraordinary influence.

The general theory entails two reformulations of the classical theory of modular
forms. The first is in terms of the unitary representation theory of the group SL(2, R).

The action of SL(2, R) on H is transitive. Since the stabilizer of the point i =
√
−1
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is the special orthogonal group

KR = SO(2, R) =

{

kθ =

(

cos θ sin θ
− sin θ cos θ

)}

,

one can identify H with the space of cosets SL(2, R)/KR. The space of orbits in H un-
der a discrete group Γ ⊂ SL(2, R) becomes the space of double cosets Γ\SL(2, R)/KR.
A modular form of weight 2k is a holomorphic function f on H such that1

f(γz) = (cz + d)2kf(z)

whenever γ =

(

a b
c d

)

is in Γ. A modular form of weight 2, for instance, amounts to a

holomorphic 1-form f(z)dz on the Riemann surface Γ\H, since d(γz) = (cz + d)−2dz.
For a given f , the function F on SL(2, R) defined by F (g) = (ci + d)2kf(z) when

g =

(

a b
c d

)

and z = gi is easily seen to satisfy

F (γgkθ) = F (g)e−2kiθ,

for γ ∈ Γ. The requirement that f be holomorphic translates to the condition that F
be an eigenfunction of a canonical biinvariant differential operator ∆ on SL(2, R) of
degree 2, with eigenvalue a simple function of k. The theory of modular forms of any
weight becomes part of the following more general problem:

Decompose the unitary representation of SL(2, R) by right translation

on L2(Γ\SL(2, R)) into irreducible representations.

That the problem is in fact more general is due to a variant of Schur’s lemma.
Namely, as an operator that commutes with SL(2, R), ∆ acts as a scalar on the
space of any irreducible representation. To recover the modular forms of weight 2k,
one would collect the irreducible subspaces of L2(Γ\SL(2, R)) with the appropriate
∆-eigenvalue, and from each of these, extract the smaller subspace on which the
restriction to KR of the corresponding SL(2, R)-representation equals the character
kθ → e−2kiθ.

This is all explained clearly in Borel’s survey article [Œ 75] in the proceedings
of the 1965 AMS conference at Boulder [1]. The Boulder conference was organized
jointly by Borel and G. D. Mostow. It was a systematic attempt to make the emerging
theory of automorphic forms accessible to a wider audience. Borel himself wrote four
articles [Œ 73, 74, 75, 76] for the proceedings, each elucidating a different aspect of
the theory.

The second reformulation is in terms of adeles. Though harder to justify at
first, the language of adeles ultimately streamlines many fundamental operations on
automorphic forms. The relevant Boulder articles are [T] and [K]. These were not
written by Borel, but were undoubtedly commissioned by him as part of a vision for
presenting a coherent background from the theory of algebraic groups.

The adele ring

A = R × Afin = R ×





˜∏

p prime

Qp





1There is also a mild growth condition that need not concern us here.
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of Q is a locally compact ring that contains the real field R, as well as completions
Qp of Q with respect to the p-adic absolute values

|x|p = p−r, x = pr(ab−1), (a, p) = (b, p) = 1,

on Q. One constructs Qp by a process identical to the completion R of Q with
respect to the usual absolute value. In fact, one has an enhanced form of the triangle
inequality,

|x1 + x2|p ≤ max
{

|x1|p , |x2|p
}

, x1, x2 ∈ Q,

which has the effect of giving the compact “unit ball” Zp =
{

xp ∈ Qp : |xp|p ≤ 1
}

the

structure of a subring of Qp. The complementary factor Afin of R in A is defined as
the “restricted” direct product

˜∏

p

Qp = {x = (xp) : xp ∈ Qp , xp ∈ Zp for almost all p} ,

which becomes a locally compact (totally disconnected) ring under the appropriate
direct limit topology. The diagonal image of Q in A is a discrete subring. This
implies that the group SL(2, Q) of rational matrices embeds into the locally compact
group SL(2, A) of unimodular adelic matrices as a discrete subgroup. The theory of
automorphic forms on Γ\SL(2, R), for any congruence subgroup Γ = Γ(N), becomes
part of the following more general problem:

Decompose the unitary representation of SL(2, A) by right translation

on L2(SL(2, Q)\SL(2, A)) into irreducible representations.

The reason that the last problem is more general than the previous one is provided
by the theorem of strong approximation, which applies to the simply connected2 group
SL(2). The theorem asserts that if K is any open compact subgroup of SL(2, Afin),
then

SL(2, A) = SL(2, Q) · (K · SL(2, R)).

This implies that if Γ = SL(2, R) ∩ SL(2, Q)K, then there is a unitary isomorphism

L2(SL(2, Q)\SL(2, A)/K) −̃→ L2(Γ\SL(2, R))

that commutes with right translation by SL(2, R). For example, if we take K to be
the group

K(N) = {x = (xp) : xp ∈ SL(2, Zp), xp ≡ I mod (M2(NZp))},

then Γ equals Γ(N). To recover the decomposition of L2(Γ(N)\SL(2, R)), one would
collect the irreducible subspaces of L2(SL(2, Q)\SL(2, A)), and from each of these,
extract the smaller subspace on which the restriction to K of the corresponding
SL(2, A)-representation is trivial.

2“Simply connected” in this instance means that SL(2, C) is simply connected as a topological
space.
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Given that the decomposition of L2(SL(2, Q)\SL(2, A)) includes the classical the-
ory of modular forms, we can see reasons why the adelic formulation is preferable. It
treats the theory simultaneously for all weights and all congruence subgroups. It is
based on a discrete group SL(2, Q) of rational matrices rather than a group Γ(N) of
integral matrices. Most significantly, perhaps, it clearly displays the supplementary
structure given by right translation under the group SL(2, Afin). The unitary rep-
resentation theory of the p-adic groups SL(2, Qp) thus plays an essential role in the
theory of modular forms. This is the source of the operators discovered by Hecke.
Eigenvalues of Hecke operators are easily seen to parametrize irreducible representa-
tions of the group SL(2, Qp) that are unramified in the sense that their restrictions
to the maximal compact subgroup SL(2, Zp) contain the trivial representation. It
turns out that in fact any irreducible representation of SL(2, Qp) that occurs in the
decomposition of L2(SL(2, Q)\SL(2, A)) carries fundamental arithmetic information.

It is now straightforward to set up higher-dimensional analogs of the theory of
modular forms. One replaces3 the group SL(2) by an arbitrary connected reductive
algebraic group G defined over Q. As in the special case of SL(2), G(Q) embeds
as a discrete subgroup of the locally compact group G(A). The Langlands program
has to do with the irreducible constituents (known as automorphic representations)
of the unitary representation of G(A) by right translation on L2(G(Q)\G(A)). A
series of conjectures of Langlands, dating from the mid-1960s through the 1970s,
characterizes the internal structure of automorphic representations. The conjectures
provide a precise description of the arithmetic data in automorphic representations,
together with a formulation of deep and unexpected relationships among these data
as G varies (known as the “principle of functoriality”).

General automorphic representations are thus firmly grounded in the theory of
algebraic groups. It seems safe to say that the many contributions of Borel to al-
gebraic groups described by Springer and Tits in this article are all likely to have
some role to play in the theory of automorphic forms. Borel did much to make the
Langlands program more accessible. For example, his Bourbaki talk [Œ 103] in 1976
was one of the first comprehensive lectures on the Langlands conjectures to a general
mathematical audience.

In 1977 Borel and W. Casselman organized the AMS conference in Corvallis on
automorphic forms and L-functions, as a successor to the Boulder conference. It was a
meticulously planned effort to present the increasingly formidable background mater-
ial needed for the Langlands program. The Corvallis proceedings [2] are considerably
more challenging than those of Boulder. However, they remain the best comprehen-
sive introduction to the field. They also show evidence of Borel’s firm hand. Speakers
were not left to their own devices. On the contrary, they were given specific advice
on exactly what aspect of the subject they were being asked to present. Conference
participants actually had to share facilities with a somewhat unsympathetic football
camp, led by Coach Craig Fertig of the Oregon State University Beavers. At the end
of the four weeks, survivors were rewarded with orange T-shirts, bearing the inscrip-
tion ARMAND BOREL MATH CAMP. Borel himself sported4 a T-shirt with the
further designation COACH.

Let us go back to the topic we left off earlier, Borel’s work with Harish-Chandra.
The action of SL(2, Z) on H has a well-known fundamental domain, given by the

3Even in the classical case, one has to replace SL(2) by the slightly larger group GL(2) to obtain
all the operators defined by Hecke.

4See the photograph on the previous page.
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Figure 1. Standard fundamental domain for the action of SL(2, Z) on the upper half plane,

together with a more tractable approximate fundamental domain. The standard fundamental domain,

darkly shaded, is the semi-infinite region bounded by the unit circle and the vertical lines at x = ±1/2.
The approximate fundamental domain St generalized by Borel and Harish-Chandra is the total

shaded region.

darker shaded region in Figure 1. This region is difficult to characterize in terms of
the transitive action of SL(2, R) on H. The total shaded rectangular region St in
the diagram is more tractable, for there is a topological decomposition SL(2, R) =
P (R)KR = N(R)M(R)KR, where P , N , and M are the subgroups of matrices in SL(2)
that are respectively upper triangular, upper triangular unipotent, and diagonal. The
group N(R) acts by horizontal translation on H, while M(R) acts by vertical dilation.
We have already noted that KR stabilizes the point i. We can therefore write

St = ωAt · i,

where ω is the compact subset

{(

1 x
0 1

)

: |x| ≤ σ

}

of N(R), and At is the one-

dimensional cone

{(

a 0
0 a−1

)

: a > 0, a2 ≥ t

}

. The set St is an approximate funda-

mental domain for the action of SL(2, Z) on H, in the sense that it contains a set
of representatives of the orbits, while there are only finitely many γ ∈ SL(2, Z) such
that St and γSt intersect.

For a general group G, the results of Borel and Harish-Chandra provide an ap-
proximate fundamental domain for the action of G(Q) by left translation on G(A).
To describe it, I have to rely on a few notions from the theory of algebraic groups.
Let me write P for a minimal parabolic subgroup of G over Q, with unipotent rad-
ical N and Levi component M . The adelic group M(A) can be written as a direct
product M(A)1AM (R)0, where AM is the Q-split part of the center of M , AM (R)0 is
the connected component of 1 in AM (R), and M(A)1 is a canonical complement of
AM (R)0 in M(A) that contains M(Q). The roots of (P, AM ) are characters a −→ aα

on AM that determine a cone

At = {a ∈ AM (R)0 : aα ≥ t, for every α}

in AM (R)0 for any t > 0. Suppose that KA = KRKfin is a maximal compact subgroup
of G(A). If Ω is a compact subset of N(A)M(A)1, the product

St = ΩAtKA
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is called a Siegel set in G(A), following special cases introduced by C. L. Siegel. One
of the principal results of [Œ 58] implies that for suitable choices of KA, Ω, and t, the
set St is an approximate fundamental domain for G(Q) in G(A).

The obstruction to G(Q)\G(A) being compact is thus governed by the cone At

in the group AM (R)0 ∼= Rdim AM . It follows that G(Q)\G(A) is compact if and only
if AM is trivial, which is to say that G has no proper parabolic subgroup over Q

and no Q-split central subgroup. This is essentially the criterion of [Œ 58].5 Borel
and Harish-Chandra obtained other important results from their characterization of
approximate fundamental domains. For example, in the case of semisimple G, they
proved that the quotient G(Q)\G(A) has finite volume with respect to the Haar
measure of dx on G(A). This is a consequence of a decomposition formula for Haar
measures dx = a−2ρ dω da dk, where ω is in Ω, a is in At, and k is in KA and where
2ρ denotes the sum of the roots of (P, AM ).

The papers of Borel and Harish-Chandra were actually written for arithmetic
quotients Γ\G(R) of real groups, as were the supplementary articles [Œ 59, 61] of
Borel. Prodded by A. Weil [W, p. 25], Borel wrote two parallel papers [Œ 55, 60]
that formulated the results in adelic terms and established many basic properties of
adele groups.6 His later lecture notes [Œ 79], written again in the setting of real
groups, immediately became a standard reference.

Borel and Harish-Chandra were probably motivated by the 1956 paper [Sel] of
A. Selberg. Selberg brought many new ideas to the study of the spectral decomposi-
tion of L2(Γ\SL(2, R)), including a construction of the continuous spectrum by means
of Eisenstein series and a trace formula for analyzing the discrete spectrum. A famil-
iarity with the results of Siegel no doubt gave Borel and Harish-Chandra encourage-
ment for working with general groups. Their papers were followed in the mid-1960s
by Langlands’s manuscript on general Eisenstein series (published only later in 1976
[L]). In the context of adele groups, Langlands’s results give a complete description of
the continuous spectrum of L2(G(Q)\G(A)). A starting point was the work of Borel
and Harish-Chandra and, in particular, the properties of approximate fundamental
domains. In recent years Borel lectured widely on the theory of Eisenstein series:
in the three-year Hong Kong program mentioned by Bombieri, for example, and the
2002 summer school in Park City. One of his ambitions, alas unrealized, was to write
an introductory volume on the general theory of Eisenstein series.

In attempting to give a sense of both the scope of the field and Borel’s substantial
influence, I have emphasized Borel’s foundational work with Harish-Chandra and his
leading role in making the subject more accessible. Borel made many other important
contributions. These were often at the interface of automorphic forms with geometry,
especially as it pertains to the locally symmetric spaces

XΓ = Γ\G(R)/KR.

Elements in the deRham cohomology group H∗(XΓ, C) are closely related to auto-
morphic forms for G, as we have already noted in the special case of modular forms
of weight 2. This topic was fully explored in Borel’s monograph [Œ 115, 172] with
N. Wallach. Borel collaborated in the creation of two very distinct compactifications
of spaces XΓ: one with W. Baily [Œ 63, 69], the other with J-P. Serre [Œ 90, 98]. The

5A similar result was established independently by Mostow and Tamagawa [MT].
6In his 1963 Bourbaki lecture [G], R. Godement presented an alternative argument, which he

also formulated in adelic terms.
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Baily-Borel compactification became the setting for the famous correspondence be-
tween intersection cohomology (discovered by Goresky and MacPherson in the 1970s)
and L2-cohomology (applied to square integrable differential forms on XΓ), a rela-
tionship first conjectured by S. Zucker.7 The L2-cohomology of XΓ is the appropriate
analog of deRham cohomology in case XΓ is noncompact. Its relations with automor-
phic forms were investigated by Borel and Casselman [Œ 126, 131]. In general, the
cohomology groups of spaces XΓ are very interesting objects, which retain many of
the deepest properties of the corresponding automorphic representations. They bear
witness to the continuing vitality of mathematics that originated with Borel.
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(1963).

[K] M. Kneser, Strong approximation, pp. 187–196 of (3) in list of Borel’s books on page 501.
[L] R. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes

in Math., vol. 544, Springer-Verlag, Berlin, 1976.
[MT] G. D. Mostow and T. Tamagawa, On the compactness of arithmetically defined homoge-

neous spaces, Ann. of Math., 76 (1962), pp. 446–463.
[Sel] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian

spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), pp. 47–87.
[Sh] G. Shimura, A reciprocity law in non-solvable extensions, J. Reine Angew. Math., 221 (1966),

pp. 209–220.
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