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RIESZ TRANSFORM CHARACTERIZATION OF HARDY SPACES
ASSOCIATED WITH CERTAIN LAGUERRE EXPANSIONS

JORGE BETANCOR, JACEK DZIUBANSKI AND GUSTAVO GARRIGOS

(Received March 25, 2009, revised December 8, 2009)

Abstract. In this paper we prove Riesz transform characterizations for Hardy spaces
associated with certain systems of Laguerre functions.

1. Introduction and statement of the results. Denote the Laguerre polynomials of
order « > —1 by

d n
LYx) = (n!)_lexx_O‘(d—) (e*x"), n=0,1,2,....
X

In this paper we consider the following two systems of Laguerre functions on (0, 0o)

(1) () = V2 enge xR =0,1,2.. .,

2) L9x) = cpge ¥ 2x2L%x), n=0,1,2,...,

wherec, o = I'n+1)/T(n+ 1+ a))Y/2, 1t is well known that, for every a > —1, each of
the systems {gy }7° , and {£;}7° ; is complete and orthonormal on L%((0, 00), dx). Moreover,
these functions are eigenvectors, respectively, of the differential operators

. d2+2+1 , 1 e d2+d x+a2
= — _——_— — 1l — — . = —| X— _—— —_ _— .
T\ T2 TV TR 4 « a2 a4
satisfying

Logy = Cn+a+ 1), and £,(£)=m~+ («@+1)/2) L.

As in [6, 7], the operators L, and £, can be factored as

1 1
LaZED;Da‘i‘a‘i‘l and Sa:a;&"—i_a—; ’
where
d a+1/2 d 1 o
D, = — - d 6y = —+ = - =
* dx+x X . “ \/)_Cdx+2<\/; ﬁ>’
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and where D} and 8 denote, respectively, the formal adjoint operators to D, and 8, in
L%((0, 00), dx). Corresponding Riesz transforms are defined in L2((0, o), dx) by

Ry = Dy L;'? and R, =6,8,'7,
that is, they act on the basis elements by

Zﬁ ¢a+1 R 20{ _ ﬁ £d+1.
N Jit @+ 2 !

There exist kernels Ry (x, y) and Ry (x, ¥) such that

3) Ragy = —

o0 o0

Ra(x, y)f(3)dy, Mo f(x) = lim Ral(x, y) f(y)dy.

0, [x—y|>¢

Re f(x) = lim

0, [x—y|>¢

One can easily deduce from (1), (2) and (3) that these kernels are related by
) Re(x,y) =272 (xy) R (WX, /7). X,y € (0,00).

Riesz tranforms for Laguerre systems were defined and studied by Nowak and Stempak [7],
and by Harboure, Torrea and Viviani [6], who proved that R, for « > —1/2 and R, for
a > 0 extend as bounded linear operators on L (0, c0) when 1 < p < oo and are of weak
type (1,1). Our goal in the present paper is to characterize the spaces

Hp.o.,(Le) = {f € L'(0,00) ; |Rofllp1 <00} for a>—1/2,

and
Hbo (€)= {f € L'(0.00) : [Refllp1 <00} for a>0.

In [3], the second-named author considered Hardy spaces H.},,(Ly) and H.  (£4) defined
by means of the maximal functions associated with the semigroups generated by —L, and
— £, respectively. To be more precise, if

o0 oo
W (x,y) = Ze*(z"*"‘“)’fpz e, (), W (x,y) = Zeft(n+(a+1)/2)£z () L%(y)
n=0 n=0

denote the integral kernels of the semigroups {e*L«};_¢ and {e~"**},.(, we say that a func-

tion f in (0, co) belongs to HILaX(La) when the maximal function

W¢ f(x) = sup

t>0

[ Wi oy

belongs to L'(0, 00). Then we set ”f”Hrimx(La) = |WZ fll.1. Analogously, we define the
maximal function 20%, the space Hélax(ila) and the norm || - || HL (£a)" It was proved in [3]
that the spaces H] (Ly), @ > —1/2, and H} (£4), @ > 0, admit atomic decompositions.
The notion of atom for these spaces depends on the following auxiliary functions

1 1
PL, (x) = 3 min(x, 1/x) and pg, (x) = 3 min(x, 1).
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A measurable function b : (0, c0) — C is said to be an H'!(L,)-atom if there exists a ball
B = B(yo, R) = {y € (0, 00); |yo — y| < R} with R < pr, (yo) such that

suppb C B, |blloo <|B|™' and

if R <pr,(y0)/2 then /b(y)dy =0.

The space Halt(La) consists of all measurable functions f on (0, co) of the form

o
f= Z)»jbj,
j=1

where b are Hl(La)-atoms, Aj € C and Z?‘;l |A;j] < oo. The norm in Halt(La) is defined
by

o0
1A g1 1oy = inE Y 1251,

j=1
where the infimum is taken over all decompositions f = Z?‘;l Ajbj, where b are H'(Ly)-
atoms and A; € C. Similarly we define the space Halt(ila) and the norm || || HY (L) the only
difference being that the function pg¢, replaces the function pr, in the definition of H L(8)-
atoms. The main result in [3] was to show that

H) (Ly) = HY(Ly) fora > —1/2 and H]}, (£,) = HY(Ly) fora >0,

with equivalence of the corresponding norms. Our goal in this paper is to characterize these
spaces by means of the Riesz transforms R, and R,. More precisely, we shall prove the
following theorems.

THEOREM 1.1. Ifa > —1/2, then HéieSZ(La) = Halt(La). Moreover, there exists
C > 0 such that

(5) Cil”f”[-[,(}[([ﬂ) = ||Rozf||Ll + ”f”Ll =< C”f”]-[all(La) .

THEOREM 1.2. Ifa > 0, then Hﬁiesz(ﬂa) = Halt(ﬂa). Moreover, there exists C > 0
such that

©) C U gt oy < IBafllt +1£ 020 < ClF e -

2. Hardy spaces H'(L,) associated with Laguerre operators L,. In the present
section, we shall prove Theorem 1.1. To do this, we recall the equivalence between Riesz and
atomic definitions for the Hardy space associated with the Hermite operator,

PR G
2\ T )

which were established in [4]. First we let

(7 pu(y) = (14 |yD~".
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It is easily seen that there exist constants C, ¢ > 0 such that

®)  cpu)A+|x = yl/pu )" < pu(y) < Con (X)L + |x — yl/pa(x)'/?.
A functiona : R — C is an Hl(H)-atom if there exists a ball B = B(yg, R) = {y €
R; |y — yo| < R} with R < pg (y9) such that

suppa C B, llallz~ < |B|™" and

if R < pu(y0)/2 then /a(y)dy =0.
The atomic Hardy space Halt(H ) and the norm || || () are defined in the standard way. On
the other hand, a Riesz transform R¥ can be defined in L2(R) by

R = i+x HY/?,
dx

motivated by the factorization of the Hermite operator

=) (o))

To obtain a kernel expression for R | recall first the Mehler formula for Hermite functions (cf.
[10, Lemma 1.1.1]), which asserts that the integral kernel W,H (x, ) of the Hermite semigroup
{e71H},_ ¢ is given by

—t 1/2 —2t —t
H _ e 1/14+e 5 5 e
) W, (Xay)—[m} eXp<—§<m (x4 )+2x)’m
when t > 0 and x,y € R. Using the formula H2 = z—1/2 fo e tH=12qs we can

express the Riesz transform R as a principal value singular integral operator of the form

o0

RA(f)(x) = lim R (x, y) f(»)dy,

20JyeR : fx—yl>e
with the kernel given by
o
R (x,y) = %/O <% +X)W;H(x, y)%
= L/ooiWH(x,y)ﬂ_i_ L/OOXWH(X,)})Q
Vi o dx ! NOEVE ) ' NG
= R{' (x, ) + Ry (x, ).
It is not difficult to prove using (9) and (10) that

(10)

o0 o
(11 supf IR (x, y)ldx < o0, supf IR (x, y)| dy < o0
yeR J—o0 xeR J—o0
(see Section 4). Therefore, denoting Rf = xH /2, we have

(12) IR FllLiry < ClfllLiry
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(see also [2, Theorem 4.5]). It was proved by Thangavelu [9] that the operator R H is bounded
on L?(R) for 1 < p < oco. Moreover, Theorem 1.2 of Zhong [11] asserts that the operator
Rf{ = (d/dx)H~'/? is a Calderén-Zygmund operator, hence it is of weak type (1,1) (see also
[8] for a proof based on analysis of the Melher kernel). The above facts could also be deduced
from the following lemma.

LEMMA 2.1. Let ¢y € C®(—27427%) be such that ¥ (x) = 1 for |x| < 275. Then
there exists a constant co 7% 0 and a kernel h(x, y) such that

(13) R (x,y) = -2 w(x_y) +h(x,y),
x—y \pux)
(14) sup/ |h(x, y)|dx + sup/ |h(x, y)|dy < oo
yER J—00 xeRJ—x

This lemma is known, but a self-contained proof based on analysis of the Mehler kernel
will be presented in Section 4. We set

Hl%iesz(H) = {f € LI(R) ) ”RHf”Ll(R) < OO} .

In view of (12), an L'-function f belongs to Héiesz(H) if and only if (d /dx)H ~'/? f belongs
to L' (R). From this remark and the results in [4], it follows that

Hl%iesz(H) = Halt(H)
and there exists a constant C > 0 such that

(15) CU S Mgy < IRT £l + 110 < CUFf gy -

Having established the Riesz and atomic characterizations of the Hardy space associated with
the Hermite operator, we continue our preparation for the proof of Theorem 1.1.

For a function f defined on (0, c0), we denote Rllgcf = Rfllocf + Rfllocf, where

2x
R¥oe f (x) = lim RI(x, ) f(y)dy, x>0,j=1.2.
’ e=>0Jx/2, |x—y|>¢
PROPOSITION 2.2. For f € Ll(O, 00), let f, denote its odd extension. Then R{'Ifo S
LY(R) ifand only if R®, _f isin L'(0, 00). Moreover, there exists C > 0 such that

1,loc

IR fo = Ri'oe FllL10.00) < CNFIL1 0,00 -
PROOF. Setr =r(t) = e '€ (0, 1). According to (9) and (10), we have

L[ 7 @ry = (1+r7))

H —
Rl (-xay) _ﬁ 0 (1—}’2)3/2
16
(10 1+ 5, 2r dt
X exp —m(x —I—y)—l—mxy %
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Note that ||R{'1f0||L1(R) = 2||Rf1f,,||L1(0’oo), because Rfifo is an even function. Moreover,

RE f,(x) = 111% e (R (x,y) — R (x, —=y)) f(»)dy, ae. x € (0,00).
e~ ,lx—y|>¢
Further,
x/2
R fo(x) = Rfljoe f () = fo (R (x.y) = R (x, —=y) f(0)dy
+ /2 (RY (x.y) — R (x. =) f()dy
(17)

2x
- f R (x, —y) f(y)dy
x/2

w

Z (@), a.e. x 0,00,

It suffices to show that the operators 7;, j = 1,2, 3, are bounded on Ll((O, 00),dx). To
deal with 7} and T», we estimate the difference D (x, y) = |Rf1(x, y) — R{'I(x, —y)| for
x,y > 0. By (16)

o Jrx 2r 2r
DH(x,y) < C/o m(@){p <m)€y> —exp(— 1_r2xy>)
1+72 5 L,\dt
xexp(—m(x —l—y))ﬁ
© Wy 1+r?
+C/o (1—r2)3/23xp(_2(1 >(2+y2)>

2r dt
X €xXp mxy E

Applying the mean value theorem in the first integral, we can assert that

H o0 N/ rx2y 147 ) )
D (Xsy)SC/O (1—r2)3/2< +y>exp<—ﬁ( +y))

e 2r dt
xp [ ——xy | —
P =2 Jt
o0 N/ rx2y 142 )
=C - _
[o (1—r2)3/2(1—r2+y)exp( 2= ”)

1—r dt
X exp —1+rxy 7;

It is now not difficult to verify using (19) that

(18)

(19)

-2

Cyx for x > 2y,

20 D" (x,y) <
@0 06 {Cy1 for 2x < y.
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The estimate (20) easily implies |71 f 1 110.00) + T2 1L10.00) = Cllf IL1(0.00)- Moreover,
from (16), we conclude

H 2 [ LS| 2 C
IRy (x, —y)| < C(xe_” / e 'dt +x/ t—ze_” /'dt) <— for x/2<y<2x.
1 0 y

Hence T3 is a bounded operator from L' (0, o0) into itself. O

PROPOSITION 2.3. Leta > —1/2, f € L'(0, 00) and f, be the odd extension of f to
R. Then Ry f is in L' (0, 00) if and only if RY f, is in L' (R). Moreover, there exists C > 0
such that

C71(||fu||L1(R) + ||RHfu||L1(R)) <N lL1©,00) F 1R Sl 10,00

and
If 210,000 T 1R fllL10,00) = CULSollL1(R) + ||RHfo||L1(R))-
PROOF. According to [1, Lemma 2.13], we have
IRy (x, y)| < Cx¥T3/2y=@+5/2 for 0 < 2x <y < o0,
@n 1/2 3/2
|Ry(x, y)| < Cy*TV/2x=@H3/D for 0 <y < x/2,
and
C 1/4
|Ra(x,y) — R7 (x,y)| < — 1+% for 0 < x/2 <y <2x.
y lx —y|1/2

Each of the Hardy operators

X
Hey (9)(x) =x*°"3/2/0 Y 2g(ndy, x>0
and

o0
HY(g)(x) = x"‘“/2/ y 3 g(»dy, x>0

X

are bounded on Ll(O, o0) when o« > —1/2. Moreover, the operator N defined by
2x 1 (xy)1/4
Nf@ = [ ~(14+ =3 ) F0)dy
x/2 Y lx — ¥l
is also bounded in L' (0, 00). Hence, by (21), (11) and Proposition 2.2, we obtain
1R f = R™ foll 110,00
H H H
SR f = Rige fIL1(0,00) T IR1geS = R follL1(0,00)
< CUINIf 210,00 + TH T L1 0,00) + 1Hal 1121 0,00)
+ ”R{-,Ilocf - R{ift)”Ll(O,oo) + ”Rflocf”Ll(O,oo) + ||Rffo||Ll(o,oo)
=Cliflizio,00 - o

The next elementary lemma will be used below.
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LEMMA 2.4. Letb : (0,00) — C be an H'(Ly)-atom. Then, its odd extension b,
satisfies

”bo ”Halt(H) <36.

PrROOF. Let B = B(y, R) C (0, 00) be a ball associated with b, that is, R < pr,(y),
suppb C B and ||b|loo < |B|~'. Moreover, f b(y)dy =0if R < pr,(y)/2. In this last case,

since pr,(y) < pr(y)/2, the function b(x) (extended as 0 when x < 0) is an H'(H)-atom,
and hence so is —b(—x). Thus ”bf)”Hlt(H) <2.
Suppose now that pr,(y)/2 < R < pr,(y). We distinguish two cases. If y € (0, 8/9)
then
supp b, C B(0,y+ R) C B(0,9y/8) =B, .

Since [ bo = 0and [[bolloc < Ly (¥)™' = 18/|B,|, it follows that b,/18 is an H'(H)-atom
associated with the ball B,, and hence ||b,,||H'1‘(H) < 18. In the second case, i.e. y > 8/9, we

may regard b/18 as an H'(H)-atom associated with the ball B(y, pu(y)), since

suppb C B(y, p(y)) and ||blloc < 2R)™' < 18B(y, pu ()"

Similarly, b(—x)/18 is an H'(H)-atom associated with the ball B(—y, pa(—y)). We con-
clude that ||b, || HL(H) = 36, establishing the lemma. |

PROOF OF THEOREM 1.1. Assume that f is in H)(Ly). Then f can be written as
Z/ cjb;, where b; are H'(Lg)-atoms and Z/ lcjl ~ ||f||H1[(La). By the previous lemma,
the odd extension f, of f belongs to HL(H) and Wfoll gty = 360y (r,)- Applying
Proposition 2.3 and using (15), we obtain

IRa f 10,000 < CUfollicry + IR foll iy < €' foll gy < €1 Mgty -

To prove the converse, assume that f is in Héiesz (Ly). Again, using Proposition 2.3 combined
with (15), we obtain f, € H\. (H) = H)\(H) and

Riesz
ol gty = CULfollLi(r) + IR foll iy < CULF L1 (0.00) + 1R SNl L10,00)) -

Hence f,(x) = Zj cja;(x), where a; are H!(H)-atoms and Zj lejl ~ I foll 1 )~ Letting
bj =aj |(0,oo)’ one easily verifies the inequality [|b; ”Halt(La) < C. Thus fisin Halt(La) and
1ty < €' UL 210,00 + 1Ra fllL10.000)- =

REMARK 2.5. Using a similar analysis based on a comparison of the kernels W/ (x, y)
and W,H (x,y) (see [1, Lemma 2.11]), one can prove that Wf fo belongs to LY (R) if and only
if Wy f belongs to L'(0, 00) and || foll .1 gy + W foll L1cry ~ 1111 0,000 FIWE £l L1 0.00)-

3. Hardy spaces H'(£,) associated with Laguerre operators £,. In this section
we prove Theorem 1.2. The proof is based on the following estimates for the kernel Ry (x, ¥).



RIESZ TRANSFORM CHARACTERIZATION OF HARDY SPACES 223

PROPOSITION 3.1. Let i be as in Lemma 2.1. Then, for every o > 0, there exists a
kernel K (x, y) such that

=y

@ =gy

)+K(x,y), x,y € (0,00),

o0
(23) sup/ |[K(x,y)|dx < o0,
y>0J0

where c is the constant from (13).

PROOF. Set

24) K(x,y) = Ralry) = = y)w(p’;_(j))

Ifx <y/dory < x/4,then K(x,y) =Ry (x, y). From (4) and (21), we conclude

Cx@tD/2y=@+3)/2if 4x < y < 00,
<
(25) Kl = {Cy“/zx(“+2)/2 if0<y<ux/4.
Hence
y/4 00
(26) sup(/ |K(x,y)|dx+/ IK(x,y)ldx) < 0.
y>0 0 4y

In order to deal with the kernel K (x, y) in the local part y/4 < x < 4y, we set
E(x,y) =Ro(x,y) =272y R (Vx, ),

= o) ()
o) A A Cnm ) T e

Then, by (4) and Lemma 2.1, we have
27 K(x,y) = Ex,y) + 27200 (VX /3) + G x, y) .

According to (21), we get
—1/4 1/8 1
@) |E(y)<c® (1 + ) ) <cC (1 + %)

NG Wx =) = Ty eyl
for y/4 < x < 4y. Trivially, using (28) and (14), we obtain

4y
(29) /4(|E(x, W+ @) Y4R(x, yDdx < C.
y

The proof will be complete if we show the inequality

4y
(30) / G (x. y)ldx < C.
y/4

Let us note that

2320 [ X + 3 ( x—y ) (x—yﬂ
31 G(x,y) = -2 '
G Gey=""] [ N\ EF o)~ Gt
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Ify>10,y/4 <x <4yand |x —y| > 1,then G(x,y) = 0. If y > 10, y/4 < x < 4y
and |x — y| < 1, then, by the mean value theorem, |G (x, y)| < C. Thus (30) is satisfied for
y>10.1f0 <y < 10and y/4 < x < 4y, then applying the mean value theorem we deduce
|G(x, y)| < Cy~! and, consequently, (30) holds . O

Before we turn to the proof of Theorem 1.2, we state some results from the theory of
local Hardy spaces [5]. Fix I > 0. We say that a function b is an atom for the local Hardy
space hll(R) if there exists a ball B(yg, R) with R < [ such thatsuppb C B(yo, R), [|bllcc <
R)~!, and if R < [/2, then [ b(y)dy = 0. A function f belongs to the space hl1 if there
exist a sequence b; of hll-atoms and A; € C with Zj |Aj| < oo such that

(32) f=Y xjb;.
j

The atomic norm in hll is defined in a standard way, that is, || f ||h11 =inf})_ j |Aj|, where the

infimum is taken over all decompositions (32). Moreover, if f € hl1 and supp f C B(yo, /),
then there exists a decomposition of f as in (32) such that suppb; C B(yo, 10//9) and
Zj [Aj] < C||f||h]1. We define a local Hilbert transform

. co X =y
H =1 dy,
1f(x) Lim e ﬁ(x_y)w< ] )f(y) y

where ¢ and ¢ are as in Lemma 2.1. The following result was actually proved in [5]. There
exists a constant C > 0 independent of / such that

(33) CM Ay < IHLF I+ 1 < CILE Ny -

PROOF OF THEOREM 1.2. Since %, maps continuously L'(0, co) into the space of
distributions, to prove the second inequality in (6), it suffices to verify that there exists a
constant C > 0 such that, for every H 1 (£y)-atom b, one has

(34) IRabll) < C.

Let b be an H'(£,)-atom with associated ball B(yo, R). Clearly, letting [ = pg, (yo), we see
that b is also an hll-atom. By Proposition 3.1,

Rub(x) = f K (x. »)b(y)dy + Hib(x)

(35) + lim co <]/f(x—}’>_]/f(u>> by
e=0Jjx—yl>e V2(x — y) og, (x) i XB(yo,H\Y)O\Y)Ay .

The kernel

Ux,y) = —2 (W(x_y>—¢<u)>xm ()
’ V2(x — y) P, (x) ! YD

as a function of (x, y), is supported by B(yo, 3/) x B(yo,!). Moreover, |U (x, y)| < ci 1,
which implies sup,_ o f |U(x, y)|dx < oo. Therefore, (34) holds by applying (23) and (33).
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We now turn to prove the first inequality in (6). We define the intervals {I;};cz, I; =
(Bj, Bj+1), B =(9/8)/ for j < 1,and B; =1+ j/8for j > 1. Setl; = pe,(B;). Letn; be
a family of smooth functions such that

d -1
(36) 0<n;<1, suppn; C I, ‘d—xnj(x)‘gczj , an(x)=1 forx >0,
J

where I;." = [Bj—1, Bj+2]. Set I;."* = [Bj—2, Bj+3]. Then Zj Xre = 5. Fix f € L'(0, o0)
such that |Rq f 11 < 0o. We shall verify that

(37) S M0 Nl < CURF NIz + 1112
J
with a constant C > 0 independent of f. To this end, note that
. — 1 J— x — y
- Hi;(nj f)(x) = lim \x7y|>e(nj () —njlx ))f( w( 7 )f(y)dy
+ 1 (OHy, £ (x)

= B f () +1j)Hy, f() .
Observe that the kernel

3

|01 = ) w(x_y)
f( —y) lj

as a function of (x, y), is supported by I/’."k X I/’."k and bounded by Cl;l. Since each y > 0
belongs to at most 5 intervals I/’.‘*, and |I/’.‘*| ~ [}, we can easily obtain

(39) > [ 1z s < il
j
Now we shall deal with n; (x)H;; f (x), defined by

X—y xX—y 0
(()H;, = n; — d
nj (x)Hy; f(x) /m(ﬂ[W( 7 ) w(pza(x)ﬂﬁ(x_y)f(y) y
+nj(x)9‘iaf(x)—nj(x)/K(x,y)f(y)dy-

. X=y\_ (XY ©
‘m(x)[‘/f( I ) w(ﬂsa(X)ﬂ«/i(x—y)"

as a function of (x, y), is supported by I;.‘ X I;.‘* and bounded by C! fl. Hence
e xX—y xX—y co
(41) sup/ ‘n-(x)(w( )—w( )) ‘dx<oo
0 zj: ! L P, (X) \/_(x —-y)
Using (40) and (41), we obtain

y>0
(42) D M fllip < CAF N+ 1Ra f i) -
J

(40)

The integral kernel
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which combined with (38), (39) and (36) gives (37). Having (37) already proved, we are in a
position to complete the proof of the first inequality in (6). Applying (37) together with the
results from the theory of local Hardy spaces stated in this section, we have

(43) fZZ(njf)=Z<Z)\ijaij),
J J i
where a;; are h}i-atoms supported by I;‘*, and Zi/’ [Aijl < CUIRa fllp1 + 1fIIL1). The proof

will be complete once we observe that each of these atoms is either an H 1(£,)-atom, or can be
written as a sum of at most 20 such atoms. Indeed, fix an hll, -atom a supported in I;‘*. Then,
J

for some 0 < Ry < [; and yp € 17‘* we have suppa C B(yo, Ry) C I;.‘*, lalloo < (2Ro)~1,
and if Ry < [;/2 then also f a(x)dx = 0. Notice that, by construction,

pe,(¥) < 2pg, (), forall y,y' el =[Bj-2 Bjt3l.
If Ry < 1;/2 = pe,(Bj)/2 then [a = 0 and Ry
H'(Ly)-atom. If Ry > 1;/2, then
4

rr=J Lo with |1 okl = pe, (Bj—214) -
k=0

and using again pg, (Bj42) < 2pg,(B;) we see that
laxs, silloo < QRO ™ < pe, (BN~ <211kl

Hence, each piece ayy; ,,, /4 is an H'(£4)-atom for the ball B(Bj—24k, pg,(Bj—2+k)) and,
consequently, ||a||H1l(£a) < 20. O

< pg, (o), and therefore a is also an

4. Proof of (11) and Lemma 2.1. During the proof we set r = ¢~ '€ (0, 1). We can
rewrite (9) as

1/1 2 1—
(44) WrH(Xay)=\/%GXP<—E(%)|X—)’|2) exp(— rx)’>,

forall x, y € R. A simple computation using (44) or (9) gives

Jr 1(1+r?
(45) W,”(x,y)sﬁexp(—z(l_rz)u—yﬁ).

Let us note that, for every N > 0, there exists a constant Cy such that

—t/3 ¢ —N
46 WH (x,y) < Cy— (1 ) .
(46) fe) < v (14 s

Indeed, if |x — y| > |x|/2, then
—t/2 1/1 2
WH(x,y) < —————exp < -2 <+—r2)x2>
(1 —r?) 8\1—r

(47) o (1 t )_N
< .
=N AT\ T e
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If |x — y| < |x|/2, then xy ~ x? and, using (44), we get

e /2 e /3 ¢ -N
48 wHx,y)<C exp(—c(l —r)x?) < C 1+ ) )
48) Wi y) < € exp(—e(l =) < Nm< PESE

Applying (45) and (46) combined with the fact that WtH (x,y) = WtH (v, x), we obtain

49) W (r.y) < Oy LI VPUNLER Iy (UL
x,y) < ———exp| — — .
P =N T P T A — e )\ T o p()?
We are now in a position to prove (11). If |[x — y| < Cpg (), then by (10) and (49) we have
. be—yl? ¢ N i ClonM* gy
IRy (x, )| < CN(/ IXI<7> —+[ lx|—
2 0 x=y2) ot Jyp !
2\ N
(50) _I_/OO |x|<PH(y) ) ﬂ)
C2pp (y)? ! !
C
< CN<|x| + |x| ln< ,OH(y)>> .
lx — ¥l

If [x — y| = Cpg (y), then we use again (49) and get

H CZPH(Y)Z t th
IRy (x, y)| = Cn A X\ —— ) —

x—yl?/) ¢

o (57) ()

X d

C2op (y)2 lx — y|? pH(y)? t
(51) +/°° (2202
-y P? ! !

2N
<Cy |x1pH ()
Ix — y|?N
lx = ylor N Iyvlpr ()N
<Cn .
lx — |2V lx — |2V

Now the first inequality in (11) is a consequence of (50) and (51). Similarly to (50) and (51),
we also conclude that

C(x|+ [x[In(Cpg (x)/1x — y]))  for |x — y| < Con(x),

(52)  IR¥(x, )<
2 Cwlxlpa )N /Ix — y|V for |x — y| > Con (x),

from which we easily obtain the second inequality in (11).
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Having (11) already established, we now turn to prove Lemma 2.1. By (44),

9 wH N 11472 )
a_th (-xvy)z_\/ml_rz( )’)exp<_§(l_r2 |x_)’|

1—r
X exp T
1—r JTr . < 1(1+r2>| |2>
_ ol — (2 )ix =
T+r /7 (1 — r2) P 2\1—7r2 Y

1—r
X exp —1+rxy .

From (53) we deduce that, for |[x — y| > Cpn(y), we have

(53)

9 " 1 —t/3
= wh G, )\scN( +1 |<1—r>)
T oyl N
(54) Y
X € ( |x—y|2 )<1+ ! )
X e EE——— .
P\ a-» pi(y)?
Proceeding as in (51), we obtain
1 pr ()N
(55) \f —W/ )= \ CN( —+! |)% for [x = y| > Con(y).
which leads to
(56) sup/ IR (x, y)ldx < C.
YER J|x—y|>Cpu(y)

Our next step is to estimate Rfl (x,y) for [x — y| < Cpp (y). Note that (53) implies

c e~ !3 [14r2
Wi »)| = On———( 5 |1 =
1(x,y) Nm(l_r2>lx Yl

Cex (_M)(H : )Nl
p 12(1 —r2) ,OH(y)2
e—1/3 |x — y|2 ! o
+ CNﬁlyKl - r)eXP<_ m) (1 " PH()’)Z)

e <1+ ! )N
<Cn .
1—r2 pH (y)?

Consequently, using (57) we get

o0
(58) /
pH ()2

In order to investigate the integral

/,OH(y)2 9 Wi )dt
x’ 9
0 dax ! Y \/;

ax

(57)

2 wye, )| % < Conn!
ax N T '
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we study first the difference
(M g " dt
) = a W ) - P - ]
Q(x,y) /0 oy Wi () = Pl y))ﬁ

where P;(x) = Q2nt)"1/2 exp(—x2 /2t) is the classical Gauss-Weierstrass kernel. The pertur-
bation formula asserts that

1 [erO? ptoroo g dt
Ox,y) = —5/0 /0 /_OO a_thﬂ(x — 22 WH (z, y)dzds ﬁ

Therefore,

J =/ [Q(x, y)ldx
[x—=y|<Cpu(y)

o ()? 00 _
(59) <c/ / / / N k== xP D)
[x—=y|<Cpu(y) oo =5

X WH(Z y)dzds —dx

7

Observe that x> < Cpy (y)~2 for |x — y| < Cpy(y). Substituting this inequality inside the
above integral and then integrating with respect to dx and dz, we conclude

60) J<C et 1/2 ! <C ‘iic<cC.
< — O — +C<
©0 7= /0 /0<(t & (t—s>1/2pH<y)2) s ey

Proceeding as in (55), we also get

IR{ (x, )| < Cnpr(x)~ IM for [x — y| > Cpu (x),

lx — yI¥
and consequently,
(61) sup/ IR{ (x, y)ldy < o0
xeR J|x—y|>Cpg(x)
A similar procedure to that employed to estimate J gives
(62) SUP/ 1Q(x, y)ldy < C.
xeR J|x—y|<Cpp(x)

Finally, our analysis of the kernel Rfl (x, y) is reduced to the integral

P g dt PO x —y 1 dt
—Pi(x — )—=—/ exp(—|x — y|>/2t)—
/O P =— | = el =P/

(63)

2 ( lx =y )
=———¢exp| - ———— ).
V27 (x — y) P\ 200002
Taking into account (10), (55), (58), (60), (61), (62) and (63), we get
lx =yl

2pH(y>2) A, y)

2
(64) R (x, y) = _WL_y)exp(—
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with

o oo
(65) Sup/ lh1(x, y)ldx + Sup/ lh1(x, y)ldy < oo.

yeR J —oo xeR J—o0

To complete the proof, take any ¢ € CZ°(R) as in the statement of Lemma 2.1. Define a
function hy(x, y) by

hZ(-xv )’) =

V2 x—y V2 x =y
— ex 5 X,y € R.
m(x —y) \pu(x) Tx—y) 2pu()
By (10), (64), (65) and (11), the lemma will be established once we show that, for some C > 0
we have

(66) sup[ |h2(x, y)|dy < C and sup/ o (x, y)|dx < C.
xeR yeR

Set A ={(x,y) € R% |x —y| > pu(x)}, B ={(x,y) € R* |x — y| < pu(x)}. Then

exp(—ﬂ>m(x,y)+c( ! +'x_y')><3(x,y),
lx — v 20m(y)? pr(x)  pH(Y)?

where the last summand is obtained by applying the mean value theorem. Using (8), we see
that py (v)? < cpp (x)|x — y| when (x, y) € A, and therefore

1 |x—y|2)
exp| — ——— | xa(x, y)d
/|x—y| p( 201 ()2 Yy

67)  |ha(x, y)| =

1 X —
(68) 5/ eXp<—c| y')xA(x,y)dy
lx — vl PH (x)
du
< exp(—clul)— < C.
fu]>1 |ue]

On the other hand, pg (x) ~ pg(y) when (x, y) € B (again by (8)), so we have

I -y
Wy <C,
/(pH(x) +pH(y>2>XB(x Wy =

which together with (68) implies the first inequality in (66). From (8) we also see that A C
A={(x,y) € R* |x —y| > epu(y)} and B C B = {(x,y) € R*; |x — y| < pu(y)/e} for
some ¢ > (. Using this fact, the second inequality in (66) follows by similar arguments. This
completes the proof of Lemma 2.1. O
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