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RIESZ TRANSFORM CHARACTERIZATION OF HARDY SPACES
ASSOCIATED WITH CERTAIN LAGUERRE EXPANSIONS

JORGE BETANCOR, JACEK DZIUBAŃSKI AND GUSTAVO GARRIGÓS

(Received March 25, 2009, revised December 8, 2009)

Abstract. In this paper we prove Riesz transform characterizations for Hardy spaces
associated with certain systems of Laguerre functions.

1. Introduction and statement of the results. Denote the Laguerre polynomials of
order α > −1 by

Lαn(x) = (n!)−1exx−α
(
d

dx

)n
(e−xxn+α) , n = 0, 1, 2, . . . .

In this paper we consider the following two systems of Laguerre functions on (0,∞)

(1) ϕαn (x) = √
2 cn,α e

−x2/2xα+1/2Lαn(x
2), n = 0, 1, 2 . . . ,

(2) Lαn(x) = cn,α e
−x/2xα/2Lαn(x), n = 0, 1, 2, . . . ,

where cn,α = (�(n + 1)/�(n+ 1 + α))1/2. It is well known that, for every α > −1, each of
the systems {ϕαn }∞n=0 and {Lαn}∞n=0 is complete and orthonormal onL2((0,∞), dx). Moreover,
these functions are eigenvectors, respectively, of the differential operators

Lα = 1

2

(
− d2

dy2
+ y2 + 1

y2

(
α2 − 1

4

))
, Lα = −

(
x
d2

dx2
+ d

dx
−

(
x

4
+ α2

4x

))
,

satisfying

Lαϕ
α
n = (2n+ α + 1)ϕαn and Lα(L

α
n) = (n+ (α + 1)/2)Lαn .

As in [6, 7], the operators Lα and Lα can be factored as

Lα = 1

2
D∗
αDα + α + 1 and Lα = δ∗αδα + α + 1

2
,

where

Dα = d

dx
+ x − α + 1/2

x
and δα = √

x
d

dx
+ 1

2

(√
x − α√

x

)
,
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and where D∗
α and δ∗α denote, respectively, the formal adjoint operators to Dα and δα in

L2((0,∞), dx). Corresponding Riesz transforms are defined in L2((0,∞), dx) by

Rα = DαL
−1/2
α and Rα = δαL

−1/2
α ,

that is, they act on the basis elements by

(3) Rαϕ
α
n = − 2

√
n√

2n+ α + 1
ϕα+1
n−1 , RαL

α
n = −

√
n√

n+ (α + 1)/2
Lα+1
n−1 .

There exist kernels Rα(x, y) and Rα(x, y) such that

Rαf (x) = lim
ε→0

∫ ∞

0, |x−y|>ε
Rα(x, y)f (y)dy, Rαf (x) = lim

ε→0

∫ ∞

0, |x−y|>ε
Rα(x, y)f (y)dy .

One can easily deduce from (1), (2) and (3) that these kernels are related by

(4) Rα(x, y) = 2−3/2(xy)−1/4Rα(
√
x,

√
y) , x, y ∈ (0,∞) .

Riesz tranforms for Laguerre systems were defined and studied by Nowak and Stempak [7],
and by Harboure, Torrea and Viviani [6], who proved that Rα for α ≥ −1/2 and Rα for
α ≥ 0 extend as bounded linear operators on Lp(0,∞) when 1 < p < ∞ and are of weak
type (1,1). Our goal in the present paper is to characterize the spaces

H 1
Riesz(Lα) = {f ∈ L1(0,∞) ; ‖Rαf ‖L1 < ∞} for α > −1/2 ,

and

H 1
Riesz(Lα) = {f ∈ L1(0,∞) ; ‖Rαf ‖L1 < ∞} for α > 0 .

In [3], the second-named author considered Hardy spaces H 1
max(Lα) and H 1

max(Lα) defined
by means of the maximal functions associated with the semigroups generated by −Lα and
−Lα , respectively. To be more precise, if

Wα
t (x, y) =

∞∑
n=0

e−(2n+α+1)tϕαn (x)ϕ
α
n (y) , Wα

t (x, y) =
∞∑
n=0

e−t (n+(α+1)/2)Lαn(x)L
α
n(y)

denote the integral kernels of the semigroups {e−tLα}t>0 and {e−tLα}t>0, we say that a func-
tion f in (0,∞) belongs to H 1

max(Lα) when the maximal function

Wα∗ f (x) = sup
t>0

∣∣∣ ∫ ∞

0
Wα
t (x, y)f (y)dy

∣∣∣
belongs to L1(0,∞). Then we set ‖f ‖H 1

max(Lα)
= ‖Wα∗ f ‖L1 . Analogously, we define the

maximal function Wα∗ , the space H 1
max(Lα) and the norm ‖ · ‖H 1

max(Lα)
. It was proved in [3]

that the spaces H 1
max(Lα), α > −1/2, and H 1

max(Lα), α > 0, admit atomic decompositions.
The notion of atom for these spaces depends on the following auxiliary functions

ρLα (x) = 1

8
min(x, 1/x) and ρLα (x) = 1

8
min(x, 1) .
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A measurable function b : (0,∞) → C is said to be an H 1(Lα)-atom if there exists a ball
B = B(y0, R) = {y ∈ (0,∞); |y0 − y| < R} with R ≤ ρLα (y0) such that

supp b ⊂ B , ‖b‖∞ ≤ |B|−1 and

if R ≤ ρLα(y0)/2 then
∫
b(y)dy = 0 .

The space H 1
at(Lα) consists of all measurable functions f on (0,∞) of the form

f =
∞∑
j=1

λjbj ,

where bj are H 1(Lα)-atoms, λj ∈ C and
∑∞
j=1 |λj | < ∞. The norm in H 1

at(Lα) is defined
by

‖f ‖H 1
at(Lα)

= inf
∞∑
j=1

|λj | ,

where the infimum is taken over all decompositions f = ∑∞
j=1 λj bj , where bj are H 1(Lα)-

atoms and λj ∈ C. Similarly we define the space H 1
at(Lα) and the norm ‖ ‖H 1

at(Lα)
, the only

difference being that the function ρLα replaces the function ρLα in the definition of H 1(Lα)-
atoms. The main result in [3] was to show that

H 1
max(Lα) = H 1

at(Lα) for α > −1/2 and H 1
max(Lα) = H 1

at(Lα) for α > 0 ,

with equivalence of the corresponding norms. Our goal in this paper is to characterize these
spaces by means of the Riesz transforms Rα and Rα. More precisely, we shall prove the
following theorems.

THEOREM 1.1. If α > −1/2, then H 1
Riesz(Lα) = H 1

at(Lα). Moreover, there exists
C > 0 such that

(5) C−1‖f ‖H 1
at(Lα)

≤ ‖Rαf ‖L1 + ‖f ‖L1 ≤ C‖f ‖H 1
at(Lα)

.

THEOREM 1.2. If α > 0, then H 1
Riesz(Lα) = H 1

at(Lα). Moreover, there exists C > 0
such that

(6) C−1‖f ‖H 1
at(Lα)

≤ ‖Rαf ‖L1 + ‖f ‖L1 ≤ C‖f ‖H 1
at(Lα)

.

2. Hardy spaces H 1(Lα) associated with Laguerre operators Lα. In the present
section, we shall prove Theorem 1.1. To do this, we recall the equivalence between Riesz and
atomic definitions for the Hardy space associated with the Hermite operator,

H = 1

2

(
− d2

dx2 + x2
)
,

which were established in [4]. First we let

(7) ρH (y) = (1 + |y|)−1 .
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It is easily seen that there exist constants C, c > 0 such that

(8) cρH (x)(1 + |x − y|/ρH (x))−1 ≤ ρH (y) ≤ CρH (x)(1 + |x − y|/ρH (x))1/2 .
A function a : R → C is an H 1(H)-atom if there exists a ball B = B(y0, R) = {y ∈
R; |y − y0| < R} with R ≤ ρH (y0) such that

supp a ⊂ B , ‖a‖L∞ ≤ |B|−1 and

if R ≤ ρH (y0)/2 then
∫
a(y)dy = 0 .

The atomic Hardy space H 1
at(H) and the norm ‖ ‖H 1

at(H)
are defined in the standard way. On

the other hand, a Riesz transform RH can be defined in L2(R) by

RH =
(
d

dx
+ x

)
H−1/2 ,

motivated by the factorization of the Hermite operator

H = −1

4

[(
d

dx
+ x

)(
d

dx
− x

)
+

(
d

dx
− x

)(
d

dx
+ x

)]
.

To obtain a kernel expression forRH , recall first the Mehler formula for Hermite functions (cf.
[10, Lemma 1.1.1]), which asserts that the integral kernelWH

t (x, y) of the Hermite semigroup
{e−tH }t>0 is given by

WH
t (x, y)=

[
e−t

π(1 − e−2t )

]1/2

exp

(
− 1

2

(
1 + e−2t

1 − e−2t

)
(x2 + y2)+ 2xy

e−t

1 − e−2t

)
(9)

when t > 0 and x, y ∈ R. Using the formula H−1/2 = π−1/2
∫ ∞

0 e−tH t−1/2dt , we can
express the Riesz transform RH as a principal value singular integral operator of the form

RH (f )(x) = lim
ε→0

∫
y∈R : |x−y|>ε

RH (x, y)f (y)dy ,

with the kernel given by

RH (x, y) = 1√
π

∫ ∞

0

(
d

dx
+ x

)
WH
t (x, y)

dt√
t

= 1√
π

∫ ∞

0

d

dx
WH
t (x, y)

dt√
t

+ 1√
π

∫ ∞

0
xWH

t (x, y)
dt√
t

= RH1 (x, y)+ RH2 (x, y) .

(10)

It is not difficult to prove using (9) and (10) that

(11) sup
y∈R

∫ ∞

−∞
|RH2 (x, y)|dx < ∞, sup

x∈R

∫ ∞

−∞
|RH2 (x, y)| dy < ∞

(see Section 4). Therefore, denoting RH2 = xH−1/2, we have

(12) ‖RH2 f ‖L1(R) ≤ C‖f ‖L1(R)
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(see also [2, Theorem 4.5]). It was proved by Thangavelu [9] that the operatorRH is bounded
on Lp(R) for 1 < p < ∞. Moreover, Theorem 1.2 of Zhong [11] asserts that the operator
RH1 = (d/dx)H−1/2 is a Calderón-Zygmund operator, hence it is of weak type (1,1) (see also
[8] for a proof based on analysis of the Melher kernel). The above facts could also be deduced
from the following lemma.

LEMMA 2.1. Let ψ ∈ C∞
c (−2−4, 2−4) be such that ψ(x) = 1 for |x| < 2−5. Then

there exists a constant c0 
= 0 and a kernel h(x, y) such that

(13) RH (x, y) = c0

x − y
ψ

(
x − y

ρH (x)

)
+ h(x, y) ,

(14) sup
y∈R

∫ ∞

−∞
|h(x, y)|dx + sup

x∈R

∫ ∞

−∞
|h(x, y)|dy < ∞ .

This lemma is known, but a self-contained proof based on analysis of the Mehler kernel
will be presented in Section 4. We set

H 1
Riesz(H) = {f ∈ L1(R) ; ‖RHf ‖L1(R) < ∞} .

In view of (12), an L1-function f belongs toH 1
Riesz(H) if and only if (d/dx)H−1/2f belongs

to L1(R). From this remark and the results in [4], it follows that

H 1
Riesz(H) = H 1

at(H)

and there exists a constant C > 0 such that

(15) C−1‖f ‖H 1
at(H)

≤ ‖RHf ‖L1 + ‖f ‖L1 ≤ C‖f ‖H 1
at(H)

.

Having established the Riesz and atomic characterizations of the Hardy space associated with
the Hermite operator, we continue our preparation for the proof of Theorem 1.1.

For a function f defined on (0,∞), we denote RHlocf = RH1,locf + RH2,locf , where

RHj,locf (x) = lim
ε→0

∫ 2x

x/2, |x−y|>ε
RHj (x, y)f (y)dy, x > 0, j = 1, 2 .

PROPOSITION 2.2. For f ∈ L1(0,∞), let fo denote its odd extension. Then RH1 fo ∈
L1(R) if and only if RH1,locf is in L1(0,∞). Moreover, there exists C > 0 such that

‖RH1 fo − RH1,locf ‖L1(0,∞) ≤ C‖f ‖L1(0,∞) .

PROOF. Set r = r(t) = e−t∈ (0, 1). According to (9) and (10), we have

RH1 (x, y) = 1√
π

∫ ∞

0

√
r (2ry − (1 + r2)x)

(1 − r2)3/2

× exp

(
− 1 + r2

2(1 − r2)
(x2 + y2)+ 2r

1 − r2 xy

)
dt√
t
.

(16)
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Note that ‖RH1 fo‖L1(R) = 2‖RH1 fo‖L1(0,∞), because RH1 fo is an even function. Moreover,

RH1 fo(x) = lim
ε→0

∫ ∞

0, |x−y|>ε
(
RH1 (x, y)− RH1 (x,−y)

)
f (y)dy , a.e. x ∈ (0,∞) .

Further,

RH1 fo(x)− RH1,locf (x) =
∫ x/2

0
(RH1 (x, y)− RH1 (x,−y))f (y)dy

+
∫ ∞

2x
(RH1 (x, y)− RH1 (x,−y))f (y)dy

−
∫ 2x

x/2
RH1 (x,−y)f (y)dy

=
3∑
j=1

Tj (f )(x), a.e. x ∈ (0,∞) .

(17)

It suffices to show that the operators Tj , j = 1, 2, 3, are bounded on L1((0,∞), dx). To
deal with T1 and T2, we estimate the difference DH(x, y) = |RH1 (x, y) − RH1 (x,−y)| for
x, y > 0. By (16)

DH(x, y) ≤ C

∫ ∞

0

√
r x

(1 − r2)3/2

(
exp

(
2r

1 − r2
xy

)
− exp

(
− 2r

1 − r2
xy

))
× exp

(
− 1 + r2

2(1 − r2)
(x2 + y2)

)
dt√
t

+ C

∫ ∞

0

√
r y

(1 − r2)3/2
exp

(
− 1 + r2

2(1 − r2)
(x2 + y2)

)
× exp

(
2r

1 − r2 xy

)
dt√
t
.

(18)

Applying the mean value theorem in the first integral, we can assert that

DH(x, y) ≤ C

∫ ∞

0

√
r

(1 − r2)3/2

(
rx2y

1 − r2 + y

)
exp

(
− 1 + r2

2(1 − r2)
(x2 + y2)

)
× exp

(
2r

1 − r2
xy

)
dt√
t

= C

∫ ∞

0

√
r

(1 − r2)3/2

(
rx2y

1 − r2
+ y

)
exp

(
− 1 + r2

2(1 − r2)
(x − y)2

)
× exp

(
− 1 − r

1 + r
xy

)
dt√
t
.

(19)

It is now not difficult to verify using (19) that

(20) DH(x, y) ≤
{
Cyx−2 for x > 2y ,

Cy−1 for 2x < y .
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The estimate (20) easily implies ‖T1f ‖L1(0,∞) + ‖T2f ‖L1(0,∞) ≤ C‖f ‖L1(0,∞). Moreover,
from (16), we conclude

|RH1 (x,−y)| ≤ C

(
xe−cx2

∫ ∞

1
e−t dt + x

∫ 1

0

1

t2
e−cx2/tdt

)
≤ C

y
for x/2 < y < 2x .

Hence T3 is a bounded operator from L1(0,∞) into itself. �

PROPOSITION 2.3. Let α > −1/2, f ∈ L1(0,∞) and fo be the odd extension of f to
R. Then Rαf is in L1(0,∞) if and only if RHfo is in L1(R). Moreover, there exists C > 0
such that

C−1(‖fo‖L1(R) + ‖RHfo‖L1(R)) ≤ ‖f ‖L1(0,∞) + ‖Rαf ‖L1(0,∞)

and

‖f ‖L1(0,∞) + ‖Rαf ‖L1(0,∞) ≤ C(‖fo‖L1(R) + ‖RHfo‖L1(R)) .

PROOF. According to [1, Lemma 2.13], we have

|Rα(x, y)| ≤ Cxα+3/2y−(α+5/2) for 0 < 2x < y < ∞ ,

|Rα(x, y)| ≤ Cyα+1/2x−(α+3/2) for 0 < y < x/2 ,
(21)

and

|Rα(x, y)− RH (x, y)| ≤ C

y

(
1 + (xy)1/4

|x − y|1/2
)

for 0 < x/2 < y < 2x .

Each of the Hardy operators

Hα(g)(x) = x−α−3/2
∫ x

0
yα+1/2g(y)dy , x > 0

and

Hα(g)(x) = xα+1/2
∫ ∞

x

y−α−3/2g(y)dy , x > 0

are bounded on L1(0,∞) when α > −1/2. Moreover, the operator N defined by

Nf (x) =
∫ 2x

x/2

1

y

(
1 + (xy)1/4

|x − y|1/2
)
f (y)dy

is also bounded in L1(0,∞). Hence, by (21), (11) and Proposition 2.2, we obtain

‖Rαf − RHfo‖L1(0,∞)

≤ ‖Rαf − RHlocf ‖L1(0,∞) + ‖RHlocf − RHfo‖L1(0,∞)

≤ C(‖N |f | ‖L1(0,∞) + ‖Hα+1|f | ‖L1(0,∞) + ‖Hα|f | ‖L1(0,∞))

+ ‖RH1,locf − RH1 fo‖L1(0,∞) + ‖RH2,locf ‖L1(0,∞) + ‖RH2 fo‖L1(0,∞)

≤ C‖f ‖L1(0,∞) . �

The next elementary lemma will be used below.
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LEMMA 2.4. Let b : (0,∞) → C be an H 1(Lα)-atom. Then, its odd extension bo
satisfies

‖bo‖H 1
at(H)

≤ 36 .

PROOF. Let B = B(y,R) ⊂ (0,∞) be a ball associated with b, that is, R ≤ ρLα (y),
supp b ⊂ B and ‖b‖∞ ≤ |B|−1. Moreover,

∫
b(y)dy = 0 if R ≤ ρLα(y)/2. In this last case,

since ρLα(y) ≤ ρH (y)/2, the function b(x) (extended as 0 when x ≤ 0) is an H 1(H)-atom,
and hence so is −b(−x). Thus ‖bo‖H 1

at(H)
≤ 2.

Suppose now that ρLα (y)/2 < R ≤ ρLα(y). We distinguish two cases. If y ∈ (0, 8/9)
then

supp bo ⊂ B(0, y + R) ⊂ B(0, 9y/8) ≡ Bo .

Since
∫
R
bo = 0 and ‖bo‖∞ ≤ ρLα (y)

−1 = 18/|Bo|, it follows that bo/18 is an H 1(H)-atom
associated with the ball Bo, and hence ‖bo‖H 1

at(H)
≤ 18. In the second case, i.e. y > 8/9, we

may regard b/18 as an H 1(H)-atom associated with the ball B(y, ρH (y)), since

supp b ⊂ B(y, ρH (y)) and ‖b‖∞ ≤ (2R)−1 ≤ 18|B(y, ρH (y))|−1 .

Similarly, b(−x)/18 is an H 1(H)-atom associated with the ball B(−y, ρH (−y)). We con-
clude that ‖bo‖H 1

at(H)
≤ 36, establishing the lemma. �

PROOF OF THEOREM 1.1. Assume that f is in H 1
at(Lα). Then f can be written as∑

j cj bj , where bj are H 1(Lα)-atoms and
∑
j |cj | ∼ ‖f ‖H 1

at(Lα)
. By the previous lemma,

the odd extension fo of f belongs to H 1
at(H) and ‖fo‖H 1

at(H)
≤ 36‖f ‖H 1

at(Lα)
. Applying

Proposition 2.3 and using (15), we obtain

‖Rαf ‖L1(0,∞) ≤ C(‖fo‖L1(R) + ‖RHfo‖L1(R)) ≤ C′‖fo‖H 1
at(H)

≤ C′′‖f ‖H 1
at(Lα)

.

To prove the converse, assume that f is inH 1
Riesz(Lα). Again, using Proposition 2.3 combined

with (15), we obtain fo ∈ H 1
Riesz(H) = H 1

at(H) and

‖fo‖H 1
at(H)

≤ C(‖fo‖L1(R) + ‖RHfo‖L1(R)) ≤ C(‖f ‖L1(0,∞) + ‖Rαf ‖L1(0,∞)) .

Hence fo(x) = ∑
j cj aj (x), where aj are H 1(H)-atoms and

∑
j |cj | ∼ ‖fo‖H 1

at(H)
. Letting

bj = aj
∣∣
(0,∞)

, one easily verifies the inequality ‖bj‖H 1
at(Lα)

≤ C. Thus f is in H 1
at(Lα) and

‖f ‖H 1
at(Lα)

≤ C′(‖f ‖L1(0,∞) + ‖Rαf ‖L1(0,∞)). �

REMARK 2.5. Using a similar analysis based on a comparison of the kernelsWα
t (x, y)

andWH
t (x, y) (see [1, Lemma 2.11]), one can prove thatWH∗ fo belongs to L1(R) if and only

ifWα∗ f belongs toL1(0,∞) and ‖fo‖L1(R)+‖WH∗ fo‖L1(R) ∼ ‖f ‖L1(0,∞)+‖Wα∗ f ‖L1(0,∞).

3. Hardy spaces H 1(Lα) associated with Laguerre operators Lα . In this section
we prove Theorem 1.2. The proof is based on the following estimates for the kernel Rα(x, y).
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PROPOSITION 3.1. Let ψ be as in Lemma 2.1. Then, for every α > 0, there exists a
kernel K(x, y) such that

(22) Rα(x, y) = c0√
2(x − y)

ψ

(
x − y

ρLα (x)

)
+K(x, y), x, y ∈ (0,∞) ,

(23) sup
y>0

∫ ∞

0
|K(x, y)|dx < ∞ ,

where c0 is the constant from (13) .

PROOF. Set

(24) K(x, y) = Rα(x, y)− c0√
2(x − y)

ψ

(
x − y

ρLα (x)

)
.

If x < y/4 or y < x/4, then K(x, y) = Rα(x, y). From (4) and (21), we conclude

(25) |K(x, y)| ≤
{
Cx(α+1)/2y−(α+3)/2 if 4x < y < ∞ ,

Cyα/2x−(α+2)/2 if 0 < y < x/4 .

Hence

(26) sup
y>0

(∫ y/4

0
|K(x, y)|dx +

∫ ∞

4y
|K(x, y)|dx

)
< ∞ .

In order to deal with the kernel K(x, y) in the local part y/4 ≤ x ≤ 4y, we set

E(x, y) = Rα(x, y)− 2−3/2(xy)−1/4RH (
√
x,

√
y) ,

G(x, y) = 2−3/2
(
(xy)−1/4 c0√

x − √
y
ψ

(√
x − √

y

ρH (
√
x)

)
− 2c0

x − y
ψ

(
x − y

ρLα (x)

))
.

Then, by (4) and Lemma 2.1, we have

K(x, y) = E(x, y)+ 2−3/2(xy)−1/4h(
√
x,

√
y)+G(x, y) .(27)

According to (21), we get

(28) |E(x, y)| ≤ C
(xy)−1/4

√
y

(
1 + (xy)1/8

|√x − √
y|1/2

)
≤ C

1

y

(
1 +

√
x

|x − y|1/2
)

for y/4 ≤ x ≤ 4y. Trivially, using (28) and (14), we obtain

(29)
∫ 4y

y/4
(|E(x, y)| + (xy)−1/4|h(√x,√y)|)dx ≤ C .

The proof will be complete if we show the inequality

(30)
∫ 4y

y/4
|G(x, y)|dx ≤ C .

Let us note that

G(x, y) = 2−3/2c0

x − y

[√
x + √

y

(xy)1/4
ψ

(
x − y

(
√
x + √

y)ρH (
√
x)

)
− 2ψ

(
x − y

ρLa (x)

)]
.(31)
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If y > 10, y/4 ≤ x ≤ 4y and |x − y| > 1, then G(x, y) = 0. If y > 10, y/4 < x < 4y
and |x − y| ≤ 1, then, by the mean value theorem, |G(x, y)| ≤ C. Thus (30) is satisfied for
y > 10. If 0 < y ≤ 10 and y/4 ≤ x ≤ 4y, then applying the mean value theorem we deduce
|G(x, y)| ≤ Cy−1 and, consequently, (30) holds . �

Before we turn to the proof of Theorem 1.2, we state some results from the theory of
local Hardy spaces [5]. Fix l > 0. We say that a function b is an atom for the local Hardy
space h1

l (R) if there exists a ball B(y0, R) with R < l such that supp b ⊂ B(y0, R), ‖b‖∞ ≤
(2R)−1, and if R ≤ l/2, then

∫
b(y) dy = 0. A function f belongs to the space h1

l if there
exist a sequence bj of h1

l -atoms and λj ∈ C with
∑
j |λj | < ∞ such that

(32) f =
∑
j

λj bj .

The atomic norm in h1
l is defined in a standard way, that is, ‖f ‖h1

l
= inf

∑
j |λj |, where the

infimum is taken over all decompositions (32) . Moreover, if f ∈ h1
l and supp f ⊂ B(y0, l),

then there exists a decomposition of f as in (32) such that supp bj ⊂ B(y0, 10l/9) and∑
j |λj | ≤ C‖f ‖h1

l
. We define a local Hilbert transform

Hlf (x) = lim
ε→0

∫
|x−y|>ε

c0√
2(x − y)

ψ

(
x − y

l

)
f (y)dy ,

where c0 and ψ are as in Lemma 2.1. The following result was actually proved in [5]. There
exists a constant C > 0 independent of l such that

(33) C−1‖f ‖h1
l

≤ ‖Hlf ‖L1 + ‖f ‖L1 ≤ C‖f ‖h1
l
.

PROOF OF THEOREM 1.2. Since Rα maps continuously L1(0,∞) into the space of
distributions, to prove the second inequality in (6), it suffices to verify that there exists a
constant C > 0 such that, for every H 1(Lα)-atom b, one has

(34) ‖Rαb‖L1 ≤ C .

Let b be an H 1(Lα)-atom with associated ball B(y0, R). Clearly, letting l = ρLα (y0), we see
that b is also an h1

l -atom. By Proposition 3.1,

Rαb(x) =
∫
K(x, y)b(y)dy + Hlb(x)

+ lim
ε→0

∫
|x−y|>ε

c0√
2(x − y)

(
ψ

(
x − y

ρLα (x)

)
− ψ

(
x − y

l

))
χB(y0,l)(y)b(y)dy .

(35)

The kernel

U(x, y) = c0√
2(x − y)

(
ψ

(
x − y

ρLα (x)

)
− ψ

(
x − y

l

))
χB(y0,l)(y) ,

as a function of (x, y), is supported by B(y0, 3l) × B(y0, l). Moreover, |U(x, y)| ≤ Cl−1,
which implies supy>0

∫ |U(x, y)|dx < ∞. Therefore, (34) holds by applying (23) and (33).
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We now turn to prove the first inequality in (6). We define the intervals {Ij }j∈Z, Ij =
(βj , βj+1), βj = (9/8)j for j ≤ 1, and βj = 1 + j/8 for j ≥ 1. Set lj = ρLα (βj ). Let ηj be
a family of smooth functions such that

(36) 0 ≤ ηj ≤ 1 , supp ηj ⊂ I∗
j ,

∣∣∣ d
dx
ηj (x)

∣∣∣ ≤ Cl−1
j ,

∑
j

ηj (x) = 1 for x > 0 ,

where I∗
j = [βj−1, βj+2]. Set I∗∗

j = [βj−2, βj+3]. Then
∑
j χI ∗∗

j
≤ 5. Fix f ∈ L1(0,∞)

such that ‖Rαf ‖L1 < ∞. We shall verify that

(37)
∑
j

‖Hlj (ηj f )‖L1 ≤ C(‖Rαf ‖L1 + ‖f ‖L1)

with a constant C > 0 independent of f . To this end, note that

Hlj (ηj f )(x) = lim
ε→0

∫
|x−y|>ε

(ηj (y)− ηj (x))
c0√

2(x − y)
ψ

(
x − y

lj

)
f (y)dy

+ ηj (x)Hlj f (x)

= Ξjf (x)+ ηj (x)Hlj f (x) .

(38)

Observe that the kernel ∣∣∣(ηj (y)− ηj (x))
c0√

2(x − y)
ψ

(
x − y

lj

)∣∣∣ ,
as a function of (x, y), is supported by I∗∗

j × I∗∗
j and bounded by Cl−1

j . Since each y > 0
belongs to at most 5 intervals I∗∗

j , and |I∗∗
j | ∼ lj , we can easily obtain

(39)
∑
j

∫
|Ξjf (x)|dx ≤ C‖f ‖L1 .

Now we shall deal with ηj (x)Hlj f (x), defined by

ηj (x)Hlj f (x) =
∫
ηj (x)

[
ψ

(
x − y

lj

)
− ψ

(
x − y

ρLα(x)

)]
c0√

2(x − y)
f (y)dy

+ ηj (x)Rαf (x)− ηj (x)

∫
K(x, y)f (y) dy .

(40)

The integral kernel ∣∣∣ηj (x)[ψ(
x − y

lj

)
− ψ

(
x − y

ρLα (x)

)]
c0√

2(x − y)

∣∣∣ ,
as a function of (x, y), is supported by I∗

j × I∗∗
j and bounded by Cl−1

j . Hence

(41) sup
y>0

∫ ∞

0

∑
j

∣∣∣ηj (x)(ψ(
x − y

lj

)
− ψ

(
x − y

ρLα (x)

))
c0√

2(x − y)

∣∣∣dx < ∞ .

Using (40) and (41), we obtain

(42)
∑
j

‖ηjHlj f ‖L1 ≤ C(‖f ‖L1 + ‖Rαf ‖L1) ,
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which combined with (38), (39) and (36) gives (37). Having (37) already proved, we are in a
position to complete the proof of the first inequality in (6). Applying (37) together with the
results from the theory of local Hardy spaces stated in this section, we have

(43) f =
∑
j

(ηj f ) =
∑
j

( ∑
i

λij aij

)
,

where aij are h1
lj

-atoms supported by I∗∗
j , and

∑
ij |λij | ≤ C(‖Rαf ‖L1 +‖f ‖L1). The proof

will be complete once we observe that each of these atoms is either anH 1(Lα)-atom, or can be
written as a sum of at most 20 such atoms. Indeed, fix an h1

lj
-atom a supported in I∗∗

j . Then,

for some 0 < R0 < lj and y0 ∈ I∗∗
j we have supp a ⊂ B(y0, R0) ⊂ I∗∗

j , ‖a‖∞ ≤ (2R0)
−1,

and if R0 ≤ lj /2 then also
∫
a(x)dx = 0. Notice that, by construction,

ρLα (y) ≤ 2ρLα (y
′) , for all y, y ′ ∈ I∗∗

j = [βj−2, βj+3] .
If R0 ≤ lj /2 = ρLα (βj )/2 then

∫
a = 0 and R0 ≤ ρLα (y0), and therefore a is also an

H 1(Lα)-atom. If R0 > lj /2, then

I∗∗
j =

4⋃
k=0

Ij−2+k with |Ij−2+k | = ρLα (βj−2+k) ,

and using again ρLα (βj+2) ≤ 2ρLα (βj ) we see that

‖aχIj−2+k‖∞ ≤ (2R0)
−1 ≤ ρLα (βj )

−1 ≤ 2|Ij−2+k|−1 .

Hence, each piece aχIj−2+k /4 is an H 1(Lα)-atom for the ball B(βj−2+k, ρLα (βj−2+k)) and,
consequently, ‖a‖H 1

at(Lα)
≤ 20. �

4. Proof of (11) and Lemma 2.1. During the proof we set r = e−t∈ (0, 1). We can
rewrite (9) as

(44) WH
t (x, y) =

√
r√

π(1 − r2)
exp

(
− 1

2

(
1 + r2

1 − r2

)
|x − y|2

)
exp

(
− 1 − r

1 + r
xy

)
,

for all x, y ∈ R. A simple computation using (44) or (9) gives

(45) WH
t (x, y) ≤

√
r√

π(1 − r2)
exp

(
− 1

4

(
1 + r2

1 − r2

)
|x − y|2

)
.

Let us note that, for every N > 0, there exists a constant CN such that

(46) WH
t (x, y) ≤ CN

e−t/3√
1 − r2

(
1 + t

ρH (x)2

)−N
.

Indeed, if |x − y| > |x|/2, then

WH
t (x, y) ≤ e−t/2√

π(1 − r2)
exp

(
− 1

8

(
1 + r2

1 − r2

)
x2

)
≤ CN

e−t/3√
1 − r2

(
1 + t

ρH (x)2

)−N
.

(47)
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If |x − y| ≤ |x|/2, then xy ∼ x2 and, using (44), we get

(48) WH
t (x, y) ≤ C

e−t/2√
1 − r2

exp(−c(1 − r)x2) ≤ CN
e−t/3√
1 − r2

(
1 + t

ρH (x)2

)−N
.

Applying (45) and (46) combined with the fact that WH
t (x, y) = WH

t (y, x), we obtain

(49) WH
t (x, y) ≤ CN

e−t/3√
1 − e−2t

exp

(
− |x − y|2

12(1 − e−2t )

)(
1+ t

ρ(x)2

)−N(
1+ t

ρ(y)2

)−N
.

We are now in a position to prove (11). If |x − y| ≤ CρH (y), then by (10) and (49) we have

|RH2 (x, y)| ≤ CN

( ∫ |x−y|2

0
|x|

(
t

|x − y|2
)N

dt

t
+

∫ C2ρH (y)
2

|x−y|2
|x|dt

t

+
∫ ∞

C2ρH (y)2
|x|

(
ρH (y)

2

t

)N dt
t

)
≤ CN

(
|x| + |x| ln

(
CρH (y)

|x − y|
))

.

(50)

If |x − y| ≥ CρH (y), then we use again (49) and get

|RH2 (x, y)| ≤ CN

( ∫ C2ρH (y)
2

0
|x|

(
t

|x − y|2
)N

dt

t

+
∫ |x−y|2

C2ρH (y)2
|x|

(
t

|x − y|2
)N(

t

ρH (y)2

)−2N
dt

t

+
∫ ∞

|x−y|2
|x|

(
ρH (y)

2

t

)N
dt

t

)
≤ CN

|x|ρH (y)2N
|x − y|2N

≤ CN

( |x − y|ρH (y)2N
|x − y|2N + |y|ρH (y)2N

|x − y|2N
)
.

(51)

Now the first inequality in (11) is a consequence of (50) and (51). Similarly to (50) and (51),
we also conclude that

(52) |RH2 (x, y)| ≤
{
C(|x| + |x| ln(CρH (x)/|x − y|)) for |x − y| ≤ CρH (x) ,

CN |x|ρH (x)N/|x − y|N for |x − y| > CρH (x) ,

from which we easily obtain the second inequality in (11).
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Having (11) already established, we now turn to prove Lemma 2.1. By (44),

∂

∂x
WH
t (x, y) = −

√
r√

π(1 − r2)

1 + r2

1 − r2
(x − y) exp

(
− 1

2

(
1 + r2

1 − r2

)
|x − y|2

)
× exp

(
− 1 − r

1 + r
xy

)
− y

1 − r

1 + r

√
r√

π(1 − r2)
exp

(
− 1

2

(
1 + r2

1 − r2

)
|x − y|2

)
× exp

(
− 1 − r

1 + r
xy

)
.

(53)

From (53) we deduce that, for |x − y| > CρH (y), we have∣∣∣ ∂
∂x
WH
t (x, y)

∣∣∣ ≤ CN

(
1

|x − y| + |y|(1 − r)

)
e−t/3√
1 − r2

× exp

(
− |x − y|2

12(1 − r2)

)(
1 + t

ρH (y)2

)−N
.

(54)

Proceeding as in (51), we obtain

(55)
∣∣∣ ∫ ∞

0

∂

∂x
WH
t (x, y)

dt√
t

∣∣∣ ≤ CN

(
1

|x − y| + |y|
)
ρH (y)

2N

|x − y|2N for |x − y| > CρH (y) ,

which leads to

(56) sup
y∈R

∫
|x−y|>CρH(y)

|RH1 (x, y)|dx ≤ C .

Our next step is to estimate RH1 (x, y) for |x − y| ≤ CρH (y). Note that (53) implies∣∣∣ ∂
∂x
Wt(x, y)

∣∣∣ ≤ CN
e−t/3√
1 − r2

(
1 + r2

1 − r2

)
|x − y|

× exp

(
− |x − y|2

12(1 − r2)

)(
1 + t

ρH (y)2

)−N−1

+ CN
e−t/3√
1 − r2

|y|(1 − r) exp

(
− |x − y|2

12(1 − r2)

)(
1 + t

ρH (y)2

)−N−1

≤ CN
e−t/4

1 − r2

(
1 + t

ρH (y)2

)−N
.

(57)

Consequently, using (57) we get

(58)
∫ ∞

ρH (y)2

∣∣∣ ∂
∂x
Wt (x, y)

∣∣∣ dt√
t

≤ CρH (y)
−1 .

In order to investigate the integral∫ ρH (y)
2

0

∂

∂x
Wt (x, y)

dt√
t
,
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we study first the difference

Q(x, y) =
∫ ρH (y)

2

0

∂

∂x
(WH

t (x, y)− Pt (x − y))
dt√
t
,

where Pt (x) = (2πt)−1/2 exp(−x2/2t) is the classical Gauss-Weierstrass kernel. The pertur-
bation formula asserts that

Q(x, y) = −1

2

∫ ρH (y)
2

0

∫ t

0

∫ ∞

−∞
∂

∂x
Pt−s(x − z)z2WH

s (z, y)dzds
dt√
t
.

Therefore,

J =
∫

|x−y|<CρH(y)
|Q(x, y)|dx

≤ C

∫
|x−y|≤CρH(y)

∫ ρH (y)
2

0

∫ t

0

∫ ∞

−∞
|x − z|
t − s

Pt−s(x − z)(|z− x|2 + x2)

×WH
s (z, y)dz ds

dt√
t
dx .

(59)

Observe that x2 ≤ CρH (y)
−2 for |x − y| ≤ CρH (y). Substituting this inequality inside the

above integral and then integrating with respect to dx and dz, we conclude

(60) J ≤ C

∫ ρH (y)
2

0

∫ t

0

(
(t − s)1/2 + 1

(t − s)1/2ρH (y)2

)
ds

dt√
t

≤ CρH (y)
4 + C ≤ C .

Proceeding as in (55), we also get

|RH1 (x, y)| ≤ CNρH (x)
−1 ρH (x)

N

|x − y|N for |x − y| > CρH (x) ,

and consequently,

(61) sup
x∈R

∫
|x−y|>CρH(x)

|RH1 (x, y)|dy < ∞ .

A similar procedure to that employed to estimate J gives

(62) sup
x∈R

∫
|x−y|≤CρH(x)

|Q(x, y)|dy ≤ C .

Finally, our analysis of the kernel RH1 (x, y) is reduced to the integral∫ ρH (y)
2

0

∂

∂x
Pt (x − y)

dt√
t

= −
∫ ρH (y)

2

0

x − y

t

1√
2πt

exp(−|x − y|2/2t) dt√
t

= − 2√
2π(x − y)

exp

(
− |x − y|2

2ρH (y)2

)
.

(63)

Taking into account (10), (55), (58), (60), (61), (62) and (63), we get

(64) RH1 (x, y) = −
√

2

π(x − y)
exp

(
− |x − y|2

2ρH (y)2

)
+ h1(x, y)
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with

(65) sup
y∈R

∫ ∞

−∞
|h1(x, y)|dx + sup

x∈R

∫ ∞

−∞
|h1(x, y)|dy < ∞ .

To complete the proof, take any ψ ∈ C∞
c (R) as in the statement of Lemma 2.1. Define a

function h2(x, y) by

h2(x, y) =
√

2

π(x − y)
ψ

(
x − y

ρH (x)

)
−

√
2

π(x − y)
exp

(
− |x − y|2

2ρH (y)2

)
, x, y ∈ R .

By (10), (64), (65) and (11), the lemma will be established once we show that, for someC > 0
we have

(66) sup
x∈R

∫
|h2(x, y)|dy ≤ C and sup

y∈R

∫
|h2(x, y)|dx ≤ C .

Set A = {(x, y) ∈ R2; |x − y| > ρH (x)}, B = {(x, y) ∈ R2; |x − y| ≤ ρH (x)}. Then

(67) |h2(x, y)| ≤ C

|x − y| exp

(
− |x − y|2

2ρH (y)2

)
χA(x, y)+C

(
1

ρH (x)
+ |x − y|
ρH (y)2

)
χB(x, y) ,

where the last summand is obtained by applying the mean value theorem. Using (8), we see
that ρH (y)2 ≤ cρH (x)|x − y| when (x, y) ∈ A, and therefore∫

1

|x − y| exp

(
− |x − y|2

2ρH (y)2

)
χA(x, y)dy

≤
∫

1

|x − y| exp

(
− c

|x − y|
ρH (x)

)
χA(x, y)dy

≤
∫

|u|>1
exp(−c|u|)du|u| ≤ C .

(68)

On the other hand, ρH (x) ∼ ρH (y) when (x, y) ∈ B (again by (8)), so we have∫ (
1

ρH (x)
+ |x − y|
ρH (y)2

)
χB(x, y)dy ≤ C ,

which together with (68) implies the first inequality in (66). From (8) we also see that A ⊂
Ã = {(x, y) ∈ R2; |x − y| > ερH (y)} and B ⊂ B̃ = {(x, y) ∈ R2; |x − y| ≤ ρH (y)/ε} for
some ε > 0. Using this fact, the second inequality in (66) follows by similar arguments. This
completes the proof of Lemma 2.1. �
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