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Abstract. We consider a nonlinear elliptic problem driven by the p-Laplacian and
depending on a parameter. The right-hand side nonlinearity is concave, (i.e., p-sublinear) near
the origin. For such problems we prove two multiplicity results, one when the right-hand side
nonlinearity is p-linear near infinity and the other when it is p-superlinear. Both results show
that there exists an open bounded interval such that the problem has five nontrivial solutions
(two positive, two negative and one nodal), if the parameter is in that interval. We also consider
the case when the parameter is in the right end of the interval.

Introduction. Let Z ⊆ RN be a bounded domain with a C2-boundary ∂Z. In this pa-
per, we study the existence of multiple solutions of constant sign and of nodal (sign-changing)
solutions for a class of parametric nonlinear elliptic problems, with right-hand side nonlinear-
ity concave at the origin. Specifically, we are considering the following problem:{− div

(‖Dx(z)‖p−2Dx(z)
) = λ|x(z)|q−2x(z)+ f (z, x(z)) a.e. on Z ,

x|∂Z = 0 , 1 < q < p < ∞ , λ > 0 .
(1)

In problem (1), |x|q−2x is the concave term, i.e., a p-sublinear nonlinearity. Concerning
the perturbation term f , we consider two cases. In the first case, we require that f (z, ·) is
p-linear near infinity; while in the second case we assume that f (z, ·) is p-superlinear near
infinity, i.e., problems with concave-convex nonlinearities.

Problems like (1) have been investigated primarily in the framework of semilinear equa-
tions, i.e., p = 2. The first case (with a p-linear perturbation of the concave term) was studied
by Perera [20] as well as de Paiva and Massa [9]. The second case (with a p-superlinear per-
turbation) can be found in the paper of Ambrosetti, Brezis and Cerami [2]. Extensions to
problems driven by the p-Laplacian differential operator were obtained by Ambrosetti, Gar-
cia Azorero and Peral Alonso [3], Garcia Azorero, Manfredi and Peral Alonso [13] and Guo
and Zhang [16]. However, all of them treat problems with a right-hand side nonlinearity of
the form λ|x|q−2x + |x|r−2x with 1 < q < p < r < p∗. Here p∗ is the Sobolev critical
exponent, i.e.,

p∗ =
{
Np

/
N − p if p < N

∞ if p ≥ N .
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They prove the existence of λ∗ > 0 such that, for each λ ∈ (0, λ∗), the problem has two
positive solutions. In [3], the authors use the radial p-Laplacian and their method of proof is
based on the Leray-Schauder degree theory. In [13], Z ⊆ RN is an arbitrary bounded domain
with a smooth boundary and the approach is variational. In [16], they assume p > 2 and, in
addition to the case of a p-superlinear perturbation (of the special form |x|r−2x, p < r <

p∗), they also treat the case of a p-linear perturbation f (x), which is assumed to be C1 and
monotone. Their approach is variational too. We should also mention the interesting work of
Boccardo, Escobedo and Peral [6].

In [6] the authors consider a reaction term of the form λg(x) + |x|r−2x with λ > 0,
g : R → R continuous, g(x) ≤ c1x

q−1 for all x ≥ 0, with c1 > 0, q ∈ (1, p) and r > p, and
they also assume that x → λg(x)+|x|r−1 is nondecreasing on R+. They prove the existence
of a positive solution for λ taking values in a bounded interval. They do not produce a second
positive solution or nodal solutions as we do here. Moreover, the monotonicity condition on
the reaction x → λg(x)+ |x|r−1 makes the implementation of the subsolution-supersolution
method easier, since it is possible to use the classical monotone iteration technique. Finally
our derivation of the supersolution u ∈ intC+ appears to be more straightforward (compare
the proof of Proposition 2.1 in this paper with the proof of [6, Lemma 1]). The work here
extends the aforementioned papers. Our approach is variational, combined with the method
of subsolutions and supersolutions, and with suitable truncation techniques.

The rest of the paper is organized as follows. Section 2 deals with some background
material, which will be used in the sequel. Section 3 produces multiple solutions of constant
sign for the case of a p-linear perturbation f . In Section 4, we obtain an additional nodal
solution. Finally, Section 5 treats the case of a p-superlinear perturbation f .

1. Mathematical background. In the analysis of problem (1), we will make use of
the Sobolev space W 1,p

0 (Z) and of the space C1
0 (Z) = {x ∈ C1(Z) ; x|∂Z = 0}, which is

dense inW 1,p
0 (Z). The space C1

0 (Z) is an ordered Banach space with the order cone given by

C+ = {x ∈ C1
0 (Z) ; x(z) ≥ 0 for all z ∈ Z} ,

which has a nonempty interior given by

intC+ =
{
x ∈ C+ ; x(z) > 0 for all z ∈ Z and

∂x

∂n
(z) < 0 for all z ∈ ∂Z

}
.

Here n(z) is the outward unit normal vector at z ∈ ∂Z. The following obvious lemma about
ordered Banach spaces will be useful in our considerations.

LEMMA 1.1. If X is an ordered Banach space, K is the order cone of X and x0 is in
intK , then for any y ∈ X there exists some t = t (y) > 0 such that tx0 − y is contained inK ,
i.e., y ≤ tx0.

Let us recall the following notion from nonlinear operator theory (see, e.g., Gasinski and
Papageorgiou [14, p. 338]). So, let X be a Banach space and X∗ its topological dual. Denote
by 〈·, ·〉 the duality brackets for the pair (X,X∗).
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DEFINITION 1.2. A map A : X → X∗ is said to be of type (S)+, if, for any sequence
{xn} ⊆ X for which xn

w→ x in X and lim supn→∞〈A(xn), xn − x〉 ≤ 0, we have xn → x in
X.

In the sequel, X = W
1,p
0 (Z),X∗ = W−1,p′

(Z) with 1/p + 1/p′ = 1, and 〈·, ·〉 will be

the duality brackets for this dual pair. Let A : W 1,p
0 (Z) → W−1,p′

(Z) be the nonlinear map
defined by

〈A(x), y〉 =
∫
Z

‖Dx‖p−2(Dx,Dy)RN dz ,(2)

for all x, y ∈ W 1,p
0 (Z).

LEMMA 1.3. A : W 1,p
0 (Z) → W−1,p′

(Z), defined by (2), is of type (S)+.

PROOF. Let {xn} ⊆ W
1,p
0 (Z) be a sequence such that xn

w→ x in W 1,p
0 (Z) and assume

that

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0 .(3)

It is clear from (2) thatA is continuous monotone, hence it is maximal monotone. Recall
that a maximal monotone operator is generalized pseudomonotone (see [14, p. 330]). So,
from (3) we have

‖Dxn‖pp = 〈A(xn), xn〉 → 〈A(x), x〉 = ‖Dx‖pp .
Since Dxn

w→ Dx in Lp(Z,RN) and Lp(Z,RN ) is uniformly convex, from the Kadec-
Klee property, we haveDxn → Dx in Lp(Z,RN), hence xn → x in W 1,p

0 (Z). �

Next we recall what we mean by supersolutions and subsolutions for problem (1).

DEFINITION 1.4. (a) A supersolution for problem (1), is a function x ∈ W 1,p(Z)

such that x|∂Z ≥ 0 and∫
Z

‖Dx‖p−2(Dx,Dy)RN dz ≥ λ

∫
Z

|x|q−2xydz+
∫
Z

f (z, x)ydz(4)

for all y ∈ W
1,p
0 (Z), y(z) ≥ 0 a.e. on Z. We say that x is a strict supersolution for problem

(1), if the inequality in (4) is strict for some y �= 0.
(b) A subsolution for problem (1) is a function x ∈ W 1,p(Z) such that x|∂Z ≤ 0 and∫

Z

‖Dx‖p−2(Dx,Dy)RN dz ≤ λ

∫
Z

|x|q−2xydz+
∫
Z

f (z, x)ydz(5)

for all y ∈ W 1,p
0 (Z), y(z) ≥ 0 a.e. on Z. We say that x is a strict subsolution for problem (1),

if the inequality in (5) is strict for some y �= 0.

In the analysis of problem (1), we will use some basic facts about the spectrum of the
negative Dirichlet p-Laplacian. In the sequel, we use the notation

�pu = div(‖Du‖p−2Du) .
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For 0 �= m ∈ L∞(Z)+, we consider the following nonlinear weighted (with weight m)
eigenvalue problem: {−�px(z) = λ̂m(z)|x(z)|p−2x(z) a.e. on Z

x|∂Z = 0 .
(6)

The smallest number λ̂ ∈ R for which problem (6) has a nontrivial solution is the first

eigenvalue of
(
−�p,W 1,p

0 (Z),m
)

, and it is denoted by λ̂1(m). We know that λ̂1(m) > 0,

and it is isolated and simple, i.e., the corresponding eigenspace is one-dimensional. Moreover,
λ̂1(m) admits the following variational characterization

λ̂1(m) = min

{
‖Dx‖pp

/( ∫
Z

m|x|pdz
)

; x ∈ W 1,p
0 (Z), x �= 0

}
(7)

(see Anane [4]).
In (7), the minimum is realized on the one-dimensional eigenspace corresponding to

λ̂1(m). Let u1 ∈ W
1,p
0 (Z) be the eigenfunction such that

∫
Z
m|u1|pdz = 1. Evidently, |u1|

also realizes the minimum in (7), and so, we may assume that u1(z) ≥ 0 a.e. on Z. In fact,
using nonlinear regularity theory (see, e.g., [14, pp. 737–738]), we have u1 ∈ C+. We actually
have u1 ∈ intC+ by an application of the nonlinear strong maximum principle of Vazquez
[22]. The eigenvalue λ̂1(m) exhibits the following monotonicity property with respect to the
weight function m ∈ L∞(Z), which can be easily deduced from (7), namely,

λ̂1(m2) < λ̂(m1) if m1(z) ≤ m2(z) a.e. on Z and m1 �= m2 .

If m ≡ 1, then we write λ̂1(1) = λ1. For further details on the spectral properties of the
negative Dirichlet p-Laplacian, we refer to Lê [17] and [14].

2. Solutions of constant sign for p-linear perturbations. In this section and the
next, we deal with the case when the perturbation term f (z, ·) is p-linear near infinity. So,
the hypotheses on f are the following:

H(f )1 f : Z × R → R is a function such that f (z, 0) = 0 a.e. on Z and
(i) for all x ∈ R, z → f (z, x) is measurable,

(ii) for a.e. z ∈ Z, x → f (z, x) is continuous,
(iii) for every r > 0, there is some ar ∈ L∞(Z)+ such that

|f (z, x)| ≤ ar(z) a.e. on Z, for all |x| ≤ r ,

(iv) there exist η, η̂ ∈ R such that λ1 < η ≤ η̂ and

η ≤ lim inf|x|→∞
f (z, x)

|x|p−2x
≤ lim sup

|x|→∞
f (z, x)

|x|p−2x
≤ η̂

uniformly for a.a. z ∈ Z,
(v) limx→0 f (z, x)

/
(|x|p−2x) = 0 uniformly for a.a. z ∈ Z,

(vi) f (z, x)x ≥ 0 for a.e. z ∈ Z and all x ∈ R (sign condition).
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Let L+ = {λ > 0 ; problem (1) has a positive solution} and define

λ̂+ = supL+ .

PROPOSITION 2.1. If hypotheses H(f )1 hold, then L+ �= ∅ and λ̂+ < ∞.

PROOF. First, we show that L+ �= ∅. The hypotheses H(f )1(iii) through (v) imply that
for any given ε > 0, we can find cε > 0 such that

|f (z, x)| ≤ ε|x|p−1 + cε|x|r−1(8)

for a.e. z ∈ Z, all x ∈ R, and p < r < p∗.
Let e ∈ intC+ be the unique solution of the Dirichlet problem

−�pe(z) = 1 a.e. on Z and e|∂Z = 0 .(9)

We claim that there exists some λ∗ > 0 such that, for every λ ∈ (0, λ∗), we may choose
ξ1 = ξ1(λ) > 0 satisfying

λ (ξ1‖e‖∞)q−1 + ε (ξ1‖e‖∞)p−1 + cε (ξ1‖e‖∞)r−1 < ξ
p−1
1 .(10)

To show this, we argue indirectly. So, suppose that there exist {λn} ⊆ R+ such that
λn → 0+ and for every ξ > 0 we have

ξp−1 ≤ λn(ξ‖e‖∞)q−1 + ε(ξ‖e‖∞)p−1 + cε(ξ‖e‖∞)r−1 .

Passing to the limit as n → ∞, we obtain

ξp−1 ≤ ε(ξ‖e‖∞)p−1 + cε(ξ‖e‖∞)r−1 ,

and consequently for all ξ > 0 we have

1 ≤ ε‖e‖∞ + cεξ
r−p‖e‖r−1∞ .(11)

Since r > p and ε > 0 is arbitrary, we may choose ε, ξ > 0 so small that (11) is violated,
which means that the claim is true.

Let ξ1 > 0 be as above and define x = ξ1e ∈ intC+. We have

−�px = −ξp−1
1 �pe(z)

= ξ
p−1
1 (see (9))

> λ(ξ1‖e‖∞)q−1 + ε(ξ1‖e‖∞)p−1

+ cε(ξ1‖e‖∞)r−1 (see (10))

≥ λx(z)q−1 + f (z, x(z)) (see (8)) .

Hence, x ∈ intC+ is a strict supersolution for problem (1).
On the other hand, recall that u1 ∈ intC+ is the Lp-normalized principal eigenfunction

of (−�p,W 1,p
0 (Z)). We can always choose small ε > 0 such that

λ1ε
p−1u1(z) < λεq−1u1(z)

q−1(12)
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for all z ∈ Z (recall that r < q < p). Set x = εu1 ∈ intC+. We have

−�px(z) = −�p(εu1)(z)

= λ1ε
p−1u1(z)

p−1

< λεq−1u1(z)
q−1

≤ λx(z)q−1 + f (z, x(z)) (see H(f )1 (vi)) .

So, x ∈ intC+ is a strict subsolution for problem (1). By choosing ε > 0 even smaller, we
can also have x ≤ x (see Lemma 1.1).

Now that we have the ordered pair {x, x} of supersolution and subsolution for problem
(1), we consider the following truncation:

f̂λ(z, x) =


λx(z)q−1 + f (z, x(z)) if x < x(z)

λxq−1 + f (z, x) if x(z) ≤ x ≤ x(z)

λx(z)+ f (z, x(z)) if x(z) < x.

Evidently, f̂λ is a Carathéodory function, i.e., measurable in z and continuous in x. Let
F̂λ(z, x) = ∫ x

0 f̂λ(z, s)ds, which is the primitive of f̂λ. We consider the functional ϕ̂λ :
W

1,p
0 (Z) → R, defined by

ϕ̂λ(x) = 1

p
‖Dx‖pp −

∫
Z

F̂λ(z, x(z))dz .

Clearly, ϕ̂λ is in C1(W
1,p
0 (Z)) and for some c1 > 0 and all x ∈ W 1,p

0 (Z),

ϕ̂λ(x) ≥ 1

p
‖Dx‖pp − c1 .

Hence, ϕ̂λ is coercive.
Moreover, exploiting the compact embedding of W 1,p

0 (Z) into Lp(Z), we can easily
verify that ϕ̂λ is sequentially weakly lower semicontinuous. So, invoking the theorem of
Weierstrass, we can find some x0 ∈ W 1,p

0 (Z) such that

ϕ̂λ(x0) = inf [ϕ̂λ(x) ; x ∈ W 1,p
0 (Z)] .

Hence, we have ϕ̂′
λ(x0) = 0, and consequently

A(x0) = N̂λ(x0) ,(13)

where N̂λ(x)(·) = f̂λ(·, x(·)) for all x ∈ Lp(Z) (the Nemytskii operator corresponding to f̂ ).
On (13), we act with the test function (x0 − x)+ ∈ W 1,p

0 (Z). We obtain

〈A(x0), (x0 − x)+〉 =
∫
Z

f̂λ(z, x0)(x0 − x)+dz

= λ

∫
{x0>x}

x(x0 − x)dz+
∫

{x0>x}
f (z, x)(x0 − x)dz

≤ 〈A(x), (x0 − x)+〉 ,
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where the last inequality is due to the fact that x ∈ intC+ is an upper solution. So, we have
〈A(x0)− A(x), (x0 − x)+〉 ≤ 0 and∫

{x0>x}
(‖Dx0‖p−2Dx0 − ‖Dx‖p−2Dx,Dx0 −Dx)RN ≤ 0 .(14)

Since the map ϑp : RN → RN , defined by

ϑp(y)

{ ‖y‖p−2y if y �= 0
0 if y = 0

is a strictly monotone homeomorphism, from (14), it follows that

| {x0 > x} |N = 0 .

Here, | · |N denotes the Lebesgue measure on RN . So, we have

x0 ≤ x .

In a similar fashion we can show that

x ≤ x0 .

Then, we obtain τ̂ (x0) = x0 and N̂(x0) = N(x0), where N(x)(·) = f (·, x(·)) for all x ∈
W

1,p
0 (Z). So (13) becomes A(x0) = λx

q−1
0 +N(x0), and we have

−�px0(z) = λx0(z)
q−1 + f (z, x0(z)) for a.e. z ∈ Z , and x0|∂Z = 0 .

Nonlinear regularity theory implies that x0 is in intC+ (see, e.g., [14, pp. 737–738]). There-
fore, x0 ∈ L+ and so, L+ �= ∅.

Next, we show that λ̂+ = supL+ < ∞. By H(f )(iv), we can find some η1 > λ1 and
M1 > 0 such that

f (z, x) ≥ η1x
p−1(15)

for a.e. z ∈ Z and all x ≥ M1. In addition, H(f )1(v) implies that, for given ε > 0, we can
find some δ = δ(ε) ∈ (0, 1) such that

f (z, x) ≥ −εxp−1(16)

for a.e. z ∈ Z and all x ∈ [0, δ].
Choose λ > max{λ1 + ε, λ1M

p−1
1

/
δq−1}. Then we have

λxq−1 + f (z, x) > λ1x
p−1(17)

for a.e. z ∈ Z and all x > 0. To see this, note that, for x ≥ M1, we have (see (15)) that

λxq−1 + f (z, x) > f (z, x) ≥ η1x
p−1 > λ1x

p−1

for a.e. z ∈ Z. For δ ≤ x < M1, we have (see H(f )1(vi))

λ1x
p−1 < λ1M

p−1
1 < λδq−1 ≤ λxq−1 ≤ λxq−1 + f (z, x)

for a.e. z ∈ Z.
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Finally, for 0 < x < δ, we have

λxq−1 + f (z, x) ≥ λxq−1 − εxp−1 (see (16))

> (λ− ε)xq−1 (since δ < 1 and q < p)

> (λ− ε)xp−1

> λ1x
p−1 (recall the choice of λ) .

So, indeed (17) holds. Now suppose that u ∈ C+ \ {∅} satisfies

−�pu(z) = λu(z)q−1 + f (z, u(z)) a.e. on Z , and u|∂Z = 0 .(18)

Invoking the nonlinear strong maximum principle of Vazquez [22], we deduce that u is
in intC+. So, by Lemma 1.1, we can find some ξ > 0 such that

ξu1 ≤ u .

Consider the set D = {ξ > 0 ; ξu1 ≤ u} and set ξ0 = supD. We have just seen that
D �= ∅. Also, note that ξ0 < ∞. Indeed, otherwise we could find ξn → ∞ such that
ξnu1 ≤ u, hence u1 ≤ ξ−1

n u → 0, a contradiction to the fact that u1 is in intC+. So, we have

ξ0u1 ≤ u.(19)

From (18) and (19), we have

−�pu(z) = λu(z)q−1 + f (z, u(z)) (see (18))

> λ1u(z)
p−1

≥ λ1(ξ0u1(z))
p−1 (see (19))

= −�p(ξ0u1)(z) for a.e. z ∈ Z .

(20)

Then, from (20) and the result of Guedda and Veron [15, Proposition 2.2], we deduce that

u− ξ0u1 ∈ intC+ ,
which implies the existence of some small β > 0 such that

u ≥ (ξ0 + β)u1 ,

a contradiction to the fact that ξ0 = supD. So, (18) cannot have a positive solution, which in
turn implies that

λ̂+ < λ < ∞ . �

Similarly, we define

L− = {λ > 0 ; problem (1) has a negative solution} .
Then, working as above, but this time on the negative semiaxis, we may produce a subsolution
v ∈ − intC+ and a supersolution v ∈ − intC+ with v ≤ v. Thus we obtain the following
proposition.

PROPOSITION 2.2. If hypotheses H(f )1 hold, then L− �= ∅ and λ̂− = supL− < ∞.
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Next, we show that problem (1) has a smallest positive solution and a biggest negative
solution. To this end, we first prove a lattice-type property for the sets of supersolutions and
subsolutions for problem (1).

We say that a nonempty set S ⊆ W 1,p(Z) is downward (resp. upward) directed if, for
every elements y1, y2 ∈ S, there exists y ∈ S such that y ≤ y1 and y ≤ y2 (resp. y ≥ y1 and
y ≥ y2).

Let us fix some λ ∈ (0, λ∗), where λ∗ is from the proof of Proposition 2.1. Then we have
the following lemma.

LEMMA 2.3. The set of supersolutions for problem (1) is downward directed. In fact,
for any supersolutions y1, y2 ∈ W 1,p(Z) for problem (1), y = min{y1, y2} ∈ W 1,p(Z) is a
supersolution too.

PROOF. Let y1 and y2 be two supersolutions for problem (1). Given ε > 0, we consider
the truncation function ξε : R → R, defined by

ξε(s) =


−ε if s < −ε
s if s ∈ [−ε, ε]
ε if ε < s .

Clearly, ξε is Lipschitz continuous. So, from Marcus and Mizel [18], we have

ξε((y1 − y2)
−) ∈ W 1,p(Z)

and

Dξε((y1 − y2)
−) = ξ ′

ε((y1 − y2)
−)D(y1 − y2)

− .(21)

Let ψ ∈ C1
c (Z) with ψ ≥ 0. Then ξε((y1 − y2)

−)ψ is in W 1,p(Z) ∩ L∞(Z) and

D
(
ξε((y1 − y2)

−)ψ
) = ψDξε((y1 − y2)

−)+ ξε((y1 − y2)
−)Dψ .(22)

Since y1 and y2 are supersolutions for problem (1), we have

〈A(y1), ξε((y1 − y2)
−)ψ〉 ≥ λ

∫
Z

|y1|q−2y1ξε((y1 − y2)
−)ψdz

+
∫
Z

f (z, y1)ξε((y1 − y2)
−)ψdz ,

and

〈A(y2), (ε − ξε((y1 − y2)
−)ψ〉 ≥ λ

∫
Z

|y2|q−2y2(ε − ξε(y1 − y2)
−)ψdz

+
∫
Z

f (z, y2)(ε − ξε((y1 − y2)
−)ψdz.
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Adding the last two inequalities, we obtain

〈A(y1), ξε((y1 − y2)
−)ψ〉 + 〈A(y2), (ε − ξε((y1 − y2)

−))ψ〉
≥ λ

∫
Z

|y1|q−2y1ξε((y1 − y2)
−)ψdz+ λ

∫
Z

|y2|q−2y2(ε − ξε((y1 − y2)
−))ψdz

+
∫
Z

f (z, y1)ξε((y1 − y2)
−)ψdz +

∫
Z

f (z, y2)(ε − ξε((y1 − y2)
−))ψdz .

(23)

Using (21) and (22), we have

〈A(y1), ξε((y1 − y2)
−)ψ〉

=
∫
Z

‖Dy1‖p−2(Dy1,D(y1 − y2)
−)RN ξ ′

ε((y1 − y2)
−)ψdz

+
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RN ξε((y1 − y2)
−)dz

= −
∫

{−ε≤y1−y2≤0}
‖Dy1‖p−2(Dy1,D(y1 − y2))RNψdz

+
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RN ξε((y1 − y2)
−)dz .

(24)

In a similar way, we also have

〈A(y2), (ε − ξε((y1 − y2)
−))ψ〉

=
∫

{−ε≤y1−y2≤0}
‖Dy2‖p−2(Dy2,D(y1 − y2))RNψdz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN (ε − ξε((y1 − y2)
−))dz .

(25)

Using (24) and (25) and the fact that ψ ≥ 0, we obtain

〈A(y1), ξε((y1 − y2)
−)ψ〉 + 〈A(y2), (ε − ξε((y1 − y2)

−))ψ〉
=

∫
{−ε≤y1−y2≤0}

(‖Dy2‖p−2Dy2 − ‖Dy1‖p−2Dy1,D(y1 − y2)RN )ψdz

+
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RN ξε((y1 − y2)
−)dz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN (ε − ξε((y1 − y2)
−))dz

≤
∫
Z

‖Dy1‖p−2(Dy1,Dψ)RN ξε((y1 − y2)
−)dz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN (ε − ξε((y1 − y2)
−))dz .

(26)
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We return to (23), use (26) and then divide by ε > 0. Thus

∫
Z

‖Dy1‖p−2(Dy1,Dψ)RN

1

ε
ξε((y1 − y2)

−)dz

+
∫
Z

‖Dy2‖p−2(Dy2,Dψ)RN

(
1 − 1

ε
ξε((y1 − y2)

−)
)
dz

≥ λ

∫
Z

|y1|q−2y1
1

ε
ξε((y1 − y2)

−)ψdz + λ

∫
Z

|y2|q−2y2

(
1 − 1

ε
ξε((y1 − y2)

−)
)
ψdz

+
∫
Z

f (z, y1)
1

ε
ξε((y1 − y2)

−)ψdz+
∫
Z

f (z, y2)

(
1 − 1

ε
ξε((y1 − y2)

−)
)
ψdz .

(27)

Note that

1

ε
ξε((y1 − y2)

−(z)) → χ{y1<y2}(z) a.e. on Z as ε → 0 ,

and χ{y1≥y2} = 1 − χ{y1<y2}.
Passing to the limit as ε → ∞ in (27), we obtain∫

{y1<y2}
‖Dy1‖p−2(Dy1,Dψ)RN dz+

∫
{y1≥y2}

‖Dy2‖p−2(Dy2,Dψ)RN dz

≥ λ

∫
{y1<y2}

|y1|q−2y1ψdz + λ

∫
{y1≥y2}

|y2|q−2y2ψdz

+
∫

{y1<y2}
f (z, y1)ψdz+

∫
{y1≥y2}

f (z, y2)ψdz .

(28)

Since y = min{y1, y2} is in W 1,p(Z), we have

Dy(z) =
{
Dy1(z) for a.e. z ∈ {y1 < y2}
Dy2(z) for a.e. z ∈ {y1 ≥ y2} .

So, we can rewrite (28) as∫
Z

‖Dy‖p−2(Dy,Dψ)RN dz ≥ λ

∫
Z

|y|p−2yψdz +
∫
Z

f (z, y)ψdz .(29)

But ψ ∈ C1
c (Z) with ψ ≥ 0 was arbitrary and C1

c (Z)+ is dense in W 1,p
0 (Z). So, we

deduce that (29) is also true for all ψ ∈ W
1,p
0 (Z) with ψ ≥ 0, which in turn implies that

y = min{y1, y2} is a supersolution for problem (1). �

In a similar fashion, we can also show the following lemma.

LEMMA 2.4. The set of subsolutions for problem (1) is upward directed. In fact, for
any subsolutions v1, v2 ∈ W 1,p(Z) for problem (1), v = max{v1, v2} ∈ W 1,p(Z) is a subso-
lution too.

Recall that we already have an ordered pair {x, x} of supersolution and subsolution for
problem (1) with x, x ∈ intC+, and an ordered pair {v, v} of supersolution and subsolution
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for problem (1) with v, v ∈ − intC+. Now we consider the following order intervals

I+ = [x, x] = {x ∈ W 1,p
0 (Z) ; x(z) ≤ x(z) ≤ x(z) a.e. on Z}

and

I− = [v, v] = {v ∈ W 1,p
0 (Z) ; v(z) ≤ v(z) ≤ v(z) a.e. on Z} .

PROPOSITION 2.5. If hypotheses H(f )1 hold and λ is in (0, λ̂+), then problem (1)
admits a smallest solution in I+.

PROOF. Let S+ be the set of solutions of (1) belonging to I+. From the proof of Propo-
sition 2.1, we know that S+ �= ∅. We claim that the set S+ is downward directed. To this
end, let x1, x2 ∈ S+. By Lemma 2.3, x̂ = min{x1, x2} ∈ W 1,p

0 (Z) is a supersolution too. We
consider the order interval.

Î+ = [x, x̂] = {x ∈ W 1,p
0 (Z) ; x(z) ≤ x(z) ≤ x̂(z) a.e. on Z} .

As before, truncating the nonlinearity f with respect to the pair {x, x̂} and reasoning
similarly (see the proof of Proposition 5), we can get some x̂0 ∈ Î+, a solution of problem
(1). Nonlinear regularity theory implies x̂0 ∈ intC+. Moreover, we can show that (see the
proof of Proposition 2.1)

x ≤ x̂0 ≤ x̂ = min{x1, x2} ,
hence S+ is downward directed.

Consider a chain C of S+, i.e., a totally ordered subset of S+. From Dunford and
Schwartz [11, Corollary 7, p. 336], we know that there exists a sequence {xn} ⊆ C such
that

inf
n≥1

xn = infC .

Because C is totally ordered, we may assume that {xn} is decreasing. As solutions of (1), {xn}
satisfy

A(xn) = λx
q−1
n + N(xn) ,(30)

hence we have ‖Dxn‖pp = λ‖xn‖qq + ∫
Z f (z, xn)xndz, and consequently,

‖Dxn‖pp ≤ c2(λ‖Dxn‖qp + ‖Dxn‖p)(31)

for some c2 > 0 and all n ≥ 1 (see H(f )1(iii)).
Recall that q < p. From (31), it follows that {xn}n≥1 is bounded in W 1,p

0 (Z). So, we
may assume that

xn
w→ û in W

1,p
0 (Z) and xn → û in Lp(Z) .

Acting on (30) with xn − û ∈ W 1,p
0 (Z) and passing to the limit, we obtain

lim
n→∞〈A(xn), xn − û 〉 = 0 .
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This, by virtue of Lemma 1.3, implies that xn → û in W 1,p
0 (Z) and x ≤ û. So, if in (30) we

pass to the limit as n → ∞, then

A(û ) = λûq−1 +N(û ) ,

and hence

−�û(z) = λû(z)q−1 + f (z, û(z)) a.e. on Z, and û|∂Z = 0 .

Nonlinear regularity theory implies that û is in intC+ and of course û = infC. By
Zorn’s lemma we can find x∗, a minimal element of S+. Because S+ is downward directed,
we conclude that x∗ ∈ intC+ is the smallest solution of (1) in I+. �

In a similar fashion, we can also prove the following proposition.

PROPOSITION 2.6. If hypotheses H(f )1 hold and λ is in (0, λ̂−), then problem (1)
admits a biggest solution in I− = [v, v].

Using Propositions 2.5 and 2.6, we will produce a smallest positive solution and a biggest
negative solution for problem (1).

PROPOSITION 2.7. If hypotheses H(f )1 hold and λ is in (0, λ̂+) (resp. λ is in (0, λ̂−)),
then problem (1) has a smallest positive solution x+ ∈ intC+ (resp. a biggest negative solu-
tion v− ∈ − intC+).

PROOF. Let xn = εnu1 with εn ↓ 0 and set

In+ = [xn, x] = {x ∈ W 1,p
0 (Z) ; xn(z) ≤ x(z) ≤ x(z) a.e. onZ} .

From Proposition 2.5, problem (1) has a smallest solution xn∗ ∈ In+. Moreover, from the

proof of Proposition 2.5, we know that {xn∗ }n≥1 is bounded in W 1,p
0 (Z). So, we may assume

that

xn∗
w→ x+ in W

1,p
0 (Z) and xn∗ → x+ in Lp(Z) .

We have

A(xn∗ ) = λ(xn∗ )q−1 +N(xn∗ ) for n ≥ 1 .(32)

On (32), we act with xn∗ − x+ and then pass to the limit as n → ∞. So

lim
n→∞〈A(xn∗ ), xn∗ − x+〉 = 0 .

Hence, xn∗ → x+ in W 1,p
0 (Z) (see Lemma 1.3).

We consider the following auxiliary Dirichlet problem:

−�pu(z) = λu(z)q−1 a.e. on Z , and u|∂Z = 0 .(33)

From Otani [19], we know that problem (33) has a solution u is in intC+. Because xn∗ is
in intC+, invoking Lemma 1.1, we can find some ϑn > 0 such that

ϑnu ≤ xn∗ .(34)
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We can always take ϑn > 0 to be the biggest positive real number for which (34) holds
(see also the proof of Proposition 2.1). Suppose that 0 < ϑn < 1. Then

−�pxn∗ (z) ≥ λxn∗ (z)q−1 (see H(f )1(vi))

≥ λ(ϑnu(z))
q−1

> λϑ
p−1
n u(z)q−1 (since 0 < ϑn < 1 and p > q)

= −�p(ϑnu)(z) a.e. on Z (see (33)) .

(35)

From (33) and using Proposition 2.2 of [15], it follows that

xn∗ − ϑnu ∈ intC+ ,
which contradicts the maximality of ϑn. Therefore, we must have ϑn ≥ 1. Hence, u ≤ xn∗
(see (34)). Thus,

u ≤ x+, i.e., x+ �= 0 .

Also, if in (32) we pass to the limit as n → ∞, we obtain

A(x+) = λx
q−1
+ + N(x+) ,

thus

−�px+(z) = λx+(z)q−1 + f (z, x+(z)) a.e. on Z , and x+|∂Z = 0 .

Nonlinear regularity theory and the nonlinear strong maximum principle of Vazquez
[22] imply that x+ is in intC+ (recall that x+ �= 0). We claim that x+ is in intC+ is the
smallest positive solution of (1). Indeed, let x ∈ W 1,p

0 (Z), x ≥ 0, x �= 0, be such a solution.
Automatically, we have x is in intC+. Therefore, for n large, we have xn = εnu1 ≤ x, hence
xn∗ ≤ x. Thus

x+ ≤ x .

In a similar way, for λ ∈ (0, λ̂−), we can produce v− ∈ − intC+, the biggest negative
solution of problem (1). �

Now we are ready to state our main results concerning solutions of constant sign for
problem (1), when the perturbation term f is asymptotically p-linear.

THEOREM 2.8. If hypotheses H(f )1 hold and λ = λ̂+ (resp. λ = λ̂−), then problem
(1) has a solution x in intC+ (resp. v in − intC+).

PROOF. We shall give the proof for the case when λ = λ̂+. The proof for λ = λ̂− is
similar. Let {λn} ⊆ (0, λ̂+) and assume that λn ↑ λ̂+. From Proposition 2.7, we know that for
each λn problem (1) has a smallest positive solution xn in intC+. Suppose that ‖xn‖ → ∞
and set yn = xn

/‖xn‖. Then, ‖yn‖ = 1 for all n ≥ 1 and so, we may assume that

yn
w→ y in W 1,p

0 (Z) ,

yn → y in Lp(Z) ,

yn(z) → y(z) a.e. on Z ,
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|yn(z)| ≤ k(z) a.e. on Z ,

for all n ≥ 1 with k ∈ Lp(Z)+. We have A(xn) = λnx
q−1
n +N(xn), hence

A(yn) = λn

‖xn‖p−q y
q−1
n + N(xn)

‖xn‖p−1
.(36)

From H(f )1(iii) through (v), it follows that |f (z, x)| ≤ c3|x|p−1 for a.e. z ∈ Z, all
x ∈ R and some c3 > 0. Thus, we have

|f (z, xn(z))|
‖xn‖p−1 ≤ c3|yn(z)|p−1 for a.e. z ∈ Z, all n ≥ 1 ,(37)

and hence {hn = N(xn)/‖xn‖p−1; n ≥ 1} is a bounded sequence in Lp
′
(Z). So, we may

assume that

hn
w→ h in Lp

′
(Z) as n → ∞ .(38)

For every ε > 0 and n ≥ 1, let

Dε,n =
{
z ∈ Z ; xn(z) > 0, η − ε ≤ f (z, xn(z))

xn(z)p−1 ≤ η̂ + ε

}
.

Note that xn(z) → ∞ for a.e. z ∈ {y > 0}. So, by virtue of H(f )1 (iv) we have

χDε,n(z) → 1 for a.e. z ∈ {y > 0} .
From the dominated convergence theorem, we have ‖(1 − χDε,n )hn‖Lp′

({y>0}) → 0, and
hence we obtain

χDε,nhn
w→ h in Lp

′
({y > 0}) (see (38)) .(39)

From the definition of Dε,n, we have

χDε,n (z)(η − ε)yn(z)
p−1 = χDε,n (z)hn(z)

= χDε,n (z)
f (z, xn(z))

xn(z)p−1 yn(z)
p−1

≤ χDε,n (z)(̂η + ε)yn(z)
p−1 .

We pass to the limit as ε ↓ 0, using (39) together with Mazur’s lemma. Then,

ηy(z)p−1 ≤ h(z) ≤ η̂y(z)p−1

a.e. on {y > 0}. On the other hand, from (37) it is clear that

h(z) = 0 a.e. on {y = 0} .
Since y ≥ 0, we have Z = {y > 0} ∪ {y = 0} and so it follows that

ηy(z)p−1 ≤ h(z) ≤ η̂y(z)p−1
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a.e. on Z. Therefore, we have h = gyp−1 with g ∈ L∞(Z)+ satisfying η ≤ g(z) ≤ η̂ a.e. on
Z. If on (36) we act with yn− y ∈ W 1,p

0 (Z), pass to the limit as n → ∞ and use Lemma 1.3,
we obtain

yn → y in W
1,p
0 (Z) and so ‖y‖ = 1 .

Hence, from (36), in the limit as n → ∞, we have A(y) = gyp−1 for y �= 0. Thus,

−�py(z) = g(z)|y(z)|p−2y(z) a.e. on Z , y|∂Z = 0 , y �= 0 .(40)

Exploiting the monotonicity of the principal eigenvalue on the weight function (see Sec-
tion 2), we have

λ̂1(g) < λ̂1(λ1) = 1 .

Using this fact in (40), we deduce that y ≥ 0, y �= 0 is not a principal eigenfunction.
Hence it must change sign, a contradiction. This proves that {xn}n≥1 is a bounded sequence
in W 1,p

0 (Z) and so, we may assume that

xn
w→ x in W

1,p
0 (Z) and xn → x in Lp(Z) .

We have

A(xn) = λnx
q−1
n +N(xn) .(41)

As before, if on (41) we act with xn− x and pass to the limit, with the help of Lemma 1.3, we
obtain xn → x in W 1,p

0 (Z) as n → ∞ and so, ‖x‖ = 1. Therefore, from (41) we have

A(x) = λ̂+xq−1 +N(x) ,

and hence,

−�px(z) = λ̂+x(z)q−1 + f (z, x(z)) a.e. on Z, x|∂Z = 0, x ≥ 0 , x �= 0 .

Thus, we conclude that x is in intC+ (by nonlinear regularity theory and the nonlinear maxi-
mum principle) and that it is a solution of (1) when λ = λ̂+.

Similarly, we obtain a solution v in − intC+ when λ = λ̂−. �

Next we check the cases when λ ∈ (0, λ̂+) and λ ∈ (0, λ̂−). For these cases, we produce
a second positive and negative solution, respectively, by using the mountain pass theorem on
a functional resulting by truncating the reaction term (right-hand side of (1)) at the solution
x0 in intC+ obtained in Theorem 2.8 (see also [2]).

THEOREM 2.9. If λ ∈ (0, λ̂+) (resp. λ ∈ (0, λ̂−)), then problem (1) has at least two
solutions x0, x̂ in intC+ with x0 < x̂ (resp. two solutions v0, v̂ in − intC+ with v̂ < v0).

PROOF. We shall give the proof for the pair of positive solutions. The proof for the
other pair is similar.

From the proof of Proposition 2.1, we have a solution x0 in I+ = [x, x]. We may assume
that this is the only solution of (1) in I+. Then, we introduce the following truncation of the
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concave term and of the perturbations f . Namely, let

f
λ

+(z, x) =
{
λx0(z)

q−1 + f (z, x0(z)) if x ≤ x0(z)

λxq−1 + f (z, x) if x0(z) < x .

Note that this is Carathéodory. We set N
λ

+(x)(·) = f
λ

+(·, x(·)) for all x ∈ W 1,p
0 (Z). Set

F
λ

+(z, x) = ∫ x
0 f

λ

+(z, s)ds and consider the functional ϕ+
λ : W 1,p

0 (Z) → R defined by

ϕ+
λ (x) = 1

p
‖Dx‖pp −

∫
Z

F
λ

+(z, x(z))dz .

Clearly, ϕ+
λ ∈ C1(W

1,p
0 (Z)).

We also consider the following auxiliary Dirichlet problem:{
−�px(z) = f

λ

+(z, x(z)) a.e. on Z ,

x|∂Z = 0 .
(42)

Since x ≤ x0, we have

f
λ

+(z, x(z)) = λx0(z)
q−1 + f (z, x0(z)) .(43)

From the proof of Proposition 2.1, we know that

−�px(z) = −�p(εu1)(z)

= λ1ε
p−1u1(z)

p−1

< λεq−1u1(z)
q−1 (see the proof of Proposition 2.1)

= λx(z)q−1

≤ λx0(z)
q−1 + f (z, x0(z))

= f
λ

+(z, z(z)) a.e. on Z (see (43)) .

(44)

Thus, x = εu1 ∈ intC+ is a strict subsolution for problem (42).

In addition, it is clear from the definition of f
λ

+ that x ∈ intC+ remains a strict super-
solution for problem (42) too. Note that ϕ+

λ |
I+ is coercive and it is easy to see that ϕ+

λ is a
sequentially weakly lower semicontinuous. So, by the theorem of Weierstrass, we can find
x0 ∈ I+ such that

ϕ+
λ (x0) = inf

I+
ϕ+
λ .

Reasoning as in Filippakis and Papageorgiou [12, the proof of Theorem 4.2] (see also
Struwe [21, Theorem 2.1, p. 14]), we obtain

−�px0(z) = λx0(z)
q−1 + f+(z, x0(z)) a.e. on Z , x0|∂Z = 0 ,(45)

and x0 ∈ intC+, x0 ∈ I+. So, (45) becomes

−�px0(z) = λx0(z)
q−1 + f+(z, x0(z)) a.e. on Z , x0|∂Z = 0 .

Hence, x0 ∈ intC+ ∩ I+ is a solution of (1).
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Since we assumed that x0 is the unique solution of (1) in I+, it follows that x0 = x0.
Now, from (44), we have

−�px(z) < −�px0(z) a.e. on Z ,(46)

while, from the proof of Proposition 2.1, we have

−�px(z) > −�px0(z) a.e. on Z .(47)

From (46) and (47), and Proposition 2.2 of [15], we deduce that x − x0 ∈ intC+ and
x0 − x ∈ intC+. So, x0 is a local C1

0 (Z)-minimizer of ϕ+
λ and from [13] (see also Brezis

and Nirenberg [7], where the result was first proved for p = 2), it follows that x0 is a local
W

1,p
0 (Z)-minimizer of ϕ+

λ . Then, as in Aizicovici, Papageorgiou and Staicu [1, proof of
Proposition 29], we can find r > 0 small such that

ϕ+
λ (x0) < inf

[
ϕ+
λ (u) ; ‖u− x0‖ = r

] = c+r .(48)

Also, from H(f )1 (iii) and (iv), we see that there exist c4 > 0 and η0 > λ1 such that

f (z, x) ≥ η0x
p−1 − c4(49)

for a.e. z ∈ Z and all x ≥ 0. Since u1 is in intC+, we can find some t0 > 0 such that tu1 ≥ x0

for all t ≥ t0. Thus, we have

f+(z, tu1(z)) = f (z, tu1(z)) ≥ η0t
p−1u1(z)

p−1 − c4 a.e. on Z

(see (49)). Therefore,

F+(z, tu1(z)) ≥ η0

p
tpu1(z)

p − c4tu1(z) a.e. on Z .(50)

Thus, for some c5 > 0 we have

ϕ+
λ (tu1) = tp

p
‖Du1‖pp − λtq

q
‖u1‖qq −

∫
Z

F+(z, tu1)dz

≤ tp

p
‖Du1‖pp − λtq

q
‖u1‖qq − tpη0

p
‖u1‖pp + c5t‖u1‖p

= tp

p
(λ1 − η0)− λtq

q
‖u1‖qq + c5t ,

(51)

where the last equality is due to the fact that ‖Du1‖pp = λ1‖u1‖pp and ‖u1‖p = 1. Because
λ1 < η0, from (51) it follows that

ϕ+
λ (tu1) → −∞ as t → ∞ .(52)

Finally, we show that ϕ+
λ satisfies the PS-condition. For this purpose, let {xn} be a se-

quence in W 1,p
0 (Z) such that, for some M1 > 0,

|ϕ+
λ (xn)| ≤ M1 for all n ≥ 1 , and (ϕ+

λ )
′(xn) → 0 in W−1,p′

(Z) .(53)

We have |〈(ϕ+
λ

)′
(xn), v〉| ≤ εn‖v‖ for all v ∈ W 1,p

0 (Z) with εn ↓ 0.
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Let v = −x−
n ∈ W 1,p

0 (Z). Then∣∣∣∣‖Dx−
n ‖pp + λ

∫
Z

x
q−1
0 x−

n dz+
∫
Z

f (z, x0)x
−
n dz

∣∣∣∣ ≤ εn‖x−
n ‖ ,

thus we have ‖Dx−
n ‖pp ≤ εn‖x−

n ‖ (since x0, f (z, x0) ≥ 0). Therefore, {x−
n } is bounded in

W
1,p
0 (Z).

Suppose that ‖xn‖ → ∞. Then we must have ‖x+
n ‖ → ∞. Set yn = x+

n

/‖x+
n ‖. We

have ‖yn‖ = 1, and so, we may assume that

yn
w→ y in W

1,p
0 (Z) , yn → y in Lp(Z) , yn(z) → y(z) a.e. on Z ,

and |yn(z)| ≤ k(z) for a.e. z ∈ Z, all n ≥ 1 and with some k ∈ Lp(Z)+.
From the choice of the sequence {xn}n≥1 fromW

1,p
0 (Z), we have

|〈A(xn)− λ|̂τ0(xn)|q−2τ̂0(xn)−N+(xn), v〉| ≤ εn‖v‖
for all v ∈ W 1,p

0 (Z).

Since {x−
n } is bounded in W 1,p

0 (Z), A(xn) = A(x+
n )− A(x−

n ) and 1 < q < p, we have〈
A(yn)− N+(xn)

‖x+
n ‖p−1

, v

〉
≤ ε′n‖v‖

for all v ∈ W 1,p
0 (Z) with ε′n ↓ 0.

Note that x+
n (z) → ∞ a.e. on {y > 0} (recall y ≥ 0). Then, arguing as in the proof of

Theorem 2.8, we can show that

N+(xn)
‖x+
n ‖p−1

w−→ gyp−1 in Lp
′
(Z)

for some g ∈ L∞(Z)+ satisfying η ≤ g(z) ≤ η̂ a.e. on Z. Also, using Lemma 1.3, we can
show that yn → y in W 1,p

0 (Z), hence ‖y‖ = 1. Therefore, in the limit, we have A(y) =
gyp−1, y ≥ 0 and y �= 0. Thus,

−�py(z) = g(z)|y(z)|p−2y(z) a.e. on Z , y|∂Z = 0, y �= 0 .(54)

However, λ̂1(g) < λ̂1 = 1 and so, y must change sign, a contradiction to the fact that y ≥ 0.
This proves that {x+

n } is bounded inW 1,p
0 (Z), hence {xn} is bounded inW 1,p

0 (Z). So, we may
assume that

xn
w→ x in W

1,p
0 (Z) and xn → x in Lp(Z) .

We have

εn‖xn − x‖ ≥
∣∣∣∣〈A(xn), xn − x〉 − λ

∫
Z

|̂τ0(xn)|q−2τ̂0(xn)(xn − x)dz

−
∫
Z

f+(z, xn)(xn − x)dz

∣∣∣∣ .
Thus, we arrive at lim〈A(xn), xn − x〉 = 0.
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Because of Lemma 1.3, we deduce that xn → x in W 1,p
0 (Z) and so, we have proved that

ϕ+
λ satisfies the PS-condition.

This fact, together with (48) and (52), permits the application of the mountain pass the-
orem to yield some x̂ ∈ W 1,p

0 (Z) such that

(ϕ+
λ )

′(̂x ) = 0 and x̂ �= x0 .

Hence A(̂x ) = λ|̂τ0(̂x )|q−2τ̂0(̂x )+ N+ (̂x ), which in turns implies that

〈A(̂x ), (x0 − x̂ )+〉 = λ

∫
{x0>x̂}

|x0|q−2x0(x0 − x̂ )dz+
∫

{x0>x̂}
f (z, x0)(x0 − x̂ )dz ,

and then 〈A(̂x )− A(x0), (x0 − x̂ )+〉 = 0. Therefore, we have∫
{x0>x̂ }

(‖Dx̂ ‖P−2Dx̂ − ‖Dx0‖p−2Dx0,Dx0 −Dx̂ )RN dz = 0 .(55)

By virtue of the strict monotonicity of the map ϑp : RN → RN defined by

ϑp(y) =
{ ‖y‖p−2y if y �= 0

0 if y = 0 ,

from (55) it follows that |{x0 > x̂ }|N = 0. Hence, x0 ≤ x̂ . So,

τ̂0(̂x ) = x̂ and N+(̂x ) = N(̂x ) ,

and A(̂x ) = λx̂q−1 +N(̂x ). Therefore, we have

−�px̂(z) = λx̂(z)q−1 + f (z, x̂(z)) a.e. on Z, x̂|∂Z = 0 .

By the nonlinear regularity theory, we have x̂ ∈ intC+ and so, x̂ is a second positive
smooth solution of (1) distinct from x0 ∈ intC+ and x0 ≤ x̂.

Similarly, we obtain two negative solutions v̂, v0 ∈ − intC+ with v̂ ≤ v0 and v̂ �= v0,
when 0 < λ < λ̂−. �

As a consequence of Theorem 2.9, we have the following full multiplicity theorem con-
cerning constant sign smooth solutions for problem (1).

COROLLARY 2.10. If hypotheses H(f )1 hold and 0 < λ < min{̂λ+, λ̂−} = λ̂0, then
problem (1) has at least four nontrivial solutions of constant sign:

x0, x̂ ∈ intC+ with x0 < x̂ , and v0, v̂ ∈ − intC+ with v̂ < v0 .

3. Nodal solutions for p-linear perturbations. In this section we shall produce a
nodal solution and thus, we will have the full multiplicity result concerning problem (1) when
f (z, x) is p-linear near infinity.

THEOREM 3.1. If hypotheses H(f )1 hold and λ ∈ (0, λ̂0) with λ̂0 = min{̂λ1, λ̂−},
then problem (1) has at least five nontrivial solutions, four of which are from Corollary 2.10,
while the fifth one y0 ∈ C1

0 (Z) is nodal.
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PROOF. From Corollary 2.10, we already have four solutions of constant sign, namely,

x0, x̂ ∈ intC+ with x0 < x̂ , and v0, v̂ ∈ − intC+ with v̂ < v0 .

It remains to establish the existence of a nodal solution.
From Proposition 2.7, we know that problem (1) has a smallest positive solution x+ ∈

intC+ and a biggest negative solution v− ∈ − intC+. We consider the following truncation

f̂λ(z, x) =


λ|v−(z)|q−2v−(z)+ f (z, v−(z)) if x < v−(z)
λ|x|q−2x + f (z, x) if v−(z) ≤ x ≤ x+(z)
λ|x+(z)|q−2x+(z)+ f (z, x+(z)) if x+(z) < x .

This is Carathéodory. Let F̂λ(z, x) = ∫ x
0 f̂λ(z, s)ds. Now, consider the C1-functional ϕ̂λ :

W
1,p
0 (Z) → R, defined by

ϕ̂λ(x) = 1

p
‖Dx‖pp −

∫
Z

F̂λ(z, x(z))dz .

CLAIM 1. The critical points of ϕ̂λ are in the order interval

T̂ = [v−, x+] = {x ∈ W 1,p
0 (Z) ; v−(z) ≤ x(z) ≤ x+(z) a.e. on Z} .

Suppose that x is such a critical point. Then, ϕ̂′
λ(x) = 0 and so,

A(x) = N̂λ(x)(56)

with N̂λ(x)(·) = f̂λ(·, x(·)) for all x ∈ W
1,p
0 (Z). On (56), we act with the test function

(x − x+)+ ∈ W 1,p
0 (Z) to obtain that

〈A(x), (x − x+)+〉 = λ

∫
{x>x+}

|x+|q−2x+(x − x+)dz

+
∫

{x>x+}
f (z, x+)(x − x+)dz

= 〈A(x+), (x − x+)+〉 .
The last equality is due to the fact that x+ ∈ intC+ is a solution of (1). Therefore, we have∫

{x>x+}

(
‖Dx‖p−2Dx − ‖Dx+‖p−2Dx+,Dx −Dx+

)
RN
dz = 0 .(57)

By the strict monotonicity of the homeomorphism ϑp defined earlier and (57), we deduce that

|{x > x+}|N = 0 ,

hence x ≤ x+.
Similarly, we can show that v− ≤ x, hence x ∈ T̂ . This proves Claim 1.

CLAIM 2. The pair {v−, x+} are local minimizers of the functional ϕ̂λ.
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We consider the following additional truncations:

f̂
λ
+(z, x) =


0 if x < 0

λxq−1 + f (z, x) if 0 ≤ x ≤ x+(z)
λx+(z)q−1 + f (z, x+(z)) if x+(z) < x ,

and

f̂
λ
−(z, x) =


λ|v−(z)|q−2v−(z)+ f (z, v−(z)) if x < v−(z)
λ|x|q−2x + f (z, x) if v−(z) ≤ x ≤ 0

0 if 0 < x .

All are Carathéodory functions. Also, we set

F̂ λ±(z, x) =
∫ x

0
f̂
λ
±(z, x)ds .

Finally, we introduce the C1-functionals (ϕ̂λ)± : W 1,p
0 (Z) → R defined by

(ϕ̂λ)± (x) = 1

p
‖Dx‖pp −

∫
Z

F̂ λ±(z, x(z))dz .

Arguing as in the proof of Claim 1 above, we can check that the critical points of (ϕ̂λ)+
are in T̂+ = [0, x+] =

{
x ∈ W 1,p

0 (Z) ; 0 ≤ x(z) ≤ x+(z) a.e. on Z
}

and the critical points

of (ϕ̂λ)− are in

T̂− = [v−, 0] =
{
v ∈ W 1,p

0 (Z) ; v−(z) ≤ v(z) ≤ 0 a.e. on Z
}
.

By the extremality of the solutions v− and x+, we deduce that

• the critical points of (ϕ̂λ)+ are {0, x+},
• the critical points of (ϕ̂λ)− are {0, v−}.

By virtue of H(f )1(vi), we have

0 ≤ f (z, x)(58)

for a.e. z ∈ Z and all x ≥ 0. Now we choose ε > 0 small enough so that

εu1(z) ≤ x+(z)

for all z ∈ Z (recall that x+ ∈ intC+ and use Lemma 1.1). Then, by (58), we have

F̂+(z, εu1(z)) =
∫ εu1(z)

0
f̂+(z, s)ds =

∫ εu1(z)

0
f (z, s)ds ≥ 0 .

Therefore,

(ϕ̂λ)+(εu1) = εp

p
‖Du1‖pp −

∫
Z

F̂ λ+(z, εu1)dz

≤ εp

p
λ1‖u1‖pp − εq

q
‖u1‖qq
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= λ1ε
p

p
− εq

q
‖u1‖qq (since ‖u1‖p = 1) .

Thus, (ϕ̂λ)+ (εu1) < 0 (since q < p) and hence

inf (ϕ̂λ)+ < 0 = (ϕ̂λ)+ (0) .(59)

Evidently, (ϕ̂λ)+ is coercive and sequentially weakly lower semicontinuous. So, we can

find some y0+ ∈ W 1,p
0 (Z), which is a minimizer of (ϕ̂λ)+ on W 1,p

0 (Z). From (59), it is clear
that y0+ �= 0 and so, we must have y0+ = x+. However, recall that x+ ∈ intC+. We can find
small r > 0 such that

ϕ̂λ|
B
C1

0 (Z)
r (x+)

= (ϕ̂λ)+|
B
C1

0 (Z)
r (x+)

,

where B
C1

0 (Z)

r (x+) = {x ∈ C1
0 (Z) ; ‖x − x+‖C1

0 (Z)
≤ r}. This implies that x+ is a local

C1
0 (Z)-minimizer of (ϕ̂λ). From [13], it follows that x+ is a local W 1,p

0 (Z)-minimizer of ϕ̂λ.
Similarly, working with (ϕ̂λ)− on T̂ = [v−, 0], we conclude that v− ∈ − intC+ is a

local minimizer of ϕ̂λ. This proves Claim 2.
Using Claim 2 as in [1, the proof of Proposition 29] (see also the proof of Theorem 2.9),

we can find small r > 0 such that

ϕ̂λ(v−) < inf [ϕ̂λ(x) ; ‖x − v−‖ = r]
and

ϕ̂λ(x+) < inf [ϕ̂λ(x) ; ‖x − x+‖ = r] .
Without loss of generality, we may assume that ϕ̂λ(v−) ≤ ϕ̂λ(x+). If we consider the

sets T̂0 = {v−, x+} and T̂ = [v−, x+], and define

D = ∂Br(x+) = {x ∈ W 1,p
0 (Z) ; ‖x − x+‖ = r} ,

then we can easily check that the pair {T̂0, T̂ } is linking with D in W 1,p
0 (Z) (see also [14,

p. 642]). Moreover, the coercive functional ϕ̂λ satisfies the PS-condition. So, we may apply
the linking theorem (see again [14, p. 644]) and obtain a critical point y0 ∈ W 1,p

0 (Z) of ϕ̂λ of
mountain pass type, which is different from v− and x+. From Claim 1, we know that y0 ∈ T̂ .
So, we have

A(y0) = λ|y0|q−2y0 +N(y0) ,

and hence

−�py0(z) = λ|y0(z)|q−2y0(z)+ f (z, y0(z)) a.e. on Z, y0|∂Z = 0 .

Therefore, by the nonlinear regularity theory, we have y0 ∈ C1
0 (Z) and of course it solves

problem (1).
Note that F̂ ≥ 0 (see the sign condition H(f )1(vi)). Hence, for x ∈ W 1,p

0 (Z), we have

ϕ̂λ(x) ≤ 1

p
‖Dx‖pp − λ

q
‖τ̂ (x)‖qq .
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Since q < p, it follows that the origin is not a critical point of the mountain pass type (see
[21, p. 143]). Therefore, y0 �= 0 and hence, y0 ∈ C1

0 (Z) is a nodal solution. �

4. p-Superlinear perturbations. In a similar way, we can treat the case when the
nonlinear perturbation f (z, x) is p-superlinear near infinity. So, the new hypotheses on f are
the following.

H(f )2 f : Z × R → R is a function such that f (z, 0) = 0 a.e. on Z and
(i) for all x ∈ R, z → f (z, x) is measurable,

(ii) for a.e. z ∈ Z, x → f (z, x) is continuous,
(iii) for a.e. z ∈ Z and all x ∈ R,

|f (z, x)| ≤ a(z)+ c|x|r−1

with some a ∈ L∞(Z)+, c > 0 and p < r < p∗,
(iv) there exist µ > p and M > 0 such that for a.e. z ∈ Z and all |x| ≥ M ,

0 < µF(z, x) ≤ f (z, x)x ,

(v) limx→0 f (z, x)
/
(|x|p−2x) = 0 uniformly on Z,

(vi) f (z, x)x ≥ 0 for a.e. z ∈ Z and all x ∈ R (sign condition).
The proofs are similar to those of the previous case (i.e. of a p-linear perturbation). In

fact, in some occasions, the proofs are even simpler. So, they are omitted. We simply state the
main theorem, summarizing the situation in the case of a p-superlinear perturbation f (z, x).

THEOREM 4.1. If hypotheses H(f )2 hold, then there exist λ̂+, λ̂− > 0 such that
(a) for λ = λ̂+ (resp. λ = λ̂−), problem (1) has a solution x in intC+ (resp. v in

− intC+),
(b) for λ ∈ (0, λ̂+) (resp. λ ∈ (0, λ̂−)), problem (1) has at least two solutions: x0, x̂ ∈

intC+ with x0 < x̂ (resp. v0, v̂ ∈ − intC+ with v̂ < v0),
(c) for λ ∈ (0, λ̂0) with λ̂0 = min{̂λ+, λ̂−}, problem (1) has at least five solutions:

x0, x̂ ∈ intC+ with x0 < x̂, v0, v̂ ∈ − intC+ with v̂ < v0, and a fifth solution y0 ∈ C1
0 (Z)

which is nodal.

REMARK 4.2. If f (z, x) = f (x) = |x|ϑ−2x with p < ϑ < p∗, then part (b) of
Theorem 4.1 above recovers the result of [13] (see also [3]) whereZ = BR = {z ∈ RN ; ‖z‖ <
R}. In fact, even in this special case, our result is more general since it compares the two
nontrivial positive solutions. Recently, there have been some works on the existence of nodal
(sign-changing) solutions for certain p-Laplacian equations.

We mention the works of Bartsch and Liu [5], Carl and Perera [8], Zhang and Li [24]
and Zhang, Chen and Li [23]. In [5], λ = 0 and the function f (z, ·) is p-superlinear near
infinity. They obtained three solutions (one positive, one negative and the third is a nodal)
under hypotheses which exclude the presence of a concave term near zero. In [8], λ = 0, the
nonlinearity f (z, x) is p-linear near zero and near infinity, and the quotient f (z, x)/(|x|p−2x)

admits finite limits as x → 0± and x → ±∞. Assuming the existence of super- and sub-
solutions for their problem, they proved the existence of three solutions (one positive, one
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negative and the third is nodal). In [24] and [23], again λ = 0 and the nonlinearity f (z, x)
is independent of z, locally Lipschitz in x and p-linear near zero and near infinity. Moreover,
the quotient f (x)

/
(|x|p−2x) has finite limits as x → 0± and as x → ±∞, and this is crucial

in their approach. In addition, [24] has treated the case N < p (low dimensional problems).
They produced three solutions (one positive, one negative and the third one is nodal). So,
none of the aforementioned works can treat terms which are concave near the origin, and they
do not produce five nontrivial smooth solutions with precise sign information. Finally we
mention the recent work of de Paiva [7], where Morse Theory is used to obtain two nontrivial
solutions but of unspecified sign.
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structive criticisms.
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