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Abstract. In dimension d, Q-factorial Gorenstein toric Fano varieties with Picard
number ρX correspond to simplicial reflexive polytopes with ρX + d vertices. Casagrande
showed that any d-dimensional simplicial reflexive polytope has at most 3d and 3d−1 vertices
if d is even and odd, respectively. Moreover, for d even there is up to unimodular equivalence
only one such polytope with 3d vertices, corresponding to the product of d/2 copies of a del
Pezzo surface of degree six. In this paper we completely classify all d-dimensional simpli-
cial reflexive polytopes having 3d − 1 vertices, corresponding to d-dimensional Q-factorial
Gorenstein toric Fano varieties with Picard number 2d − 1. For d even, there exist three such
varieties, with two being singular, while for d > 1 odd there exist precisely two, both being
nonsingular toric fiber bundles over the projective line. This generalizes recent work of the
second author.

1. Introduction. The goal of this paper is to finish the classification of simplicial
reflexive polytopes with the maximal number of vertices, pursued in [Nil05, Cas06, Oeb08].
Before stating the main convex-geometric result Theorem 1.2, we recall necessary notions.
The algebro-geometric version of Theorem 1.2 is given in Corollary 1.3.

1.1. Lattice polytopes. A polytope is the convex hull of finitely many points in a vec-
tor space. Given a lattice N ∼= Zd , a polytope P ⊆ NR := N ⊗Z R ∼= Rd is called lattice
polytope, if all vertices of P are lattice points. We denote the set of vertices of P by V(P ). In
other words, a lattice polytope is the convex hull of finitely many lattice points. We say two
lattice polytopes are isomorphic or unimodularly equivalent, if there is a lattice automorphism
mapping one vertex set onto the other. In what follows we always assume that P is a lattice
polytope of full dimension d that contains the origin in its interior. In this case we can define
the dual polytope P ∗. For this, let us denote by M := HomZ(N,Z) the dual lattice of N and
by MR := M ⊗Z R the dual vector space of NR . Then

P ∗ := {x ∈ MR ; 〈x, y〉 ≤ 1 for all y ∈ P } ,

is also a d-dimensional polytope containing the origin in its interior, however in general it is
not a lattice polytope.

1.2. Reflexive polytopes. A d-dimensional lattice polytope P ⊆ NR with the origin
in its interior is called a reflexive polytope if P ∗ is also a lattice polytope. This definition
was given by Batyrev [Bat94] in the context of mirror symmetry. It is known that there is
only a finite number of isomorphism classes of reflexive polytopes in fixed dimension d , and
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complete classification results exist for d ≤ 4 (see [KS97, KS98, KS00]). The polytope P

is called simplicial, if each facet (i.e., (d − 1)-dimensional face) is a simplex. The most
interesting case of a simplicial reflexive polytope is given by a lattice polytope containing
the origin in its interior, where the vertices of each facet form a lattice basis. We call such
a polytope a smooth Fano polytope. These special reflexive polytopes were studied quite
intensely, and by now we have complete lists for d ≤ 8 (see [Oeb07]).

1.3. Low dimensions. Let us look at simplicial reflexive polytopes with many vertices
in low dimensions d . For d = 1 there is only one reflexive polytope, namely [−1, 1] ⊆ R

(with respect to the lattice Z). For d = 2 there are 16 isomorphism classes of reflexive
polytopes (all necessarily simplicial; see [Nil05, Prop. 2.1] for a list and references). Only
three of these (called Ṽ2, E1, E2) have 5 vertices, and precisely one (called V2) has 6 vertices
(see Figure 1). Ṽ2, V2 are smooth Fano polytopes, while E1, E2 are not.

For d = 3 there are 4319 isomorphism classes of reflexive polytopes, of these are 194
simplicial. There are up to isomorphisms only two three-dimensional simplicial reflexive
polytopes having the maximal number of 8 vertices (see Figure 2). Both are smooth Fano
polytopes that are bipyramids over a hexagon, we denote them by Q3 and Q′

3. While Q3 is
centrally symmetric, the two apexes v, v′ of Q′

3 add up to a vertex w of the hexagon, i.e.,
v + v′ = w.

1.4. The main theorem. To describe the general case, let us say a reflexive polytope
P ⊆ NR splits into P1, . . . , Pn for n ≥ 2, if P is the convex hull of lattice polytopes
P1, . . . , Pn, and N = N1 ⊕Z · · · ⊕Z Nn, P1 ⊆ (N1)R, . . . , Pn ⊆ (Nn)R . In this case,
Pk is a reflexive polytope with respect to Nk for k = 1, . . . , n. For instance, Q3 splits into
[−1, 1] and V2.

The following long-standing conjecture on the maximal number of vertices was finally
proven by Casagrande [Cas06] in 2004 (here | · | denotes the cardinality):

FIGURE 1. Reflexive polytopes of dimension d = 2 with 5 or 6 vertices.

FIGURE 2. Simplicial reflexive polytopes of dimension d = 3 with 8 vertices.
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THEOREM 1.1 (Casagrande 04). Let P ⊆ NR be a simplicial reflexive polytope of
dimension d . Then

|V(P )| ≤
{

3d d even ,
3d − 1 d odd .

If d is even and |V(P )| = 3d , then P splits into d/2-copies of V2.

Note that there are by now very short proofs of these upper bounds, cf. [KN09, Oeb08].
See also Subsection 2.3.

Here is our main result, the classification of simplicial reflexive polytopes of dimension
d with 3d − 1 vertices.

THEOREM 1.2. Let P ⊆ NR be a simplicial reflexive polytope of dimension d ≥ 3
with 3d − 1 vertices.

If d is even, then P splits into Ṽ2 (or E1, or E2) and (d − 2)/2 copies of V2.
If d is odd, then P splits into Q3 (or Q′

3) and (d − 3)/2 copies of V2.

This generalizes a recent result of the second author in [Oeb08], where this theorem
was proven under the assumption that any lattice point on the boundary of P is a vertex (for
instance, if P is a smooth Fano polytope). In this case E1 and E2 cannot occur, so there is
only one type in Theorem 1.2 for d even.

1.5. Algebro-geometric interpretation. The algebro-geometric objects corresponding
to reflexive polytopes P are Gorenstein toric Fano varieties X (i.e., normal complex projective
varieties, where the anticanonical divisor is Cartier and ample). The relation is given via the
toric dictionary (see [Ful93]): X is the toric variety associated to the fan spanned by the faces
of P . For the Picard number ρX of X we have the equation ρX = |V(P )| − d . For instance,
V2 corresponds to the del Pezzo surface S6 with ρS6 = 4, which is P 2 blown-up at three
torus-invariant fixpoints. In the same way, Ṽ2 corresponds to the del Pezzo surface S7 with
ρS7 = 3. Here, P is simplicial if and only if X is Q-factorial (i.e., any Weil divisor has some
multiple which is Cartier). Moreover, P is a smooth Fano polytope if and only if X is a toric
Fano manifold (i.e., nonsingular). Since the splitting of reflexive polytopes corresponds to
products of toric Fano varieties, we can reformulate Casagrande’s result by saying that the
Picard number of a Q-factorial Gorenstein toric Fano variety X is at most 2d , with equality
only for d even and X ∼= (S6)

d/2. Here is the algebro-geometric version of our main result:

COROLLARY 1.3. Let X be a Q-factorial Gorenstein toric Fano variety of dimension
d ≥ 3 and with Picard number ρX = 2d − 1.

If d is even, then X is a product of (S6)
(d−2)/2 and a (possibly singular) del Pezzo surface

S with ρS = 3, where there are three possibilities for S up to isomorphisms, only one of these,
namely S7, is nonsingular.

If d is odd, then X is a product of (S6)
(d−3)/2 and a toric Fano 3-fold Y with ρY = 5,

where there are two possibilities for Y up to isomorphisms, namely S6 × P 1 or a unique toric
S6-fiber bundle over P 1.
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1.6. Organization of this article. In the second section we recall preliminary results,
namely properties of lattice points of reflexive polytopes, results about neighboring facets,
and the notion of a special facet.

In the third section, we start the proof of the main result, which is then separated into
Parts I–III, given in Sections 4–6. The proof is a combination of two different ideas. The first
idea of the proof is the same that was successfully used in [Cas06, KN09, Oeb08], that is,
having a large number of vertices implies that there is a special facet from which nearly all
vertices have integral distance two or less. Then Parts I and II can be treated using the methods
developed and applied by the second author in [Oeb08]. For Part III, we use as a second idea
the essential property of reflexive polytopes, namely their duality, to get restrictions on the
outer normals of their facets. Then we can apply the strong properties of pairs of vertices of
simplicial reflexive polytopes proven by the first author in [Nil05].

2. Preliminary results. In this section we present basic results on simplicial reflexive
polytopes.

2.1. Lattice points in reflexive polytopes. First let us recall an elementary property of
reflexive polytopes (see [Bat94] or [Nil05, Prop. 1.12, Lemma 1.17]).

LEMMA 2.1. A reflexive polytope contains no interior lattice points different from the
origin. In dimension two this property is equivalent to the reflexivity of the polytope.

The following notation was introduced in [Nil05].

DEFINITION 2.2. Let P be a polytope. We denote by ∂P its boundary.
For x, y ∈ ∂P , we write x ∼ y, if x and y are contained in a common face (or equiva-

lently, facet) of P .

Using this relation, we can describe a partial addition of lattice points in reflexive poly-
topes (see [Nil05, Prop. 4.1]).

LEMMA 2.3. Let P ⊆ NR be a reflexive polytope, and v,w ∈ ∂P∩N . Then v+w 
= 0
and v 
∼ w if and only if v + w ∈ ∂P ∩ N .

Finally, in the simplicial case there is a strong restriction on pairs of vertices (see [Nil05,
Lemma 5.11]).

LEMMA 2.4. Let P ⊆ NR be a simplicial reflexive polytope. Let v,w,w′ ∈ V(P )

be pairwise different such that w 
= −v 
= w′, v 
∼ w and v 
∼ w′. Then P(v,w,w′) :=
P ∩ lin(v,w,w′) is a two-dimensional reflexive polytope with at least five vertices.

2.2. Neighboring facets. Throughout, let P ⊆ NR be a simplicial reflexive polytope
of dimension d ≥ 2.

Let us first fix our notation.

DEFINITION 2.5. Let F be a facet of P .
• The vertices V(F ) form a basis of NR . We denote by {uv

F ; v ∈ V(F )} the dual basis
in MR , i.e., 〈uv

F ,w〉 = δv,w for v,w ∈ V(F ).
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• Let v ∈ V(F ) be a vertex of F . Then there is a unique facet of P that contains all
vertices of F except v. We call this facet the neighboring facet N(F, v). The unique vertex
of N(F, v) that is not contained in F is called the neighboring vertex n(F, v).

• There is a unique outer normal uF ∈ MR defined by 〈uF , F 〉 = 1. The dual polytope
P ∗ has as vertices precisely the outer normals of the facets of P . Since P is reflexive, the
outer normal uF is a lattice point. Hence, the lattice N is “sliced” into lattice hyperplanes

H(F, i) := {x ∈ N ; 〈uF , x〉 = i} , i ∈ Z .

Let us abbreviate HP (F, i) := H(F, i) ∩ V(P ).

We are going to collect restrictions on neighboring vertices and facets. The first result is
contained in [Oeb08, Lemmas 1 and 2]. The point (3) of the following lemma follows from
(1).

LEMMA 2.6. Let F be a facet of P and v ∈ V(F ). Let F ′ be the neighboring facet
N(F, v) and v′ the neighboring vertex n(F, v). Then we have the following.

(1) For any point x ∈ NR ,

〈uF ′ , x〉 = 〈uF , x〉 + (〈uF ′ , v〉 − 1)〈uv
F , x〉 ,

where 〈uF ′ , v〉 − 1 ≤ −1.
(2) For any x ∈ P ,

〈uF , x〉 − 1 ≤ 〈uv
F , x〉 .

In case of equality, x is on the facet N(F, v).
(3) If n(F, v) ∈ H(F, 0) and V(F ) is a lattice basis, then 〈uv

F , n(F, v)〉 = −1.

Compare the next two results [Oeb08, Lemmas 3 and 4] with Remark 5(2) in Section 2.3
of [Deb03] and [Nil05, Lemma 5.5].

LEMMA 2.7. Let F be a facet, and x a lattice point in ∂P ∩ H(F, 0). Then x lies on
a neighboring facet of F . In particular, let v ∈ HP (F, 0). Then v is a neighboring vertex of
F . Hence, there are at most d vertices of P in H(F, 0). Moreover, it holds:

(1) For every w ∈ V(F ), v is equal to n(F,w) if and only if 〈uw
F , v〉 < 0. In particular,

for every w ∈ V(F ) there is at most one vertex v ∈ H(F, 0) with 〈uw
F , v〉 < 0.

(2) If v is contained in precisely one neighboring facet N(F,w) of F , then v 
∼ w, so
v + w ∈ F ∩ N .

LEMMA 2.8. Let F be a facet of P . Suppose there are at least d − 1 vertices e1, . . . ,

ed−1 in V(F ), such that n(F, ei) ∈ H(F, 0) and 〈uei

F , n(F, ei )〉 = −1 for every 1 ≤ i ≤ d−1.
Then V(F ) is a basis of the lattice N .

The following lemma is due to the second author.

LEMMA 2.9. Assume that, for any facet F of P , we have

|{n(F, v) ∈ H(F, 0) ; v ∈ V(F )}| ≥ d − 1 .

Then there exists a facet G such that V(G) is a Z-basis of N .



6 B. NILL AND M. ØBRO

PROOF. By Lemma 2.8, we are done if there exists a facet G such that the set

{v ∈ V(G) ; n(G, v) ∈ H(G, 0) and uv
G(n(G, v)) = −1}

is of size at least d − 1. So we suppose that no such facet exists.
Let e1, . . . , ed be a fixed basis of the lattice N , and write every vertex of P in this basis.

For every facet F of P , we let det AF denote the determinant of the matrix

AF :=



v1
...

vd


 ,

whereV(F ) = {v1, . . . , vd }. As det AF is determined up to a sign, the number rF := | det AF |
is well-defined.

Now, let F0 be an arbitrary facet of P . By our assumptions, there must be at least one ver-
tex v of F0, such that v′ = n(F0, v) ∈ H(F0, 0) but 〈uv

F0
, v′〉 
= −1. Then −1 < 〈uv

F0
, v′〉 < 0

by Lemma 2.6(2) and Lemma 2.7(1). Let F1 denote the neighboring facet N(F0, v). Then
rF0 > rF1 .

We can proceed in this way to produce an infinite sequence of facets

F0, F1, F2, . . . where rF0 > rF1 > rF2 > · · · .

However, there are only finitely many facets of P , a contradiction. �

We also need [Oeb08, Lemma 5].

LEMMA 2.10. Let F be a facet of P . Let v1, v2 ∈ V(F ), v1 
= v2, and set y1 =
n(F, v1) and y2 = n(F, v2). Suppose y1 
= y2, y1, y2 ∈ H(F, 0) and 〈uv1

F , y1〉 = 〈uv2
F , y2〉 =

−1. Then there is no vertex x ∈ V(P ) in H(F,−1) with 〈uv1
F , x〉 = 〈uv2

F , x〉 = −1.

Finally, for convenience of the reader we cite [Oeb08, Lemmas 6 and 7] with a weaker
assumption. However, one can check that the proofs are precisely the same, so they are omit-
ted.

LEMMA 2.11. Let F be a facet of P such that any lattice point in F is a vertex (for
instance, V(F ) is a lattice basis). If |HP (F, 0)| = d , then the following holds:

(1) HP (F, 0) = {−y + zy; y ∈ V(F )}, where zy ∈ V(F ) is determined by y. More-
over, V(F ) is a lattice basis.

(2) If x ∈ HP (F,−1), then −x ∈ V(F ).

2.3. Special facets. Here we recall the crucial notion of special facets introduced by
the second author in [Oeb08], which in particular yields a short proof of the upper bound in
Casagrande’s theorem.

The goal is to show that knowing the number of vertices of a d-dimensional simplicial re-
flexive polytope P yields restrictions on the distribution of the vertices along the hyperplanes
parallel to a special facet. For this, we define

νP :=
∑

v∈V(P )

v .
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DEFINITION 2.12. A facet F of P with νP ∈ R≥0F is called special facet.

Obviously, P has a special facet, say F . Let us first deduce the following observation
from the simpliciality of P and Lemma 2.7:

|HP (F, 1)| = d , |HP (F, 0)| ≤ d .(1)

Now, since F is a special facet, we get

0 ≤ 〈uF , νP 〉 =
∑

v∈V(P )

〈uF , v〉 = d +
∑
i≤−1

i |HP (F, i)| .(2)

In particular, there are at most d vertices lying in the union of hyperplanes H(F, i) with
i ≤ −1. This yields together with Equation (1)

|V(P )| = d + |HP (F, 0)| +
∑
i≤−1

|HP (F, i)| ≤ 3d ,(3)

which is the sharp upper bound in Theorem 1.1.

3. Outline of the proof of the main theorem. For the remaining sections of this
paper, let P ⊆ NR be a simplicial reflexive polytope of dimension d ≥ 3 having 3d − 1
vertices.

Let F be a special facet of P . Taking Equations (1)–(3) into account, we see that there
are precisely three cases how the 3d − 1 vertices of P can be distributed in the hyperplanes
H(F, i):

Case A Case B Case C
|HP (F, 1)| d d d

|HP (F, 0)| d d − 1 d

|HP (F,−1)| d − 2 d d − 1
|HP (F,−2)| 1 0 0

Now, let us look at the lattice point νP , which is the sum of the vertices of P , in the three
cases A, B, C:

Case A Case B Case C
〈uF , νP 〉 0 0 1

Hence, the definition of a special facet implies: In Cases A and B the sum of all the
vertices of P equals the origin, while in Case C the sum is a lattice point on the facet F .

Now, the proof falls into Parts I–III (Sections 4–6) depending on whether νP = 0, νP is
a vertex, or otherwise. Then the main result, Theorem 1.2, follows directly from combining
Propositions 4.1, 5.1 and 6.1.
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4. Part I: νP = 0. Here, we prove the following result:

PROPOSITION 4.1. Let νP = 0. Then either d is even and P splits into (d − 2)/2
copies of V2 and a single copy of the polytope E2, or d is odd and P splits into (d − 3)/2
copies of V2 and a single copy of the polytope Q3.

PROOF. Since νP = 0, every facet of P is special. Thus, for any facet F of P , we are
in Cases A or B described above. In particular, there are at least d − 1 vertices in H(F, 0),
hence by Lemma 2.7 the assumptions of Lemma 2.9 are satisfied, so we find a facet F whose
vertex set V(F ) is a lattice basis of N . Let us denote the vertices of V(F ) by e1, . . . , ed .

CLAIM. We may assume we are in Case A.

PROOF OF CLAIM. Suppose not. Then there are d vertices in H(F,−1).
Let us first consider the case that P contains a centrally symmetric pair of facets. Then

from [Nil07, Theorem 0.1] one easily derives that either d is even and P splits into (d − 2)/2
copies of V2 and a single copy of the polytope Ṽ2, or d is odd and P splits into (d − 3)/2
copies of V2 and a single copy of the polytope Q3. In the first case we have a contradiction to
νP = 0, while the second case is as desired.

Hence, we may assume that at least one of the vertices in H(F,−1) is not equal to −ei

for i ∈ {1, . . . , d}, so this vertex has at least one positive ej -coordinate for some j . Say,
w ∈ HP (F,−1) and 〈ue1

F ,w〉 > 0. Then 〈uN(F,e1), w〉 < −1 by Lemma 2.6(1), which
implies that the vertices of P are distributed in hyperplanes H(N(F, e1), ·) as in Case A. In
particular, 〈uN(F,e1), w〉 = −2. Now, it remains to show that V(N(F, e1)) is a lattice basis.

If n(F, e1) ∈ H(F, 0), then 〈ue1
F , n(F, e1)〉 = −1 by Lemma 2.6(3), hence V(N(F, e1))

is a lattice basis, as desired. So suppose n(F, e1) /∈ H(F, 0), thus n(F, e1) ∈ HP (F,−1).
Since |HP (F, 0)| ≥ d−1, we have n(F, e2), . . . , n(F, ed ) ∈ H(F, 0) and they are all distinct.
Furthermore, Lemma 2.6(3) yields

〈ue2
F , n(F, e2)〉 = · · · = 〈ued

F , n(F, ed )〉 = −1 .

By Lemma 2.6(2) we get 〈uei

F ,w〉 ≥ −2, and moreover, if 〈uei

F ,w〉 = −2 for some i > 1,
then w = n(F, ei) ∈ H(F, 0), which is not possible. So 〈uei

F ,w〉 ≥ −1 for i = 2, . . . , d .
Now, since

〈ue1
F ,w〉 > 0 and

d∑
i=1

〈uei

F ,w〉 = −1 ,

there are at least two indices i 
= j in {2, . . . , d} such that 〈uei

F ,w〉 = 〈uej

F ,w〉 = −1. This is
a contradiction to Lemma 2.10. �

So we may safely assume that V(F ) is a lattice basis and there are d vertices of P in
H(F, 0), d − 2 in H(F,−1) and a single one, say v, in H(F,−2). If 〈uei

F , v〉 > 0 for some
i, then 〈uN(F,ei ), v〉 < −2 by Lemma 2.6(1), which cannot happen. Furthermore, v cannot be
equal to −2ei for some i. So (up to renumeration) v = −e1 − e2 since 〈uF , v〉 = −2. The
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FIGURE 3. conv(e1, e2, v, n(F, e1), n(F, e2)).

vertices of P in H(F, 0) are by Lemma 2.11(1)

n(F, e1) = −e1 + ei1 , . . . , n(F, ed ) = −ed + eid ,

for {i1, . . . , id } ⊆ {1, . . . , d}. By Lemma 2.11(2), the vertices in H(F,−1) are

−ej1, . . . ,−ejd−2

for {j1, . . . , jd−2} ⊆ {1, . . . , d}. Suppose i1 
= 2. Then there are two cases:
i2 
= 1: This case leads to a contradiction. This is proven precisely as in the proof of

Case 2 of the main result in [Oeb08] (starting from the line “Let G = N(F, e1)", with j = i1

and i = i2).
i2 = 1: Consider the facet G = N(F, e2). Since v = −e1 − e2 = −2e1 + n(F, e2),

we see 〈uG, v〉 = −1 and 〈ue1
G, v〉 = −2. Then by Lemma 2.6(2), v = n(G, e1). However,

−e1 + ei1 ∈ HP (G, 0) is also equal to n(G, e1) by Lemma 2.7(1), a contradiction.
So i1 = 2. By symmetry, i2 = 1. Now, as we see from Figure 3, −e1 and −e2 cannot be
vertices (here, conv denotes the convex hull).

Hence,

HP (F,−1) = {−e3, . . . ,−ed} .

Let us consider the facets N(F, e3), . . . , N(F, ed ). Without loss of generality, it is enough to
deal with N(F, e3). Since n(F, e3) = −e3 + ei3 , the vertices of N(F, e3) form a lattice basis.
Because we have v ∈ HP (N(F, e3),−2), we are still in Case A. Consequently,

HP (N(F, e3),−1) = −V(N(F, e3)) \ {−e1,−e2} = {−(−e3 + ei3),−e4, . . . ,−ed } .

In particular, e3 − ei3 is also a vertex in H(F, 0), so e3 − ei3 = −ek + eik for some k ∈
{4, . . . , d}. From this, we conclude that all the vertices of P in H(F, 0) come in centrally
symmetric pairs, so d is even and P splits into the claimed polytopes. �

5. Part II: νP is a vertex of P . Here, we prove the following result:

PROPOSITION 5.1. Let νP be a vertex of P . Then either d is even and P splits into
(d − 2)/2 copies of V2 and a single copy of the polytope Ṽ2, or d is odd and P splits into
(d − 3)/2 copies of V2 and a single copy of the polytope Q′

3.

PROOF. A facet of P is special if and only if it contains νP .

CLAIM. Let F be a special facet. Then V(F ) is a lattice basis.
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PROOF OF CLAIM. Since we are in Case C, the vertices of P are distributed in hyper-
planes H(F, ·) as follows: d in H(F, 1), d in H(F, 0) and d − 1 in H(F,−1). In particular,
n(F,w) ∈ H(F, 0) for every w ∈ V(F ).

Consider the facet N(F,w) for some w ∈ V(F ), w 
= νP . Since N(F,w) is also special,
there are d vertices in H(N(F,w), 0). So w ∈ H(N(F,w), 0) and n(F,w) ∈ H(F, 0), and it
follows from Lemma 2.6(1) that 〈uw

F , n(F,w)〉 = −1. This holds for all w ∈ V(F ), w 
= νP ,
and Lemma 2.8 yields that V(F ) is a lattice basis. �

Let νP = e1. Now, the remaining proof follows precisely as in Case 1 of the proof of
the main result in [Oeb08] (starting from line “There are d − 1 vertices in H(F,−1)"). The
only difference is that in our situation one refers to points (1) or (2) in Lemma 2.11 instead of
refering to Lemmas 6 or 7 in [Oeb08]. �

6. Part III: νP 
= 0 is not a vertex of P . Here, we prove the following result, which
finishes the proof of Theorem 1.2:

PROPOSITION 6.1. Let νP 
= 0, and let νP be not a vertex of P . Then d is even and P

splits into (d − 2)/2 copies of V2 and a single copy of the polytope E1.

PROOF. Let F be a special facet of P . As described in Section 3, we are in Case C,
and νP is a lattice point of F but not a vertex.

Let V(F ) = {e1, . . . , ed} and HP (F, 0) = {v1, . . . , vd }. By Lemma 2.7 we may assume
that vi = n(F, ei ) for i = 1, . . . , d . In particular, Lemma 2.7(2) implies:

FACT 1. For i = 1, . . . , d , we have vi + ei ∈ F .

Moreover, since any neighboring vertex of F is in H(F, 0), Lemma 2.7 implies:

FACT 2. Any lattice point in ∂P ∩ H(F, 0) is a neighboring vertex of F .

Let G := {x ∈ P ; 〈uF , x〉 = −1}. Since G contains d − 1 vertices, G is a (d − 2)-
dimensional face of P . Let V(G) = {b1, . . . , bd−1}. There exist precisely two facets G1,G2

of P containing G. We have G = G1 ∩G2. Let w1 := uG1 , w2 := uG2 . The next observation
is the crucial starting point of our proof.

CLAIM 1. By possibly interchanging w1 and w2, we have
(1) 2w1 + w2 + 3u = 0 or
(2) w1 + w2 + 2u = 0.

PROOF OF CLAIM 1. By duality, w1, w2 are vertices of P ∗ joined by an edge that con-
tains −u in its relative interior. Let T := conv(w1, w2, u). Lemma 2.1 (applied to P ∗) implies
that T does not contain any lattice points different from the origin in its interior, thus it is a
reflexive polygon. Figure 4 lists all reflexive triangles up to isomorphism (see, e.g., [Nil05,
Prop. 2.1]).

Since T has a vertex (namely u) such that −u is also a lattice point in T , we see that
T cannot be isomorphic to the first or the last triangle in Figure 4. For the remaining three
triangles we can check that the vertices of T , namely, w1, w2, u, satisfy either relation (1) or
relation (2). �
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FIGURE 4. Reflexive polytopes of dimension d = 2 with 3
vertices.

FIGURE 5. Two possibilities for P (vi , ei , bi ).

Now, let x1 ∈ V(G1), x1 
∈ G and x2 ∈ V(G2), x2 
∈ G, i.e., x1 = n(G2, x2) and
x2 = n(G1, x1). By using 0 = 〈2w1 + w2 + 3u, vi〉 in Case (1) of Claim 1, respectively
0 = 〈w1 + w2 + 2u, vi〉 in Case (2), we deduce:

FACT 3. Let i ∈ {1, . . . , d} such that vi 
∈ {x1, x2}. Then vi ∈ H(G1, 0) ∩ H(G2, 0).
In particular, by Lemma 2.7, vi is a neighboring vertex of G1, as well as of G2.

CLAIM 2. x1 and x2 are in H(F, 0).

PROOF OF CLAIM 2. Assume not. First let us suppose that x1 ∈ F and x2 ∈ F . Then
by Fact 3 and Lemma 2.7 we have HP (G1, 0) = {v1, . . . , vd }. Moreover, Lemma 2.7 implies
x2 = n(G1, x1) ∈ {v1, . . . , vd }, a contradiction.

Since we are not going to distinguish between cases (1) and (2) for the proof of Claim 2,
we may assume that x1 is in H(F, 0) and x2 is in F . Let us suppose x1 = v1. Then by
Fact 3, x2, v2, . . . , vd are the d different neighboring vertices of G1. By Lemma 2.7(2), we
may permute b2, . . . , bd so that v2 + b2, . . . , vd + bd are in G1. Now, by Fact 1, Lemma 2.4
implies, for i ∈ {2, . . . , d}, that P(vi , ei , bi) is a reflexive polygon with at least five vertices.
Looking at Figure 1 and Fact 2, we find that there are only two possibilities, which are shown
in Figure 5.

In particular, −bi = vi + ei ∈ F . Moreover, since, by Fact 3, vi ∈ H(G2, 0), we
note 〈w2, ei〉 = −1. Hence, ei 
∈ G2 for i = 2, . . . , d . Therefore, x2 = e1. This implies
〈w2, e1〉 = 〈w2, x2〉 = 1. Since 〈w2,−bi〉 = −1, we get −bi ∈ conv(e2, . . . , ed ) for i =
2, . . . , d . Hence,

−G = −conv(b2, . . . , bd) ⊆ conv(e2, . . . , ed ) .

Since, by Figure 5, −e2, . . . ,−ed ∈ G, this yields G = −conv(e2, . . . , ed) and
{b2, . . . , bd} = {−e2, . . . ,−ed}.
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We conclude that, for i = 2, . . . , d , each vertex vi can be written as vi = −bi − ei =
ej − ei for some j ∈ {2, . . . , d} with j 
= i. Hence, 〈uei

F , vi〉 = −1 for i = 2, . . . , d . Now,
Lemma 2.8 yields that {e1, . . . , ed} is a lattice basis. Thus, any lattice point in F is a vertex,
in particular, this holds for νP , a contradiction. So Claim 2 is proven. �

Assume we are in case (1) of Claim 1. Then 0 = 〈2w1 + w2 + 3u, x2〉 = 2〈w1, x2〉 + 1,
thus 〈w1, x2〉 = −1/2 
∈ Z, a contradiction. Hence, we are in case (2). We may suppose
x1 = v1 and x2 = v2. Now, Fact 3 implies

HP (G1, 1) = {x1, b2, . . . , bd} , HP (G2, 1) = {x2, b2, . . . , bd} ,

HP (G1, 0) ⊇ {v3, . . . , vd } , HP (G2, 0) ⊇ {v3, . . . , vd } .

Moreover, by w1 + w2 + 2u = 0, we get

x2 ∈ HP (G1,−1) , x1 ∈ HP (G2,−1) .

In particular, since x2 is a neighboring vertex of G1 outside HP (G1, 0), Lemma 2.7
implies the following observation (the same argument holds for G2):

FACT 4. |HP (G1, 0)| ≤ d − 1 and |HP (G2, 0)| ≤ d − 1.

It is our next goal to determine on which slices with respect to G1 and G2 the vertices of
F lie. For this, we need a preliminary result.

CLAIM 3. {y ∈ P ; 〈w1, y〉 = −1} is not a face of P . The same statement also holds
for w2.

PROOF OF CLAIM 3. Assume the claim is wrong for w1. Hence, |HP (G1,−1)| ≤ d ,
and Fact 4 yields

(|HP (G1, 1)|, |HP (G1, 0)|, |HP (G1,−1)|) = (d, d − 1, d).

In this case 〈w1, νP 〉 = 0, thus νP ∈ F ∩ H(G1, 0). Now, since v3, . . . , vd ∈ HP (G1, 0),
there exists i ∈ {1, . . . , d} such that ei ∈ HP (G1, 0), while ej ∈ HP (G1,−1) for j 
= i.
Hence, νP ∈ F ∩ H(G1, 0) implies νP = ei ∈ V(P ), a contradiction. �

Since w1 + w2 + 2u = 0, we have 〈w1 + w2, ei〉 = −2 for i = 1, . . . , d . Therefore,
Claim 3 implies the existence of

r ∈ {1, . . . , d} : 〈w1, er 〉 = −2 , 〈w2, er 〉 = 0 ,

s ∈ {1, . . . , d} : 〈w1, es〉 = 0 , 〈w2, es〉 = −2 .

Moreover, since v2 = x2 = n(G1, x1), we get, by Fact 4 and Lemma 2.7,

{es, v3, . . . , vd } = {n(G1, b2), . . . , n(G1, bd)} .

We permute b2, . . . , bd , and assume that es = n(G1, b2) and vi = n(G1, bi) for i = 3, . . . , d;
moreover, by Lemma 2.7(2), we have vi 
∼ bi . Hence by Fact 1 we may apply, for i =
3, . . . , d , Lemma 2.4 to vi, ei, bi , and deduce as in the proof of Claim 2 the following result:
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FACT 5. For i = 3, . . . , d , the polygon P(vi , ei, bi) looks as in Figure 5.

In particular, 〈w1, ei〉 = 〈w2, ei〉 = −1 for i = 3, . . . , d . Thus, {r, s} = {1, 2}. Since by
Fact 1, e1 
∼ v1 = x1, however es = n(G1, b2) ∼ x1 ∈ N(G1, b2), we get s 
= 1. Hence,
r = 1, s = 2. Let us sum up what we just proved:

HP (G1, 0) = {e2, v3, . . . , vd } , HP (G2, 0) = {e1, v3, . . . , vd } .

HP (G1,−1) = {x2, e3, . . . , ed} , HP (G2,−1) = {x1, e3, . . . , ed } ,

HP (G1,−2) = {e1} , HP (G2,−2) = {e2} .

Now, since e2 = n(G1, b2), we have by Lemma 2.7(2) that e2 + b2 ∈ G1 ∩ H(F, 0).
Thus, Fact 2 implies e2 + b2 = x1 = v1 ∈ V(P ). By Fact 1, we may again apply Lemma 2.4
to e2, v2, b2 to deduce that P(v2, e2, b2) is a reflexive polygon that has to look like one of the
two reflexive polygons in Figure 6 (use v2 ∼ b2).

CLAIM 4. In Figure 6, only the right possibility occurs, moreover, z = e1. In particu-
lar, P(v2, e2, b2) ∼= E1.

PROOF OF CLAIM 4. Assume P(v2, e2, b2) is given by the left reflexive polygon in
Figure 6. Since e1 ∈ H(G2, 0), Lemma 2.7(2) implies that e1 = n(G2, bj ) for some j ∈
{2, . . . , d}, even more, e1 
∼ bj and e1 
= −bj . If j ∈ {3, . . . , d}, then by Lemma 2.4,
e1 ∈ P(bj , vj , e1) = P(vj , ej , bj ), which implies by Figure 5 that e1 = −bj , a contradiction.
Hence j = 2. Therefore, Lemma 2.4 implies e1 ∈ P(b2, e2, e1) = P(v2, e2, b2). Figure 6
yields e1 = z = −b2, a contradiction.

Finally, note that, in the right reflexive polygon, z ∈ N(G1,−2), and therefore
z = e1. �

By Fact 5 and Figure 5, we have vi + ei = −bi ∈ F for i = 3, . . . , d .

CLAIM 5. Let i ∈ {3, . . . , d}. Then −bi ∈ conv(e3, . . . , ed).

PROOF OF CLAIM 5. Assume not. For j ∈ {1, . . . , d} let Fj := N(F, ej ) and uj :=
uFj . For j = 3, . . . , d , we deduce from Figure 5 that ±ej ∈ P and, of course, ±ej 
∈ Fj .
This implies

〈uj , ej 〉 = 0 for j = 3, . . . , d .(4)

Let j ∈ {3, . . . , d}. Assume −bi 
∈ Fj . Then, since also bi 
∈ Fj , we get 〈uj ,−bi〉 = 0. Now,
since −bi ∈ F , Equation (4) yields −bi = ej , a contradiction to our assumption. Therefore,

FIGURE 6. Two possibilities for P (v2, e2, b2).
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−bi ∈ Fj for all j ∈ {3, . . . , d}. Hence, −bi ∈ conv(e1, e2). Now, looking at Figure 6 yields
bi = b2, a contradiction. �

By Figures 5 and 6, we have

−conv

(
e1 + e2

2
, e3, . . . , ed

)
⊆ G = conv(b2, b3, . . . , bd) .

Now, Claim 5 shows that equality holds. Moreover, we get

{−e3, . . . ,−ed} = {b3, . . . , bd} .

Hence, there exists a permutation σ on {3, . . . , d} satisfying

eσ(i) = −bi and σ(i) 
= i for i = 3, . . . , d .

By Fact 1 and Figure 5, vσ(i) 
∼ eσ(i) = −bi 
∼ −ei = bσ−1(i), thus by Lemma 2.4 we
have vσ(i) ∈ P(eσ(i), vσ(i), bσ−1(i)) = P(vi , ei, bi). Hence, we see that in Figure 5 the first
possibility cannot occur, so P(vi , ei , bi) ∼= V2, and we have

vσ(i) = −vi for i = 3, . . . , d .

Therefore, σ is a fix-point-free involution, thus, σ is a product of disjoint transpositions. In
particular, d is even. It remains to show the following statement.

CLAIM 6. {e1, b2, e3, . . . , ed } is a lattice basis.

PROOF OF CLAIM 6. These elements form a basis of NR because of e2 = −e1 − 2b2.
Let {e∗

1, b
∗
2, e∗

3, . . . , e
∗
d} denote the dual basis of MR . By Figure 6 and Equation (4), we see

uF = e∗
1 − b∗

2 + e∗
3 + · · · + e∗

d ,

uN(F,e2) = uF + b∗
2 ,

uN(F,ei ) = uF − e∗
i for i = 3, . . . , d .

Since, by reflexivity of P , the outer normals are lattice points in M , e∗
1, b∗

2, e
∗
3,

. . . , e∗
d are also lattice points in M . Thus {e1, b2, e3, . . . , ed } is a lattice basis of N . �

This finishes the proof of Proposition 6.1, and hence of Theorem 1.2. �
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