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ISOMETRIC IMMERSIONS OF EUCLIDEAN PLANE
INTO EUCLIDEAN 4-SPACE WITH VANISHING NORMAL CURVATURE
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Abstract. Every isometric immersion of R2 into R4 with vanishing normal curvature
is assosiated with a pair of real-valued functions satisfying a system of second order partial
differential equations of hyperbolic type, and vice versa. An isometric immersion with vanish-
ing normal curvature is revealed to be multiple-valued in general as is shown by some concrete
examples.

Introduction. Hartman [12] showed that, for each pair of integers (n, p) with 1 ≤ p <

n, an isometric immersion f of Rn into Rn+p is written as

f = B ◦ (1 × h) ◦ A ,
where A is an isometry of Rn, 1 is the identity mapping in Rn−p, h is an isometric immersion
of Rp into R2p and B is an isometry of Rn+p . In view of this, the problem of describing
all isometric immersions f of Rn into Rn+p is reduced to that of describing all isometric
immersions h of Rp into R2p. For p = 1, every h is completely characterized by a real-valued
function of single variable (see Chern-Kuiper [5] and Dajczer et al. [6] for more detailed
informations). For p ≥ 2, the problem of describing all h remains elusive, even for p = 2.

In a paper [2], do Carmo and Dajczer have constructed all local flat immersions of R2

into R4 which are nowhere composition and whose first normal spaces have dimension 2 (see
[7] for related works). They constructed an immersion f of a small open subset U of R2 into
R4 by means of a quartet {ξ, u,w, γ }, where ξ is an immersion of U into S3, u and w are
linearly independent unit vector fields on U with respect to the pull-back g of the standard
metric on S3 through ξ , and γ is a function onU . They also showed that the normal curvature
of the immersion f is zero or non-zero according as the integral curves of w are geodesic
or not, respectively, in the Riemannian manifold (U, g). Their construction depends on a
geometric argument, however it is local one. Based on the results of [2], Dajczer and Tojeiro
[8] have classified all local flat surfaces in R2 with flat normal bundle, that is to say, with
vanishing normal curvature.

Recently, Gálvez and Mira [9] announced that they generated new complete flat cylinders
in R4 with vanishing normal curvature and regular Gauss maps as small perturbations of Hopf
cylinders.

In this article, we restrict ourselves to isometric immerions of R2 into R4 with vanishing
normal curvature and start from the general theory by É. Cartan [3]. The structure equations
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of R4 involve ten exterior differential 1-forms (see (3)). These forms are to be represented
by means of a standard coordinate system (x, y) of R2. Five 1-forms among them are known
owing to [3, no. 50]. We can omit another 1-form by assuming that the normal curvature
vanishes identically. Then, remaining four 1-forms contain only two real-valued functions.
This is a reduction of our problem.

Our first result is the following. Every isometric immersion f of R2 into R4 with van-
ishing normal curvature is associated with a pair of real-valued functions (u1, u2) satisfying a
system of partial differential equations

(∂ 2
x u1 − ∂ 2

y u1)∂x∂yu2 = (∂ 2
x u2 − ∂ 2

y u2)∂x∂yu1 ,

(∂x∂yu1)
2 + (∂x∂yu2)

2 = (∂ 2
x u1)(∂

2
y u1)+ (∂ 2

x u2)(∂
2
y u2) ,

(1)

and vice versa (see Proposition 1.1 in §1). f is global if and only if (u1, u2) is global. We can
leave the structure equations aside. The question is how to solve (1).

A key is the invariance of (1) by isometries of the xy-plane and by isometries of the
u1u2-plane. This leads us to the definition of polar coordinates (ρ, a, b, c) of (u1, u2) (see
Lemma 2.1 in §2). Above all, ρ and a are invariant and the rank of a matrix

P =
(
∂ 2
x u1

√
2 ∂x∂yu1 ∂ 2

y u1

∂ 2
x u2

√
2 ∂x∂yu2 ∂ 2

y u2

)

is also invariant (see (21)). In this article, we study two cases where the rank ofP is identically
equal to 1 or identically equal to 2. In the first case, an equation

∂x sin θ = ∂y cos θ(24)

is fundamental (see Proposition 3.1 in §3). In the second case, an important part of (1) is
reduced to a semi-linear equation

∂2Â

∂s 2
1

− ∂2Â

∂s 2
2

+ B̂ = 0(36)

after a change of independent variables from (x, y) to (s1, s2) (see Proposition 4.2 in §4).
We can conclude that isometric immersions and the solutions of (1) are multiple-valued

in general. Solutions θ of (24) are in fact multiple-valued in the first case (see Lemma 3.3
in §3 and Examples 3, 4 in §5), and the transformations from (x, y) to (s1, s2) are multiple-
valued in the second case. For the isometric immersion in Example 6, a classical asymptotic
analysis guarantees an infinite number of function elements (see Lemmas 5.2 and 5.3 in §5)
and the image of R2 is a Riemann surface realized in R4.

1. Reduction of the structure equations. The Euclidean space of dimension n is the
set Rn with the coordinate system t = t (t1, . . . , tn) and endowed with the scalar product
〈t, t ′〉 = t1t

′
1 + · · · + tnt

′
n. A cartesian coordinate system s = t (s1, . . . , sn) of Rn is said to be

standard if the scalar product is equal to 〈s, s′〉 = s1s
′
1 +· · ·+sns′n. The tangent space at every

point of Rn is identified with Rn itself. A mapping s �→ t of Rn into itself is an isometry if



ISOMETRIC IMMERSIONS OF EUCLIDEAN PLANE INTO EUCLIDEAN 4-SPACE 525

t = As+b with a constant orthogonal matrixA with det A = 1 and a constant vector b ∈ Rn

(see Cartan [4, no. 27]).
Let (x, y) be a standard coordinate system of the Euclidean space R2. The distance

of two points (x, y), (x ′, y ′) is defined to be
√
(x ′ − x)2 + (y ′ − y)2. Let (t1, t2, t3, t4) be

a standard coordinate system of the Euclidean space R4. The distance of two points t , t ′
is defined to be |t ′ − t| =

√
(t ′1 − t1)

2 + · · · + (t ′4 − t4)
2. A function f of x, y of class C1

defined on R2 (or on an non-empty domain of R2) with values in R4 is said to be an isometric
immersion of R2 (or of the domain of R2) into R4 if |df |2 = (dx)2 + (dy)2 in the domain of
definition of f .

PROPOSITION 1.1. (i) Given any isometric immersion f of R2 into R4 with van-
ishing normal curvature, we can find a pair of real-valued functions (u1, u2) of class C2

satisfying a system of partial differential equations

(∂ 2
x u1 − ∂ 2

y u1)∂x∂yu2 = (∂ 2
x u2 − ∂ 2

y u2)∂x∂yu1 ,

(∂x∂yu1)
2 + (∂x∂yu2)

2 = (∂ 2
x u1)(∂

2
y u1)+ (∂ 2

x u2)(∂
2
y u2) ,

(1)

where (x, y) is a standard coordinate system of R2 and ∂x = ∂/∂x, ∂y = ∂/∂y.
(ii) Given any pair of real-valued functions (u1, u2) of class C2 satisfying (1), we can

find an isometric immersion f of R2 into R4 with vanishing normal curvature.

PROOF. (i) We formulate the problem following Cartan [3, no. 50]. A system
{M, e1, e2, e3, e4} is said to be an orthonormal moving frame of R4 if M is a point of R4

and if {e1, e2, e3, e4} is an orthonormal basis of the tangent space of R4 at M . In this article,
a moving frame is always assumed to be direct, that is to say, endowing R4 with the same ori-
entation as a standard coordinate system does. The infinitesimal variation of an orthonormal
moving frame is written by a system of equations

dM =
4∑
j=1

ωj ej , dej =
4∑
k=1

ωjkek (1 ≤ j ≤ 4) ,(2)

where ωj and ωjk are exterior differential 1-forms which satisfy the structure equations

dωj =
4∑
l=1

ωl ∧ ωlj , dωjk =
4∑
l=1

ωjl ∧ ωlk , ωjk + ωkj = 0 (1 ≤ j, k ≤ 4) .(3)

Given an isometric immersion f with vanishing normal curvature of R2 or of a non-
empty domain of R2 into R4, we define

e1 = ∂xf , e2 = ∂yf .(4)

Then, {e1, e2} is a standard orthonormal basis of the tangent space of the image of R2 by f
at f (x, y). Take any orthonormal basis {e3, e4} of the normal space to the image at f (x, y)
such that {e1, e2, e3, e4} be direct. Let (2) be the equation of infinitesimal variation of the
frame {M, e1, e2, e3, e4} of R4 with M = f (x, y) defined on the image by f and let (3)
be the integrability condition for (2). Then, ωj = 〈df, ej 〉 and ωjk = 〈dej , ek〉 are linear
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combinations of dx, dy whose coefficients are real-valued functions of x, y. We have at first
ω1 = dx, ω2 = dy, ω3 = 0, ω4 = 0.

We set ωjk = ajkdx + bjkdy, where ajk and bjk are real-valued functions of x and y.
Then, dω1 = −dy ∧ ω12 = 0 and dω2 = dx ∧ ω12 = 0 imply ω12 = 0. Next, dω3 =
dx ∧ ω13 + dy ∧ ω23 = 0 and dω4 = dx ∧ ω14 + dy ∧ ω24 = 0 imply b13 = a23 and
b14 = a24 . So, we have only eight functions a13, b13 = a23, a14, b14 = a24, a34, b23, b24, b34

to be distinguished among ajk’s and bjk’s. Changing the notation, we set

ω13 = h2dx + g2dy , ω14 = −h1dx − g1dy , ω34 = sdx + tdy ,

ω23 = g2dx + k2dy , ω24 = −g1dx − k1dy , ω12 = 0 .
(a)

Then, the second structure equation dωjk = ∑
ωjl ∧ ωlk in (3) is written as follows.

∂xg1 − sg2 = ∂yh1 − th2 , ∂yg1 − tg2 = ∂xk1 − sk2 ,

∂xg2 + sg1 = ∂yh2 + th1 , ∂yg2 + tg1 = ∂xk2 + sk1 ,

∂x t − ∂ys = (h2 − k2)g1 − (h1 − k1)g2 , h1k1 + h2k2 = g 2
1 + g 2

2 .

(b)

The exterior differential of ω34 = 〈de3, e4〉 is independent of the choice of orthonormal basis
{e3, e4} of the normal space. The normal curvature Rn is defined as follows.

dω34 = Rndx ∧ dy , or Rn = ∂xt − ∂ys .

Rn is independent of the choice of standard coordinate system (x, y). In the present work,
we assume that Rn = 0 identically in the domain under consideration. So, there exists a real-
valued function χ such that s = ∂xχ, t = ∂yχ if the domain under consideration is simply
connected. Once a χ chosen, we set

g = g1 cosχ − g2 sinχ , h = h1 cosχ − h2 sinχ , k = k1 cosχ − k2 sinχ ,
g ′ = g1 sinχ + g2 cosχ , h′ = h1 sinχ + h2 cosχ , k′ = k1 sinχ + k2 cosχ .

The first four equations of (b) yield ∂xg = ∂yh, ∂yg = ∂xk, ∂xg ′ = ∂yh
′, ∂yg ′ = ∂xk

′. So,
there exists a pair of real-valued functions (u1, u2) such that

g = ∂x∂yu1 , h = ∂ 2
x u1 , k = ∂ 2

y u1 , g ′ = ∂x∂yu2 , h′ = ∂ 2
x u2 , k′ = ∂ 2

y u2 .

In fact,

u1(x, y) =
∫ x

0
dx ′

∫ y

0
g(x ′, y ′)dy ′ +

∫ x

0
(x − x ′)h(x ′, 0)dx ′

+
∫ y

0
(y − y ′)k(0, y ′)dy ′ + px + qy + r ,

where p, q, r are real constants. u2 is given similarly. gj , hj , kj are represented as

g1 = (cosχ)∂x∂yu1 + (sinχ)∂x∂yu2 , g2 = −(sinχ)∂x∂yu1 + (cosχ)∂x∂yu2 ,

h1 = (cosχ)∂ 2
x u1 + (sinχ)∂ 2

x u2 , h2 = −(sinχ)∂ 2
x u1 + (cosχ)∂ 2

x u2 ,

k1 = (cosχ)∂ 2
y u1 + (sinχ)∂ 2

y u2 , k2 = −(sinχ)∂ 2
y u1 + (cosχ)∂ 2

y u2 .

(c)

And then, the last two equations of (b) imply (1).
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(ii) Conversely, let (u1, u2) be a pair of real-valued functions satisfying (1). Then, the
equation (3) holds if ωj , ωjk are defined to be

ω13 = (cosχ)d(∂xu2)− (sinχ)d(∂xu1) , ω41 = (cosχ)d(∂xu1)+ (sinχ)d(∂xu2) ,

ω23 = (cosχ)d(∂yu2)− (sinχ)d(∂yu1) , ω42 = (cosχ)d(∂yu1)+ (sinχ)d(∂yu2) ,

ω34 = dχ , ω12 = 0 , ω1 = dx , ω2 = dy , ω3 = ω4 = 0 ,
(5)

where χ is an arbitrary real-valued function. We eliminate χ by setting

ê1 = e1 , ê2 = e2 , ê3 = (cosχ)e3 − (sinχ)e4 , ê4 = (sinχ)e3 + (cosχ)e4 .(6)

Then, dej = ∑
ωjkek are rewritten as

dê1 = (d∂xu2)ê3 − (d∂xu1)ê4 , dê3 = −(d∂xu2)ê1 − (d∂yu2)ê2 ,

dê2 = (d∂yu2)ê3 − (d∂yu1)ê4 , dê4 = (d∂xu1)ê1 + (d∂yu1)ê2 .
(7)

To integrate (7), we fix throughout this article a direct orthonormal basis {1, i, j, k} of R4

independent of x, y and identify it with a basis of quaternions over the real number field R.
Let 1 be the unit of multiplication and

i2 = j2 = k2 = −1 , jk = −kj = i , ki = −ik = j , ij = −ji = k .

This endows R4 with the structure of an algebra over R. Every point of R4 is identified with
a quaternion q = q11 + q2i + q3 j + q4k. Given a q, we define exp q to be

exp q = 1 +
∞∑
n=1

1

n!qn .

In particular, exp(tq) = (cos t)1+(sin t)q if q2 = −1 and if t is a real number.
Remark that 〈q,q′〉 = 
(q̄q′), that is to say, the scalar product of two vectors q and

q′ in R4 is equal to the real part of the product of two quaternions q̄ and q′, where q̄ =
q11 − q2i − q3 j − q4k. Let S3 be the unit sphere of R4. Every orthogonal matrix A of order
4 with detA = 1 is associated with two points µ, ν of S3 such that

Aq = µqν̄ .

Two pairs (µ1, ν1), (µ2, ν2) represent the same A if and only if either (µ2, ν2) = (µ1, ν1) or
(µ2, ν2) = (−µ1,−ν1) (see Cartan [4, no. 281, 282] and Yokota [17, p. 100]). Every direct
orhonormal basis {e1, e2, e3, e4} of R4 is therefore represented as

e1 = µ1ν̄ , e2 = µiν̄ , e3 = µjν̄ , e4 = µkν̄ .(8)

Let µ, ν be functions of x, y with values in S3 satisfying

dµ = 1

2
µd(g12 j − g11k) , dν = 1

2
νd(g22 j + g21k) ,(9)

where
g11 = ∂xu1 − ∂yu2 , g12 = ∂yu1 + ∂xu2 ,

g21 = ∂xu1 + ∂yu2 , g22 = ∂yu1 − ∂xu2 .
(10)
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(7) is interpreted as (9) combined with (10). Also, (1) is equivalent to

dg11 ∧ dg12 = 0 , dg21 ∧ dg22 = 0 .(11)

Hence, g11 and g12 are functionally dependent, and so are g21 and g22 . So, (9) consists of two
independent systems of ordinary differential equations, one for µ and the other for ν. (9) is
integrable as is verified by exterior differentiation of both sides. We determine µ and ν from
(9) by prescribing arbitrary values of them at a fixed point. Then, we have a following solution
of (7).

e1 = ê1 = µν̄ , e2 = ê2 = µiν̄ , e3 = µ exp(χ i)jν̄ , e4 = µ exp(χ i)kν̄ ,

ê3 = µjν̄ , ê4 = µkν̄ .

Finally, by integrating df = (dx)e1 + (dy)e2 (see (4)) or equivalently

df = µ{(dx)1 + (dy)i}ν̄ ,(12)

we obtain an isometric immersion f with vanishing normal curvature. �

COROLLARY 1.2. Let f and f̃ be isometric immersions with vanishing normal cur-
vature, and (u1, u2) and (ũ1, ũ2) be solutions of (1) associated with f and f̃ in Proposition
1.1, respectively. Then,

(i) f̃ = f if and only if there exist real constants pj , qj , rj (j = 1, 2) such that

ũj (x, y)− uj (x, y) = pjx + qjy + rj (j = 1, 2) .(13)

(ii) There exists an isometry S of R4 with f̃ = Sf if and only if there exist real con-
stants l, pj , qj , rj (j = 1, 2) such that

ũ1(x, y) = u1(x, y) cos l − u2(x, y) sin l + p1x + q1y + r1 ,

ũ2(x, y) = u1(x, y) sin l + u2(x, y) cos l + p2x + q2y + r2 .
(14)

PROOF. (i) If two solutions (u1, u2), (ũ1, ũ2) represent the same gj , hj , kj as in (c),
we have ∂ 2

x (ũj − uj ) = 0, ∂x∂y(ũj − uj ) = 0 and ∂ 2
y (ũj − uj ) = 0, which imply (13).

(ii) Denote df = (dx)e1 + (dy)e2 and df̃ = (dx)ẽ1 + (dy)ẽ2 by means of moving
frames {f, e1, e2, e3, e4} and {f̃ , ẽ1, ẽ2, ẽ3, ẽ4} with ω34 = ω̃34 = 0. Then, from (7),

de1 = (d∂xu2)e3 − (d∂xu1)e4 , de3 = −(d∂xu2)e1 − (d∂yu2)e2 ,

de2 = (d∂yu2)e3 − (d∂yu1)e4 , de4 = (d∂xu1)e1 + (d∂yu1)e2 ;(d)

dẽ1 = (d∂xũ2)ẽ3 − (d∂xũ1)ẽ4 , dẽ3 = −(d∂xũ2)ẽ1 − (d∂yũ2)ẽ2 ,

dẽ2 = (d∂yũ2)ẽ3 − (d∂yũ1)ẽ4 , dẽ4 = (d∂xũ1)ẽ1 + (d∂yũ1)ẽ2 .
(e)

Set f̃ = Sf = Af + f 0 with a fixed orthogonal matrix A (detA = 1) and a fixed point f 0

of R4. Then, df̃ = Adf implies ẽ1 = Ae1 and ẽ2 = Ae2 . So, ẽ3 and ẽ4 are spanned by Ae3

and Ae4 . Since {Ae1, Ae2, Ae3, Ae4} and {ẽ1, ẽ2, ẽ3, ẽ4} are direct, we set

ẽ3 = (cos l)Ae3 − (sin l)Ae4 , ẽ4 = (sin l)Ae3 + (cos l)Ae4 .(f)
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We have 〈dẽj , Aek〉 = 0 for 3 ≤ j, k ≤ 4 because 〈dẽj , ẽk〉 = 0 for 3 ≤ j, k ≤ 4. So, l is a
constant. By (f) combined with (d), (e) and by ẽj = Aej for j = 1, 2, we have

d∂x(ũ1 − u1 cos l + u2 sin l) = 0 , d∂y(ũ1 − u1 cos l + u2 sin l) = 0 ,

d∂x(ũ2 − u1 sin l − u2 cos l) = 0 , d∂y(ũ2 − u1 sin l − u2 cos l) = 0 .

So, (14) holds.
Suppose conversely that (14) holds. Let {e1, e2, e3, e4} and {ẽ1, ẽ2, ẽ3, ẽ4} be two or-

thonormal moving frames of R4 which satisfy (d), (e) and which are equal to {e0
1, e

0
2, e

0
3, e

0
4}

and {ẽ0
1, ẽ

0
2, ẽ

0
3, ẽ

0
4}, respectively, at a fixed point (x0, y0). Then, there exists a constant or-

thogonal matrix A (detA = 1) such that

ẽ0
1 = Ae0

1 , ẽ0
2 = Ae0

2 , (cos l)ẽ0
3 + (sin l)ẽ0

4 = Ae0
3 , −(sin l)ẽ0

3 + (cos l)ẽ0
4 = Ae0

4 .

{ẽ1, ẽ2, (cos l)ẽ3 +(sin l)ẽ4,−(sin l)ẽ3 +(cos l)ẽ4} and {Ae1, Ae2, Ae3, Ae4} satisfy the same
system of equations (d) and they are equal at (x0, y0). So, they are identically equal. And
hence, df̃ = Adf and f̃ = Af + f 0 = Sf , where f 0 is a fixed point. �

2. Invariance of (1) by isometries. Given a solution (u1, u2) of (1), we set

pj1 = ∂ 2
x uj , pj2 = ∂x∂yuj , pj3 = ∂ 2

y uj (j = 1, 2) .(15)

Then, pjk satisfy quadratic equations and integrability condition

(p11 − p13)p22 = (p21 − p23)p12 , p11p13 + p21p23 = p 2
12 + p 2

22 ,(16)

∂yp11 = ∂xp12 , ∂yp12 = ∂xp13 , ∂yp21 = ∂xp22 , ∂yp22 = ∂xp23 .(17)

Conversely, if a set of six real-valued functions pjk satisfies (16) and (17) in a simply-
connected domain, it is associated with a solution of (1). In fact, we set

vj =
∫ (x,y)

(0,0)
(pj1dx + pj2dy) , wj =

∫ (x,y)

(0,0)
(pj2dx + pj3dy) (j = 1, 2) .

Then curvi-linear integrals are well-defined in view of (17),

∂xvj = pj1 , ∂yvj = ∂xwj = pj2 and ∂ywj = pj3

for j = 1, 2. So, we set further

uj =
∫ (x,y)

(0,0)
(vj dx +wjdy) (j = 1, 2) .

Then curvi-linear integrals are well-defined, (15) holds and (u1, u2) satisfies (1).
In this way, every solution (u1, u2) of (1) is associated with a 2 × 3 matrix

P =
(
p11

√
2p12 p13

p21
√

2p22 p23

)
=

(
∂ 2
x u1

√
2 ∂x∂yu1 ∂ 2

y u1

∂ 2
x u2

√
2 ∂x∂yu2 ∂ 2

y u2

)
(18)
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whose entries satisfy (16) and (17). Observe that

trace(P tP )= p 2
11 + 2p 2

12 + p 2
13 + p 2

21 + 2p 2
22 + p 2

23 = (p11 + p13)
2 + (p21 + p23)

2

= (p11 − p13 − 2p22)
2 + (p21 − p23 + 2p12)

2

= (p11 − p13 + 2p22)
2 + (p21 − p23 − 2p12)

2 .

Let us define the polar coordinates ρ, a, b, c of P( �=O) in the following way.

ρ = √
trace(P tP ) = (p 2

11 + 2p 2
12 + p 2

13 + p 2
21 + 2p 2

22 + p 2
23)

1/2 (≥ 0) ,
p11 + p13 = ρ cos b , p21 + p23 = ρ sin b ,
p11 − p13 − 2p22 = ρ cos(b + a + c) , p21 − p23 + 2p12 = ρ sin(b + a + c) ,

p11 − p13 + 2p22 = ρ cos(b + a − c) , p21 − p23 − 2p12 = ρ sin(b + a − c) .

(19)

We do not define a, b, c at P = O . Real numbers a, b, c can be defined independently as
follows.

tan a = (p11 + p13)(p21 − p23 + 2p22 i)− (p21 + p23)(p11 − p13 + 2p12 i)

(p11 + p13)(p11 − p13 + 2p12 i)+ (p21 + p23)(p21 − p23 + 2p22 i)
,

(p11 + p13)+ (p21 + p23)i = ρ ebi, tan c = 2p12 + 2p22 i

p11 − p13 + (p21 − p23)i
(i = √−1 ) .

Although we will not use these equalities in what follows, we can verify that the fractions are
real-valued and never reduced to 0/0 as far as ρ > 0. Two points (ρ, a, b, c), (ρ ′, a′, b′, c′)
of the coordinate space represent the same P( �= O) if ρ′ = ρ > 0 and if (a′, b′, c′) =
(a + jπ, b + 2kπ, c+ (j + 2l)π) for some integers j, k, l.

If a 2×3 matrix P is a function of x and y satisfying (16), the polar coordinates ρ, a, b, c
defined by (19) are also functions of x and y, and vice versa. If P satisfies (17), the entries pjk
are the second order derivatives of some functions u1, u2 of x and y whose couple satisfies
the system of equations (1). Therefore, the system (1) will be rewritten as a certain system of
partial differential equations whose unknown is a quadruple of functions (ρ, a, b, c).

LEMMA 2.1. ρ, a, b and dc are invariant by isometries of the xy-plane. ρ, a, c and
db are invariant by those of the u1u2-plane. The system (1) and the rank of P are invariant
by isometries of the xy-plane and the u1u2-plane.

PROOF. We proceed by linear algebra introducing seven matrices

Q1 =
(

1 0 1
0 0 0

)
, Q2 =

(
0 0 0
1 0 1

)
, Q3 =

(
1 0 − 1
0 − √

2 0

)
, Q4 =

(
0

√
2 0

1 0 − 1

)
,

Q5 =
(

1 0 − 1
0

√
2 0

)
, Q6 =

(
0 − √

2 0
1 0 − 1

)
, H =


0 0 1

0 − 1 0
1 0 0


 .

By an isometry of the xy-plane

x̂ = x cosλ− y sinλ+ x0 , ŷ = x sin λ+ y cosλ+ y0

and by an isometry of the u1u2-plane (see Corollary 1.2, (ii))

ǔ1 = u1 cos λ′ − u2 sin λ′ + u0
1 , ǔ2 = u1 sin λ′ + u2 cos λ′ + u0

2 ,
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P is subjected to transformations P̂ = PL̂ and P̌ = ĽP , respectively, where

L̂ =



cos2 λ 1√
2

sin 2λ sin2 λ

−1√
2

sin 2λ cos 2λ 1√
2

sin 2λ

sin2 λ −1√
2

sin 2λ cos2 λ


 , Ľ =

(
cos λ′ − sin λ′
sin λ′ cosλ′

)
.

L̂, Ľ are orthogonal, L̂H = HL̂ and P̂ tP̂ = tĽP̌ tP̌ Ľ = P tP , P̂H tP̂ = tĽP̌H tP̌Ľ = PH tP .
A 3 × 3 orthogonal matrix L is equal to L̂ for some λ if detL = 1 and if LH = HL. Any
polynomial of pjk which is invariant by these two kinds of isometries is a polynomial of four
variables

h1 = trace(P tP ) , h2 = trace(PH tP ) , h3 = det(P tP ) , h4 = det(PH tP )(a)

due to the Hamilton-Cayley theorem. Now, (1) implies h2 = h3 + h4 = 0 because

h2 =2(p11p13 + p21p23 − p 2
12 − p 2

22) , h3 + h4 =2{(p11 − p13)p22 − (p21 − p23)p12}2 .

We switch over to the polar coordinate system. Then, h1 = ρ2 and h3 = (ρ4/4) sin2 a.
So, any function of pjk’s satisfying (16) which is invariant by all these isometries is a function
of ρ and a. We see that

RankP = 0 if ρ = 0 , rankP = 1 if ρ > sin a = 0 , rankP = 2 if ρ sin a �= 0 .(20)

So, the system (1) and the rank of P are invariant by all these isometries.
Next, we rewrite (19) in the following way.

(4/ρ)P = 2 cos bQ1 + 2 sin bQ2 + cos(b + a + c)Q3 + sin(b + a + c)Q4

+ cos(b + a − c)Q5 + sin(b + a − c)Q6 .
(b)

This and

Q1L̂ = Q1 , Q3L̂ = Q3 cos 2λ+Q4 sin 2λ , Q5L̂ = Q5 cos 2λ−Q6 sin 2λ ,
Q2L̂ = Q2 , Q4L̂ = −Q3 sin 2λ+Q4 cos 2λ , Q6L̂ = Q5 sin 2λ+Q6 cos 2λ ,
ĽQj = Qj cosλ′ +Qj+1 sin λ′ , ĽQj+1 = −Qj sin λ′ +Qj+1 cos λ′

(j = 1, 3, 5)

(c)

combined with P̂ = PL̂, P̌ = ĽP imply

b̂ = b , b̂ + â + ĉ = b + a + c + 2λ , b̂ + â − ĉ = b + a − c − 2λ ,
b̌ = b + λ′ , b̌ + ǎ + č = b + a + c + λ′ , b̌ + ǎ − č = b + a − c + λ′ .

We have finally the following law of transformation.

ρ̂ = ρ,

ρ̌ = ρ ,

â = a ,

ǎ = a,

b̂ = b ,

b̌ = b + λ′ ,
ĉ = c+ 2λ ,
č = c ,

dĉ = dc ,

db̌ = db .
(21)

Hence, the lemma is proved. �
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Thinking it as the Cauchy problem is not a good idea to solve (1). Let us explain the
reason why. A solution (u1, u2) of (1) annihilates two forms

F1(u1, u2) = (∂x∂yu1)
2 + (∂x∂yu2)

2 − (∂ 2
x u1)(∂

2
y u1)− (∂ 2

x u2)(∂
2
y u2) ,

F2(u1, u2) = (∂ 2
x u1 − ∂ 2

y u1)∂x∂yu2 − (∂ 2
x u2 − ∂ 2

y u2)∂x∂yu1 .

We define linear partial differential operators ljk (j, k = 1, 2) to be

lj1φ = lim
t→0

Fj (u1 + tφ, u2)− Fj (u1, u2)

t
, lj2φ = lim

t→0

Fj (u1, u2 + tφ)− Fj (u1, u2)

t
.

They are
(
l11 l12
l21 l22

)
=

(
2p12∂x∂y − p13∂

2
x − p11∂

2
y 2p22∂x∂y − p23∂

2
x − p21∂

2
y

p22(∂
2
x − ∂ 2

y )− (p21 − p23)∂x∂y (p11 − p13)∂x∂y − p12(∂
2
x − ∂ 2

y )

)
.

Regarding pjk as constants and ξ = ∂x, η = ∂y as indeterminates,

l11l22 − l12l21 = ρ2(ξ sinψ1 − η cosψ1)(ξ sinψ2 − η cosψ2)

× (ξ sinψ3 − η cosψ3)(ξ cosψ3 + η sinψ3)

(22)

is said to be the characteristic polynomial of (1) (see Petrowsky [13, Kap. III, §2]), where
ψ1 = (c + a)/2, ψ2 = (c − a)/2, ψ3 = c/2. Four factors sj ξ + tj η on the right hand side of
(22) depend on unknowns, they are distinct if the rank of P is equal to 2, while three of them
are the same if the rank of P is equal to 1. So, the Cauchy problem is not easy to solve. From
now on, our unknown functions are rather ρ, a, b, c than u1, u2 .

We can construct isometric immersions f and (u1, u2) if we know ρ, a, b, c as functions
of x, y. To do this, we take the rank of P into account (see (a) above). The rank of our P is
equal to the dimension of the first normal space in the notations of do Carmo and Dajzcer [2].
They assumed this number to be constant.

If P = O in a non-empty simply-connected domain, êj are constant (see (7)) and the
image is a domain of a fixed two-dimensional Euclidean subspace of R4. This case apart, we
restrict ourselves in this article to the following two cases.

1. RankP = 1 (a/π is an integer) in a simply-connected domain;
2. RankP = 2 (a/π is never an integer) in a simply-connected domain.
We reduce (1) to two single equations (24), (25) of the first order in the case 1 (see §3),

and to a single equation (36) of the second order in the case 2 (see §4).

3. The rank one case. Suppose that the rankP be identically equal to 1 for a solution
(u1, u2) of (1) in a non-empty simply-connected domain of the xy-plane. We can represent
pjk’s as

pj1 = ξj sin2 θ , pj2 = −ξj cos θ sin θ , pj3 = ξj cos2 θ (j = 1, 2)(23)

if we set pj1/pj2 = pj2/pj3 = − tan θ . And then, we have

θ ≡ (c + a + π)/2 (mod πZ) , ξ1 = ρ cos b and ξ2 = ρ sin b .



ISOMETRIC IMMERSIONS OF EUCLIDEAN PLANE INTO EUCLIDEAN 4-SPACE 533

PROPOSITION 3.1. Any triplet (θ, ξ1, ξ2) of real-valued solutions of partial differen-
tial equations

∂x sin θ = ∂y cos θ ,(24)

∂x(ξj cos θ)+ ∂y(ξj sin θ) = 0 (j = 1, 2)(25)

gives rise to a solution of (1).

PROOF. The equalities (16) hold if pjk are represented as (23) by means of a triplet
(θ, ξ1, ξ2). Also, the integrability condition (17) holds if the triplet satisfies (24) and (25). So,
pjk are the second order derivatives of a solution of (1). �

COROLLARY 3.2. In the notations of Proposition 3.1, θ is of class C2 in the whole
plane if and only if θ is a constant and if u1, u2 are functions of single variable y cos θ−x sin θ
up to polynomial functions of degree one.

PROOF. First, let us show that a solution θ of (24) of class C2 in the closed disk D of
radius R with center at (x0, y0) satisfies the inequality

{∂xθ(x0, y0)}2 + {∂yθ(x0, y0)}2 < 1/R2 .(26)

In fact, suppose (x0, y0) = (0, 0) and θ(0, 0) = 0 (see (21)). Then, θ(x, 0) = 0 for −R ≤
x ≤ R because θx(x, 0) = −θy(x, 0) tan θ(x, 0). The function

ψ(x, y) = θy cos θ − θx sin θ

is of class C1, θx = −ψ sin θ and θy = ψ cos θ . The equality θyx = θxy yields

ψx cos θ + ψy sin θ = −ψ2 .

Restricting this to y = 0, we have

ψ(x, 0) = s/(1 + sx)

for −R ≤ x ≤ R, where s = ψ(0, 0). So, |s|R < 1, proving (26).
θ is a constant if θ is of class C2 in the whole plane, as is shown by making R go to +∞

in (26). Let θ = −π/2, for example. Then, pj2 = pj3 = 0 and ∂yξj = 0 for j = 1, 2 (see
(23) and (25)). So, u1, u2 are functions only of x up to polynomial functions of degree one.

Conversely, a pair of arbitrary functions (u1(x), u2(x)) is a solution of (1), and the
equations (24) and (25) hold if we set θ = −π/2, ξj = u′′

j (x) (j = 1, 2) (see Example 1
in §5). �

A general algorithm to solve (24) is as follows. Draw an arbitrary smooth curve in the
plane which is assumed to be

C = {(x, y) ∈ R2; h(x, y) = 0} ,
where h is a real-valued smooth function such that (hx, hy) �= (0, 0) everywhere on C (we
denote hx = ∂xh, hy = ∂yh). Given an arbitrary point (x, y) of R2 (not necessarily on C),
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suppose that through (x, y) passes a straight line which is normal to C at (x ′, y ′), say. Then,
we have

h(x ′, y ′) = 0 , hy(x
′, y ′)(x − x ′) = hx(x

′, y ′)(y − y ′)(27)

and there exists a real-valued function θ = θ(x, y) (modπZ) such that

hy(x
′, y ′) cos θ = hx(x

′, y ′) sin θ .(28)

Let us show that x ′ and y ′ are piecewise smooth functions of (x, y), multiple-valued in
general. We define the signed arclength s on C measured from a fixed point according to an
orientation of C and denote the range of s by I when we run over C. Then, a point of C is a
function of s which we denote by (ξ, η) = (ξ(s), η(s)) (s ∈ I ).

If the normal line to C at (ξ(s0), η(s0)) passes through (x, y), the length of the vector
(x − ξ(s), y − η(s)) is extremal at s = s0 and this vector is perpendicular to the unit tangent
vector (dξ/ds(s0), dη/ds(s0)). By deleting the suffix 0, we have

x = ξ(s)− l
dη

ds
(s) , y = η(s)+ l

dξ

ds
(s)(α)

with a real number l if the normal line to C at (ξ(s), η(s)) passes through (x, y). l is the
signed distance from (x, y) to C along the normal line. Two equalities (α) define in turn a
mapping (s, l) �→ (x, y) of I × R into R2. The exterior differentiation yields

dx ∧ dy = {1 − lκ(s)}ds ∧ dl
(
κ(s) = dξ

ds
(s)
d2η

ds2
(s)− dη

ds
(s)
d2ξ

ds2
(s)

)
.(β)

κ is equal to the curvature of C at (ξ, η). The focal set

Γ =
{
(x, y)∈R2 ; x=ξ(s)− 1

κ(s)

dη

ds
(s), y=η(s)+ 1

κ(s)

dξ

ds
(s), s ∈ I, κ(s) �= 0

}
(γ )

is independent of the orientation of C, because lκ is unchanged if we reverse the orientaion
of C and change the sign of l at the same time.

LetU be a connected component of the complement of Γ . The inverse mapping (x,y) �→
(s, l) of (α) ofU into I×R is constructed in the following way. We apply the implicit function
theorem to the equation

{x − ξ(s)}dξ
ds
(s)+ {y − η(s)}dη

ds
(s) = 0(δ1)

to find s = s(x, y) and substitute the solution into the equation

l = {ξ(s)− x}dη
ds
(s)+ {y − η(s)}dξ

ds
(s)(δ2)

to have l = l(x, y). The solution s(x, y) will not necessarily be unique, if there exists any.
So, the mapping (x, y) �→ (s, l) will be multiple-valued in general. This followed by

s �→ (x ′, y ′) = (ξ(s), η(s))(ε)
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gives rise to a mapping (x, y) �→ (x ′, y ′) of U into C. Conformally to (27) and (28), we can
define θ = θ(x, y) (modπZ) by setting

sin θ(x, y) = −σ dξ
ds
(s) , cos θ(x, y) = σ

dη

ds
(s) (σ = ±1) .(ζ )

Suppose that the function h be of class Ck with k ≥ 4. Then, s �→ (ξ(s), η(s)) is of class
Ck and the mapping (s, l) �→ (x, y) (see (α)) is of class Ck−1. The inverse (x, y) �→ (s, l)

(see (δ)) is also of class Ck−1 in U . So, the composed mapping (x, y) �→ (x ′, y ′) is of class
Ck−1 in U . Finally, θ(x, y) is of class Ck−2 in U . If in particular h is real analytic, θ is real
analytic in U .

If, through every point (x, y) of U , there pass p straight lines each of which is normal
to C at (x ′

(ν), y
′
(ν)), say (ν = 1, . . . , p), then for every ν, we have the ν-th function elements

θ(ν)(x, y) (mod πZ) of θ in U (see Examples 3, 4 in §5).

LEMMA 3.3. (i) θ(x, y) obtained by the formulas (27) and (28) is a multiple-valued
solution of (24) in the whole xy-plane.

(ii) Conversely, any solution θ of (24) is obtained by (27) and (28) involving a function
h.

(iii) If h is an irreducible polynomial of degree n ≥ 2, the number of function elements
of θ does not exceed n4.

PROOF. (i) Given any point (x, y) of the plane, the point (x ′, y ′) of C attaining the
minimal distance of (x, y) to C is a solution of (27). So, there exists at least one function ele-
ment of θ defined by (27) in the whole xy-plane. For an arbitrary solution (x ′(x, y), y ′(x, y))
of (27), there exist real numbers l = l(x, y), l′ = l′(x, y) such that

(x − x ′, y − y ′) = l(hx(x
′, y ′), hy(x ′, y ′)) , (hx(x

′, y ′), hy(x ′, y ′)) = l′(cos θ, sin θ) .

So, (x − x ′, y − y ′) = (r cos θ, r sin θ) (r = ll′). r is a signed distance of (x ′, y ′) to (x, y),
that is to say, r > 0 locally in one side of C, r < 0 in the other side and r = 0 on C. If an
infinitesimal variation (dx, dy) of (x, y) bears an infinitesimal variation (dx ′, dy ′) of (x ′, y ′),
we have (dx − dx ′, dy − dy ′) = (dr)(cos θ, sin θ)+ (dθ)(−r sin θ, r cos θ), so

dr = (dx − dx ′) cos θ + (dy − dy ′) sin θ = (dx) cos θ + (dy) sin θ

because (dx ′) cos θ + (dy ′) sin θ = 0. So, (cos θ, sin θ) = (∂xr, ∂yr), proving (24).
(ii) Prescribing an arbitrary point (x0, y0), look at a fixed function element of θ which

is smooth in a simply-connected neighborhood V of (x0, y0). We set

h(x, y) =
∫ (x,y)

(x0,y0)

{(cos θ)dx + (sin θ)dy} .

The curvi-linear integral is well-defined in V if θ is a solution of (24). We can verify that (27)
and (28) hold, where h is the same as r in the proof of (i).

(iii) Assume, after an isometry if necessary, that the coefficients neither of x ′n nor of
y ′n in h(x ′, y ′) be zero. Set k(x ′, y ′) = (x ′ − x0)hy(x

′, y ′) − (y ′ − y0)hx(x
′, y ′) for a fixed
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point (x0, y0) and rewrite h and k as

h(x ′, y ′) =
n∑
p=0

hp(x
′)y ′n−p , k(x ′, y ′) =

n∑
p=0

kp(x
′)y ′n−p .(a)

hp(x
′) and kp(x ′) are polynomials of degree at most p. Next,

R1(x
′, y ′) =

n∑
t=1

n−t∑
p=0

vty
′n−t−p{hp(x ′)k(x ′, y ′)− kp(x

′)h(x ′, y ′)}(b)

is of degree at most n− 1 as a polynomial of y ′ if vt are independent of y ′ and

R1(x
′, y ′) =

n∑
s,t=1

vt cst (x
′)y ′s−1 ,

cst (x
′) =

n−max(s, t)∑
p=max(0, n+1−s−t )

{hp(x ′)k2n+1−s−t−p(x ′)− kp(x
′)h2n+1−s−t−p(x ′)} .(c)

R1(x
′, y ′) is independent of y ′ if vt is the (1, t)-cofactor of (cst (x ′))ns,t=1 , and then

R1(x
′) = det(cst (x ′))ns,t=1 .(d)

R1(x
′) is a polynomial of degree at most n2 because cst (x ′) are of degree at most 2n + 1 −

s − t . This is equal to the resultant of h, k within a sign (see van der Waerden [16, §27]).
We obtain also a polynomial R2(y

′) of degree at most n2 by replacing x ′ by y ′. From (b),
there exist polynomials A1(x

′, y ′), B1(x
′, y ′) of degree at most n − 1 with respect to y ′ and

A2(x
′, y ′), B2(x

′, y ′) of degree at most n− 1 with respect to x ′ such that

R1(x
′) = A1(x

′, y ′)h(x ′, y ′)+ B1(x
′, y ′)k(x ′, y ′) ,

R2(y
′) = A2(x

′, y ′)h(x ′, y ′)+ B2(x
′, y ′)k(x ′, y ′) .(29)

Suppose at first that neither R1(x
′) nor R2(y

′) be identically equal to 0. Then, we have
R1(x

′(x0, y0)) = R2(y
′(x0, y0)) = 0 if (x ′(x0, y0), y ′(x0, y0)) is a complex solution of (27),

whose number does not exceed (n2)2 = n4. So, the number of function elements of θ at
(x0, y0), which is the number of real solutions of (27), does not exceed n4.

Suppose on the contrary that one of R1(x
′) or R2(y

′) be identically equal to 0. Then, h
divides k and k = αh with a constant α because h is irreducible, B1 is of degree at most n− 1
with respect to y ′, B2 is of degree at most n−1 with respect to x ′ and k is of degree at most n.
Therefore, h = h0(r

2) exp[α arg{x ′ − x0 + i(y ′ − y0)}], where r2 = (x ′ − x0)2 + (y ′ − y0)2.
So, α = 0 because α is real. Also, h(x ′, y ′) is a polynomial of single variable r2, that is to
say, C is a circle with center at (x0, y0). �
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REMARK. If for example h(x ′, y ′) = ax ′2 + by ′2 + 2sx ′ + 2ty ′ − c and ab �= 0, we
have

R1(x
′)/(4b)= −ae2x ′4 − 2e(as1 + es)x ′3−(as 2

1 +bt 2
1 −ce2+2et1t+4es1s)x ′2

+ 2{e(cs1 + t2x0 − sty0)− ss 2
1 − s1tt1 + bt1(tx

0 − sy0)}x ′
− cs 2

1 + 2s1t (tx0 − sy0)− b(s1y
0 − t1x

0 + ex0y0)2 ,

R2(y
′, a, b, c, s, t, x0, y0) = −R1(y

′, b, a, c, t, s, y0, x0) ,

(e)

where e = a− b, s1 = s + bx0, t1 = t + ay0. One of R1(x
′) or R2(y

′) vanishes identically if
and only if a− b = s1 = t1 = 0. Also, h(x ′, y ′) = a(x ′ − x0)2 + a(y ′ − y0)2 − c− a(x0)2 −
a(y0)2 if the last condition is satisfied. Any straight line passing through (x0, y0) is normal
to C in this case (see Example 3 in §5).

(25) is linear and solved in the domain of definition of θ . Once we know θ, ξ1, ξ2, we
obtain µ, ν from (9) and f by integrating (12). We reduced therefore (1) to a global question
of finding implicit functions from (27). If θ is multiple-valued, ξ1, ξ2, the mapping f and
u1, u2 are also multiple-valued (see Examples 3, 4 in §5).

4. The rank two case. In this section, the rank of P is supposed to be 2 for a solution
(u1, u2) of (1) identically in a simply-connected domainD containing the origin in the interior
of the xy-plane. Then, ρ sin a �= 0 in D (see (20)).

Let us introduce two functions s1, s2 of x, y such that g11 and g12 depend only on s1 and
that g21 and g22 depend only on s2 . To do this, we set in this section

ψ1 = (c + a)/2 , ψ2 = (c − a)/2 , κ1 = ψ1 + b , κ2 = ψ2 − b .(30)

(We studied in §3 the case ψ1 ≡ ψ2 ≡ θ + (π/2) (mod πZ)). (10), (18) and (19) yield

dg11 = (cos κ1)Ω1 , dg12 = (sin κ1)Ω1 , dg21 = (cos κ2)Ω2 , dg22 = (sin κ2)Ω2 ,

whereΩj = ρ cosψj dx + ρ sinψj dy (j = 1, 2). d(dgjk) = 0 implies dΩj = dκj ∧Ωj =
0, or

∂x(ρ sinψj ) = ∂y(ρ cosψj ) , (sinψj)∂xκj = (cosψj )∂yκj (j = 1, 2) .(31)

Let us define real-valued functions s1, s2 in D to be

s1 =
∫ (x,y)

(0,0)
(ρ cosψ1 dx + ρ sinψ1 dy) , s2 =

∫ (x,y)

(0,0)
(−ρ cosψ2 dx − ρ sinψ2 dy) .(32)

Then, Ω1 = ds1 and Ω2 = −ds2 . The curvi-linear integrals are well-defined by (31).
(32) yields ∂(s1, s2)/∂(x, y) = ρ2 sin a �= 0 in D. So, we have a mapping T of D

into a simply-connected domain, denoted by ∆, of the s1s2-plane containing the origin in the
interior. The inverse mapping T −1 : ∆ → D is defined to be

x = −
∫ (s1,s2)

(0,0)

sinψ2 ds1 + sinψ1 ds2

ρ sin a
, y =

∫ (s1,s2)

(0,0)

cosψ2 ds1 + cosψ1 ds2

ρ sin a
.(33)

We make use of (s1, s2) as a local coordinate system in D as well as (x, y).
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Given a real-, complex- or vector-valued function g(x, y) defined in D, we define a
function ĝ(s1, s2) in ∆ to be ĝ = g ◦ T −1. Reciprocally, given a function ĝ(s1, s2) defined in
∆, we define a function g(x, y) in D to be g = ĝ ◦ T . Briefly,

ĝ(s1, s2) = g(x, y) if (s1, s2) = T (x, y) .(34)

LEMMA 4.1. ds1 and ds2 are invariant by isometries of the xy-plane and by isome-
tries of the u1u2-plane.

The proof is immediate from (21). We set

Â = log
∣∣∣ tan

â

2

∣∣∣ ,
B̂ = ∂

∂s1

(
1

sin â

∂κ̂1

∂s1
− cos â

sin â

∂κ̂2

∂s2

)
+ ∂

∂s2

(
1

sin â

∂κ̂2

∂s2
− cos â

sin â

∂κ̂1

∂s1

)
.

(35)

a �→ A = log | tan(a/2)| (that is to say, dA/da = 1/ sin a) is a real-analytic mapping of

Jm = (mπ, (m+ 1)π)

onto R for every integer m and monotone increasing or monotone decreasing. The inverse
mapping A �→ a is multiple-valued. So, let a(A) be a function element with values in a
fixed Jm . The function B̂ depends on â. We regard B̂ as depending rather on Â than â. We
emphasize this by writing sometimes B̂

Â
in what follows.

PROPOSITION 4.2. Any real-valued solution Â of a partial differential equation

∂2Â

∂s 2
1

− ∂2Â

∂s 2
2

+ B̂ = 0(36)

gives rise to a solution (u1, u2) of (1).

PROOF. κ̂1 depends only on s1 and κ̂2 depends only on s2 because dκ̂1 ∧ ds1 = 0 and
dκ̂2 ∧ ds2 = 0. So, we set

b̂(s1, s2) = {κ̂1(s1)− κ̂2(s2)− â(s1, s2)}/2 , ĉ(s1, s2) = κ̂1(s1)+ κ̂2(s2) .(37)

The first equations of (31) are interpreted as

d log(
√

| sin â| ρ̂) =
( −1

sin â

∂ψ̂2

∂s2
+ cot â

2

∂ĉ

∂s1

)
ds1 +

(
1

sin â

∂ψ̂1

∂s1
− cot â

2

∂ĉ

∂s2

)
ds2 .(38)

(36) is actually the integrability condition of (38) and it is one of the best interpretations of
(1) if the rank of P is assumed to be 2 (see Lemma 4.1).

We prescribe arbitrary real-valued functions κ̂1(s1), κ̂2(s2), Â1(s1), Â2(s2) of class C2

and define ĉ by (37). The Goursat problem for (36) is to find a real-valued function Â(s1, s2)
satisfying (36) and

Â(s1, s1) = Â1(s1)+ Â2(0) , Â(−s2, s2) = Â1(0)+ Â2(s2) .(39)
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To do this, define a sequence of functions {Â(n)(s1, s2)}∞n=0 as follows (see [11, no. 50]).

Â(0)(s1, s2) = Â1

(
s1 + s2

2

)
+ Â2

(
s2 − s1

2

)
,

Â(n+1)(s1, s2) = Â(0)(s1, s2)− 1

4

∫ s1+s2

0
dσ2

∫ s1−s2

0
B̂(n)

(
σ1 + σ2

2
,
σ2 − σ1

2

)
dσ1

(40)

for n ≥ 0, where B̂(n) stands for B̂
Â

with Â = Â(n) . Given any bounded convex closed subset
F of the s1s2-plane containing the origin, we have

|Â(n+1) − Â(n)| ≤ l1(Cl2l3)
n|s 2

1 − s 2
2 |(|s1 − s2| + |s1 + s2|)n/n! ,

|∂sj Â(n+1) − ∂sj Â(n)| ≤ l1(Cl2l3)
n(|s1 − s2| + |s1 + s2|)n+1/n! (j = 1, 2)

for n ≥ 0 in F , where

l1 = max(|Â(0)|, |∂s1Â(0)|, |∂s2Â(0)|, |B̂Â(0) |) , l2 = max(|s1 − s2|, |s1 + s2|, 1) ,

l3 = max{|B̂
Â

− B̂
Â′ |/(|Â− Â′| + |∂s1Â− ∂s1Â

′| + |∂s2Â− ∂s2Â
′|)} ,

and C is a positive number independent of n, s1, s2 and of F . So, {Â(n)}∞n=0 converges uni-

formly in F , the limit function Â satisfies

Â(s1, s2)= Â1

( s1 + s2

2

)
+Â2

( s2 − s1

2

)
− 1

4

∫ s1+s2

0
dσ2

∫ s1−s2

0
B̂

(σ1 + σ2

2
,
σ2 − σ1

2

)
dσ1

and it is a unique solution in F to the Goursat problem given in (36) and (39). We substitute
the solution into the inverse function â with values in a fixed Jm. We define b̂ by (37) and ρ̂
by integrating (38). Now, we set

ĝ11 =
∫ s1

0
cos κ̂1(η)dη , ĝ12 =

∫ s1

0
sin κ̂1(η)dη ,

ĝ21 = −
∫ s2

0
cos κ̂2(η)dη , ĝ22 = −

∫ s2

0
sin κ̂2(η)dη .

(41)

Then, gjk = ĝjk ◦ T satisfy ∂y(g11 + g21) = ∂x(g12 + g22), ∂y(g12 − g22) = ∂x(g21 − g11).
Finally, the pair of

u1 =
∫ (x,y)

(0,0)

(
g11 + g21

2
dx + g12 + g22

2
dy

)
,

u2 =
∫ (x,y)

(0,0)

(
g12 − g22

2
dx + g21 − g11

2
dy

)(42)

is a solution of (1) in D. �

The equation (9) is rewritten as

dµ̂

ds1
= −1

2
µ̂ exp(κ̂1i)k ,

dν̂

ds2
= −1

2
ν̂ exp(−κ̂2i)k .(43)

So, µ̂ depends only on s1 and ν̂ depends only on s2 . We obtain f from (12) and (33).
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The transformation T is multiple-valued in general (see (32), (33) and (34)). We reduced
therefore the system (1) to a global question of finding inverse functions. If T is multiple-
valued, then the mapping f and (u1, u2) are also multiple-valued (see Examples 5, 6 in §5).

5. Examples.

EXAMPLE 1. A pair of arbitrary functions (u1(x), u2(x)) of class C2 of the variable x
is a solution of (1) (see Corollary 3.2 in §3). µ, ν are obtained if we integrate (not always by
quadrature)

µ′(x) = µ(x){u′′
2(x)j−u′′

1(x)k}/2 , ν′(x) = ν(x){u′′
1(x)k−u′′

2(x)j}/2 .
e1 = µ(x)ν(x) is independent of y and e2 = µ(x)iν(x) is constant. The image by f is the
product of a curve in a three-dimensional Euclidean subspaceE and a straight line perpendic-
ular to E. x is the arc length of the curve and y is the arc length of the straight line. This is an
application of formulas in §3 with 2a ≡ a − c ≡ 0 (mod 2πZ).

EXAMPLE 2. A pair of arbitrary functions (u1(x), u2(y)) of class C2 of the variable x
and of the variable y, respectively, is a solution of (1) and

df = (dx)µ0 exp{−u′
1(x)k}ν̄0 + (dy)µ0i exp{−u′

2(y)k}ν̄0

(µ0, ν0 are constant unit quaternions). The image is the product of a curve in a two-dimen-
sional Euclidean subspace E1 and a curve in a two-dimensional Euclidean subspace E2 per-
pendicular to E1. x, y are the arc lengths of the curves. This is an application of formulas in
§4 with a + 2b + c ≡ 2c ≡ 0 (mod 2πZ).

EXAMPLE 3. Let C be the ellipse (x/a)2 +(y/b)2 = 1, where a, b are constants satis-
fying 0 < b < a. An angle φ ∈ [0, 2π] represents a point of C as (ξ, η) = (a cosφ, b sin φ).

The arc length s in positive sense is such that ds =
√
a2 sin2 φ + b2 cos2 φ dφ. The curvature

is equal to κ = ab(dφ/ds)3. The normal line at (ξ, η) passes through (x, y) if and only if

x = ξ − (lb2ξ/
√
b4ξ2 + a4η2 ) , y = η − (la2η/

√
b4ξ2 + a4η2 ) .

Equations (δ1), (δ2) in §3 are

a2(x − ξ)η = b2(y − η)ξ ,(δ1)

l = {a2(η − y)η+ b2(ξ − x)ξ}/
√
b4ξ2 + a4η2 ,(δ2)

respectively. We obtain the angle φ (mod 2πZ) from (δ1) and the signed length l of the normal
segment from (δ2).

The focal set Γ is the simple closed curve |ax|2/3 +|by|2/3 = c2/3 which is parametrized
as x = cξ3/a4, y = −cη3/b4 with c = a2 − b2. We can draw four normal lines from a point
inside of Γ , two from a point outside of Γ , three from a point of Γ except for cusps and two
from each one of cusps. At any point (x, y) not lying on Γ , we can define the multiple-valued
function θ(x, y) (mod πZ) to be

tan θ(x, y) = (a/b) tanφ



ISOMETRIC IMMERSIONS OF EUCLIDEAN PLANE INTO EUCLIDEAN 4-SPACE 541

(see (δ1) above). θ has four function elements in the interior of Γ and two in the exterior.

EXAMPLE 4. Let C be the curve y = cos x (−∞ < x < +∞). The equation of the
normal line to C at (x ′, cos x ′) is

x ′ − x + y sin x ′ = sin x ′ cos x ′ .(44)

Set for the moment F(x ′) = x ′ − x + y sin x ′ − sin x ′ cos x ′. Given a point (x, y) of the
plane, let n = n(x, y) be the number of real solutions x ′ of the equation F(x ′) = 0. We have
n(x + 2π, y) = n(x, y) because of the periodicity.

n is finite at every point because F is an analytic function of three variables and does not
vanish if |x ′| > |y| + |x| + 1. Next, for any positive integer N , we have

F(kπ − π/2)F (kπ + π/2) < 0 (k = −N, 1 −N, . . . , N − 1, N)

if |x| ≤ π and if |y| ≥ (N + 2)π . So, F has a zero in every interval (kπ − π/2, kπ + π/2).
Since n is a periodic function of x of period 2π , we have

n(x, y) ≥ 2N if |y| ≥ (N + 2)π (N = 1, 2, 3, . . . ) .

Therefore, through an arbitrary point (x, y), there passes only a finite number of normal lines,
but the number of normal lines is not limited as |y| goes to infinity.

If the normal line at (x ′, cos x ′) passes through a given point (x, y), the formulas (27),
(28) are interpreted as (44) and

cos θ = sin θ sin x ′ .(45)

θ is always assumed to satisfy π/4 ≤ θ ≤ 3π/4. If r is the signed distance of (x ′, y ′) to
(x, y) such that (y − cos x)r ≥ 0, we have x − x ′ = r cos θ, y − cos x ′ = r sin θ and

dx1 + dyi = exp(θ i)[dr1 + {r dθ − (dx ′/ sin θ)}i] .
Change the coordinate system from (x, y) to (r, θ) supposing that 2 sin2 x ′ + y cos x ′ �= 0.
Then, x ′ depends only on θ and ξj = ϕj (θ) sin θ cos x ′/(2 sin2 x ′ + y cos x ′) satisfy (25),
where ϕj (θ) (j = 1, 2) are arbitrary real-valued functions. (u1, u2) is obtained from

d(∂xuj ) = −ϕj (θ) sin θ dθ , d(∂yuj ) = ϕj(θ) cos θ dθ (j = 1, 2) .

µ, ν depend only on θ , and the equation (9) is rewritten as

µ′ = (µ/2) exp(θ i){ϕ1(θ)j + ϕ2(θ)k} , ν′ = (ν/2) exp(−θ i){ϕ1(θ)j + ϕ2(θ)k} .
If ϕ1 = α (real constant), ϕ2 = 0, µ|θ=0 =1 and ν|θ=0 =i, for example, we have

µ =
(
ε

β
1 − α

2β
k
)

exp(−γ θ i)+
(
γ

β
1 + α

2β
k
)

exp(εθ i) ,

ν =
(
ε

β
i − α

2β
j
)

exp(γ θ i)+
(
γ

β
i + α

2β
j
)

exp(−εθ i) ,

where β =
√

1 + α2 , γ = (β + 1)/2 , ε = (β − 1)/2 .
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We set, for simplicity, i′ = (i + αj)/β, j′ = (j − αi)/β. Then, the mapping is

f (x, y) = α

β
rj′ − 1

β
r exp(βθ i′)i′ −

∫ x ′

x ′
0

exp(βθ i′) dx
′

sin θ
.(46)

The lower limit x ′
0 of integration is a constant depending on the function element under con-

sideration.

EXAMPLE 5. We apply the formulas in §4 to

ρ = 2es2/2 , a = π/2 , b = s1/2, c = s1 + (π/2) .

Then, x = e−s2/2 cos(s1/2), y = e−s2/2 sin(s1/2) if we modify (33). From (41), we have

g11 = x2 − y2

x2 + y2 , g12 = 2xy

x2 + y2 , g21 = log(x2 + y2) , g22 = 0 .

Substituting these into (42), a solution of (1) is

u1 = x log
√
x2 + y2 − (x/2) , u2 = y log

√
x2 + y2 − (y/2) .(47)

The equation for ν̂ in (43) is ν̂′ = −ν̂k/2, so ν̂ = β exp(−s2k/2). The equation for µ̂ is
µ̂′ = (µ̂/2) exp(s1i)j which is equivalent to µ̂′′ + µ̂′i+(µ̂/4) = 0 and µ̂′(0) = µ̂(0)j/2. So,
µ̂ is the sum of two exponential functions multiplied by constants from the left.

µ= (
√

2 + 1)α√
4 + 2

√
2

k
(
x1 + yi√
x2 + y2

)√
2−1

+ α√
4 + 2

√
2

(
x1 − yi√
x2 + y2

)√
2+1

, ν = β(x2 + y2)k/2,

where α, β are unit quaternions. For a particular choice of α and β, we obtain the following
mapping.

f (x, y) = f (0, 0)+ 1√
2

( x1 − yi√
x2 + y2

)√
2
(x2 + y2)(1−k)/2 .(48)

If we set x = r cos θ, y = r sin θ (r = √
x2 + y2 ), this is rewritten as

f (x, y) = f (0, 0)+ (1/
√

2 ) exp(−√
2θ i)r1−k .

It is quite elementary to verify that f is an isometric immersion. In fact, we have

df = exp(−√
2θ i){−(rdθ)i + (dr/

√
2 )(1 − k)}r−k ,

|df |2 = | − (rdθ)i + (dr/
√

2 )(1 − k)|2 = r2(dθ)2 + (dr)2 = (dx)2 + (dy)2 .

We see that f is multiple-valued with an infinite number of function elements.

EXAMPLE 6. The rest of the present paper will be devoted to the study of this example.
We make use of quaternions as above and also of ordinary complex numbers with imaginary
unit i = √−1. We apply the formulas (35) through (38) to

ρ̂ = e2s1s2 , â = π/2 , b̂ = s 2
1 + s 2

2 − (π/4) , ĉ = 2s 2
1 − 2s 2

2 .(49)
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Then, ψ1 = s 2
1 − s 2

2 + (π/4), ψ2 = s 2
1 − s 2

2 − (π/4), κ1 = 2s 2
1 , κ2 = −2s 2

2 . The mapping
T −1 (see (33)) is defined to be

z = x + iy =
∫ t

0
eη

2
dη = t 1F1(1/2, 3/2; t2) , where t = eπi/4(s1 + is2) .(50)

We discuss the mapping T : (x, y) �→ (s1, s2) in Lemma 5.2 below.
Equations (43) are interpreted as

µ̂′ = −(µ̂/2) exp(2s 2
1 i)k , ν̂′ = −(ν̂/2) exp(2s 2

2 i)k .(51)

Two equations are of the same type and the former is equivalent to

µ̂′′ + 4s1µ̂′i + (µ̂/4) = 0 and µ̂′(0) = −µ̂(0)k/2 .
We have the following unique power series solution satisfying µ̂(0) =1.

µ̂(s1) = Φ(s1)− kΨ (s1) , ν̂(s2) = Φ(s2)− kΨ (s2) ,

Φ(l) = 1F1

(
− 1

32
i,

1

2
1; −2l2i

)
, Ψ (l) = 1F1

(
1

2
1 − 1

32
i,

3

2
1; −2l2i

)
l

2
,

(52)

where we set for quaternions α, γ, λ which commute one another

1F1(α, γ ; λ) =
∞∑
p=0

Γ (α + p1)Γ (γ )
p!Γ (α)Γ (γ + p1)

λp .

The gamma function is defined to be

Γ (α) =
∫ +∞

0
e−uuα−1du (
α > 0) , Γ (α + 1) = αΓ (α) .

In view of (50), (52) and (12), we define f̂ to be

f̂ (s1, s2) =
∫ (s1,s2)

(0,0)
µ̂(s′1){exp(t′2)dt′}ν̂(s′2) , t′ = exp(π i/4)(s′11 + s′2i) ,(53)

and an isometric immersion to be f = f̂ ◦ T . Let us state the conclusion as Proposition 5.1
in advance and a detailed analysis as Lemmas 5.2 and 5.3 afterwards.

PROPOSITION 5.1. Let t be the inverse function of z = t 1F1(1/2, 3/2; t2) and R be
the Riemann surface of the field of meromorphic functions of the variable t . Then, f realizes
R isometrically in R4 and t is a uniformizing variable.

PROOF. z is an entire function of t , so x, y are single-valued real-analytic functions in
the whole s1s2-plane (see (50)). f̂ is a single-valued real-analytic mapping of the s1s2-plane
into R4 (see (53)). So, the variable t uniformizes both z and f . On the other hand, a function
of t is a function on R if and only if it is single-valued and meromorphic in the whole t-
plane possibly except at t = ∞. Since f is an isometric immersion of the z-plane into R4, f
realizes R isometrically in R4. �

LEMMA 5.2. Let z = z(t) = t 1F1(1/2, 3/2; t2) (see (50)). Then,
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(i) For every complex number z0, there exists an infinite number of complex numbers t
such that z(t) = z0.

(ii) z(t) tends to
√
πi/2 as t goes to ∞ in the sector π/4 ≤ arg t ≤ 3π/4, and, z(t)

tends to −√
πi/2 as t goes to ∞ in the sector −3π/4 ≤ arg t ≤ −π/4.

PROOF. (i) This is a consequence of a theorem of Picard on the value distribution
(see Shimomura [14, p. 23]). However, we prove it directly because we need (57) below. Set
arg t = π/2 for a moment. Then,

z = I1 + I2 ,

where I1 is the integral of eη
2

from η = 0 to ∞i and I2 is that from ∞i to |t|i. First, we have
I1 = √

πi/2. Rewrite I2 as an integral with respect to v = t2 − η2 to have

I2 = et
2

2t

∫ +∞

0

e−vdv√
1 − v′ = et

2

2t
(1 + E) , where E = 1

t2

∫ +∞

0

v e−vdv√
1 − v′ + 1 − v′ , v

′ = v

t2
.

z, I1, I2, E being holomorphic in the upper half-plane, the theorem of identity implies

z(t) = (
√
πi/2)+ et

2
(1 + E)/(2t) if 0 <arg t < π .(54)

For any δ satisfying 0 < δ < π/2, there exists a positive constant A = A(δ) such that

|E| ≤ A/|t|2 if δ ≤ arg t ≤ π − δ and |t| ≥ 1 ,(55)

because |√1 − v′ + 1 − v′| (v′ = v/t2) is greater than a positive constant.
For an arbitrary z0 ( �= √

πi/2), we set

ζ = 2z0 − √
πi = |ζ |eiα , −π < α ≤ π .

The equation z = z0 implies

et
2
(1 + E) = ζ t = ζ t e2nπi

if δ ≤ ψ = arg t ≤ π − δ and |t| ≥ 1, or

|t|2 cos 2ψ = log(|ζ ||t|)+ E1(t) , |t|2 sin 2ψ = ψ + α + 2nπ + E2(t) ,(56)

where E1(t) and E2(t) are real-valued, |E1(t)| + |E2(t)| ≤ C1/|t|2, n is an integer and
C1 = C1(z

0, δ) is a positive constant independent of t, n. Take a large T (≥ 1) and a δ,
0 < δ < π/4. Then, for every τ (≥ T ), there exists a unique ψ(τ) such that δ ≤ ψ(τ) ≤ π/2
and

τ 2 cos 2ψ(τ) = log(|ζ |τ )+ E1(τe
ψ(τ)i) .

It satisfies ∣∣∣∣ψ(τ)− π

4
+ log τ

2τ 2

∣∣∣∣ ≤ C2

τ 2 ,(a)

where C2 = C2(z
0) is a positive constant independent of τ . We can then choose a positive

integer n0 = n0(z
0) such that there exists a unique τn ≥ T such that

τ 2
n sin 2ψ(τn) = ψ(τn)+ α + 2nπ + E2(τne

ψ(τn)i)
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for every integer n ≥ n0. It satisfies

|τ 2
n − ψ(τn)− α − 2nπ | ≤ C3(logn)2

n
for n ≥ n0 ,(b)

where C3 = C3(z
0) is a positive number independent of n.

We have z(tn(z0)) = z0 if we set tn(z0) = τne
ψ(τn)i (n ≥ n0) provided that z0 �= √

πi/2.
(a) and (b) imply∣∣∣∣ |tn(z0)|2 − α −

(
2n+ 1

4

)
π

∣∣∣∣ ≤ B(log n)2

n
,

∣∣∣∣ arg tn(z
0)− π

4
+ logn

8πn

∣∣∣∣ ≤ B

n
,(57)

for n ≥ n0 , where B = B(z0) is a positive constant independent of n. There exists also an
infinite number of t such that z(t) = √

πi/2 because z(tn(−√
πi/2)) = √

πi/2 in view of
z(t̄ ) = z(t) and z(−t) = −z(t). Consequently, there exists an infinite number of t such that
z(t) = z0 for every value of z0.

We have an infinite number of zeros {tn(0),−tn(0), t̄n(0),−t̄n(0)}∞n=n0
of z. There exists

at most a finite number of zeros other than this sequence. (57) is an extended version of the
formulas in the book of Buchholz [1, p. 180, (3a), (3b)].

(ii) Obvious from (54), (55) and by z(−t) = −z(t). �

LEMMA 5.3. (i) For given t1 �= ∞, t2 �= ∞ and z0 �= ∞ satisfying

z(t1) = z(t2) = z0 ,

let f1 and f2 be two function elements of f such that

f1(z
0) = f̂ (t1) and f2(z

0) = f̂ (t2) .

Then, t1 = t2 if f1 = f2 .
(ii) f has an infinite number of function elements each of which is real-analytic in the

whole xy-plane.
(iii) f has a unique function element f0 whose first order derivatives are discontinuous

at two finite points (x, y) = (0,
√
π/2) and (0,−√

π/2).
(iv) The image of the xy-plane by f is arcwise-connected.

PROOF. (i) Denote by t̃ = t̃ (t) the solution of

exp(t̃ 2)dt̃ = exp(t2)dt , t̃(t1) = t2(c)

in a disk |t − t1| < δ (δ > 0). Then, z(t̃ ) = z(t), f2(z(t)) = f2(z(t̃ )) = f̂ (t̃ ), f1(z(t)) =
f̂ (t) if |t − t1| < δ. For the proof, it suffices to show that t2 = t1 if

f̂ (t̃ )− f̂ (t2) = f̂ (t)− f̂ (t1)(d)

in a disk |t − t1| < δ′ (0 < δ′ ≤ δ). By regarding t = eπi/4(s1 + s2i) as t = exp(π i/4)(s11 +
s2i) and t̃ = eπi/4(s̃1 + s̃2i) as t̃ = exp(π i/4)(s̃11 + s̃2i), we know (c), (d) and (53) imply

exp(t̃2)d t̃ = exp(t2)dt , µ̂(s̃1){exp(t̃2)d t̃}ν̂(s̃2) = µ̂(s1){exp(t2)dt}ν̂(s2).
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Since exp(t2)dt generates 1 and i at every point in the disk |t − t1| < δ′, we have

µ̂(s̃1)ν̂(s̃2) = µ̂(s1)ν̂(s2) , µ̂(s̃1)i ν̂(s̃2) = µ̂(s1)i ν̂(s2) .

So, there exists a real-valued smooth function ω = ω(t) such that

µ̂(s̃1) = µ̂(s1) exp(ωi) , ν̂(s̃2) = ν̂(s2) exp(ωi) .(e)

We differentiate both sides of two equalities and cancel µ̂ and ν̂ by making use of (51) and
(e) itself. Then,

{(ds̃j ) exp(2s̃ 2
j i + ωi)− (dsj ) exp(2s 2

j i − ωi)}k = −2d exp(ωi) (j = 1, 2) .

The left-hand sides are orthogonal to the right-hand sides, so ω is a constant and

(ds̃j ) exp{(2s̃ 2
j − 2s 2

j + 2ω)i} = (dsj )1 (j = 1, 2) .

Since dsj and ds̃j are real, there exist integers n1, n2 such that

2s̃ 2
j − 2s 2

j + 2ω = njπ, ds̃j = (−1)nj dsj (j = 1, 2) .

Since s̃j ds̃j = sj dsj by the first equations, s̃j = (−1)nj sj by the second equations, and then
n1 = n2 (= 2ω/π) again by the first ones. We denote it by n to have

s̃j = (−1)nsj (j = 1, 2) .(f)

Finally, the equation exp(t̃2)d t̃ = exp(t2)dt is reduced to (−1)n = 1, so n is even and
(s̃1, s̃2) = (s1, s2), or t̃ = t identically and t2 = t1 .

(ii) We have just shown that distinct zeros of z(t) give rise to distinct function elements
of f . But, we discuss once more in another way to obtain (59) below.

For zeros tn(0) = eπi/4(sn,1 + sn,2i) of z(t) (see (57)), we have sn,1 > 0 > sn,2 and
there exists a positive number C4 independent of n such that

|sn,1 − √
2πn| ≤ C4√

n
,

∣∣∣sn,2 + logn√
32πn

∣∣∣ ≤ C4√
n

for n ≥ n0 .(g)

From this and (52), we have at first

|ν̂(sn,2)− 1| ≤ C5 logn√
n

(h)

with a positive number C5 independent of n. Next, we apply the inequalities∣∣∣∣ 1F1

(
− 1

32
i,

1

2
1; −λi

)
−

√
π

Γ ((1/2)+ (i/32))
(λi)i/32

∣∣∣∣ ≤ D√
λ

(λ ≥ 1) ,

∣∣∣∣ 1F1

(1

2
1 − 1

32
i,

3

2
1; −λi

)
−

√
π

2Γ (1 + (i/32))
(λi)(i/32)−(1/2)

∣∣∣∣ ≤ D

λ
(λ ≥ 1)

(58)

to λ = 2s 2
n,1 (see [1, p. 91, (3)]), where D is a positive number independent of λ. Then, there

exists a positive number C6 independent of n such that

|µ̂(sn,1)− u(4πn)i/32| ≤ C6√
n

with u =
√
π ii/32

Γ ((1/2)+ (i/32))
− k

√
π i(i/32)−(1/2)

√
32Γ (1 + (i/32))

.(i)
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u and (4πn)i/32 are of unit length. Denote

ên,1 = µ̂(sn,1)ν̂(sn,2) , ên,2 = µ̂(sn,1)iν̂(sn,2) .

Then, by (h), (i), there exists a positive number E independent of n such that

|ên,1 − u(4πn)i/32| + |ên,2 − ui(4πn)i/32| ≤ E logn√
n

for n ≥ n0 .(59)

Since eπ is a transcendental number (see Gelfond [10] and Siegel [15, p. 84]), (log 2)/π
is irrational and the set of fractional parts of {(log(2pπ))/(64π)}∞p=2 is everywhere dense in
the interval (0, 1). So, given any integer L ≥ 2, there exist positive integers n1, . . . , n2L such
that ∣∣∣∣ênp,1 − u exp

pπ i
L

∣∣∣ < π

4L
,

∣∣∣ênp,2 − ui exp
pπ i
L

∣∣∣ < π

4L

for 1 ≤ p ≤ 2L. Let fp(x, y) be the function element such that fp(0, 0) = f̂ (snp,1, snp,2).
Then, f1, . . . , f2L are distinct because ∂xfp(0, 0) = ênp,1 and ∂yfp(0, 0) = ênp,2 (p =
1, . . . , 2L) are distinct. L being arbitrary, f has an infinite number of function elements.

If z(t0) = z0 for a finite t0 and a finite z0, basic equalities

dz

dt
= et

2
,

dt

dz
= e−t2(60)

show that the function element of t (z) satisfying t (z0) = t0 is holomorphic in a neighbor-
hood of z0. So, every function element of (s1(x, y), s2(x, y)) is real analytic provided that
a finite (s1, s2) corresponds to a finite (x, y). And hence, every function element f (x, y) =
f̂ (s1(x, y), s2(x, y)) is real analytic in the whole xy-plane with the only exception shown just
below.

(iii) The sector π/4 < arg t < 3π/4 corresponds to the sector s1 > 0, s2 > 0. In the
domain (π/4) + δ < arg t < (3π/4) − δ, |t| ≥ 1 (0 < δ < π/4), there exists a positive
constant C7 = C7(δ) independent of t such that C7|t| < s1 < |t| and C7|t| < s2 < |t|.
Applying again (54), (55) and (58) with λ = 2s 2

1 or λ = 2s 2
2 , we have

µ̂(s1) = u(
√

2s1)i/16 + E5 , ν̂(s2) = u(
√

2s2)i/16 + E6 , |E5| + |E6| ≤ C8/|t| ,(j)

where C8 = C8(δ) is a positive constant independent of t . Let f0 be the function element of
f obtained from (53) by integrating on the line segment from (0, 0) to (s1, s2) in this sector.
(j) implies

(∂xf0)̂ = u(s1/s2)i/16 ū + · · · , (∂yf0)̂ = u(s1/s2)i/16 iū + · · · .(61)

As |t| goes to +∞ in this sector, x + iy tends to
√
πi/2 and s1/s2 assumes any value of the

interval [tan δ, cot δ]. So, ∂xf0 and ∂yf0 are discontinuous at (x, y) = (0,
√
π/2). f0 has the

same property at (x, y) = (0,−√
π/2) by symmetry.

(iv) Denote by ∞+ and ∞− the limits of t in the sectors π/4 <arg t < 3π/4 and
−3π/4 <arg t < −π/4, respectively, as |t| goes to +∞. Let S be the union of the s1s2-plane,
∞+ and of ∞− . Then, f̂ is a one-to-one mapping of S onto the image of the xy-plane by
f . Given any point f̂ (σ ) (σ ∈ S) of the image, f̂ (σ ) is equal to the integral (53) on the line
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segment or the half-line in S from (0, 0) to σ . So, any point f̂ (σ ) can be connected with
f̂ (0, 0) = 0 by an arc. Also, two arbitrary points f̂ (σ ), f̂ (σ ′) can be connected by an arc in
the image of the xy-plane by f . �

REMARK 1. We restrict ourselves to the half-line arg t = π/4 parametrized as t =
eπi/4s1, 0 ≤ s1 < +∞. As s1 goes to +∞, the first order derivatives of f behave like

(∂xf )̂ (s1, 0) = u(
√

2s1)
i/16 + · · · , (∂yf )̂ (s1, 0) = ui(

√
2s1)

i/16 + · · · .(62)

This is geometrically interpreted as follows. As s1 goes to +∞ on this half-line, the tangent
space tends to the fixed linear subspace spanned by u and ui, and the image of the standard
orthonormal frame of the xy-plane rotates by an angle (log s1)/16 in this subspace within an
error. Analogous interpretations may be possible for (59) and (61). But we cannot evaluate f̂
themselves as |t| goes to +∞.

REMARK 2. Independently of the notation in the proofs of Lemmas 5.2 and 5.3, we
enumerate all zeros of z(t) to be tp = eπi/4(sp,1 + sp,2i) (p = 0, 1, 2, . . . ) with t0 = 0. For
each p ≥ 1, let γ̂p be a fixed oriented rectifiable curve from t0 to tp passing through no other
zero in the t-plane and Γp be the corresponding curve in R. Then, γ̂p ◦ T is a loop in the
z-plane, while Γp is not closed and {Γp}∞p=1 are distinct due to Lemma 5.3, (i). With γ̂p or
Γp, we can associate an element Ap of SO(4) defined to be

Apq = µ̂(sp,1)qν̂(sp,2)(63)

(see (52)). Then, the subgroup of SO(4) generated by {Ap}∞p=1 can be regarded as the mon-
odromy group of R.

On the other hand, in view of (42), (50), we define (û1, û2) to be

û1 + iû2 = 1

2

∫ (s1,s2)

(0,0)
{ 1F1(1/2, 3/2; 2s′1 2i) exp(t̄ ′2)s′1dt̄ ′

− 1F1(1/2, 3/2; 2s′2 2i) exp(t ′2)s′2dt ′}

(64)

and (u1, u2) to be (û1, û2) ◦ T . Then, (û1, û2) is a single-valued real analytic function.

COROLLARY 5.4. (i) The solution (u1, u2) of (1) has an infinite number of function
elements each of which is real analytic in the whole xy-plane.

(ii) (u1, u2) has a unique function element which is non-differentiable at two finite
points (x, y) = (0,

√
π/2) and (0,−√

π/2).

PROOF. (i) Set ρn = ρ̂(sn,1, sn,2) = e2sn,1sn,2 (see (19)) in the notation of (g). Then,
there exists a positive number F independent of n such that

|ρn − (1/
√
n )| ≤ F(logn)2/n for n ≥ n0 .(65)

So, ρn are distinct for an infinite number of n. And hence, (u1, u2) has an infinite number of
function elements.
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(ii) In the domain (π/4)+ δ < arg t < (3π/4)− δ, |t| ≥ 1 (0 < δ < π/4), we apply
again (54), (55) to t replaced by

√
2sj eπi/4 (j = 1, 2). Then,

d

(
û1 −

√
π

4
y

)
+ i d

(
û2 −

√
π

4
y

)

= ei|t |2−2s1s2

(
1 + E7

8s1
dt̄ − 1 + E8

8s2
dt

)
, |E7| + |E8| ≤ C10

|t|2 ,

where C10 = C10(δ) is a positive constant independent of t . The corresponding function
element of (u1, u2) is non-differentiable at (x, y) = (0,

√
π/2). By symmetry, the same

function element is non-differentiable at (x, y) = (0,−√
π/2), too. �

REMARK. We enumerate some of problems to be investigated hereafter.
(a) Value distribution of an isometric immersion. In Example 6, we do not know the

behavior of f̂ (s1, s2) at infinity.
(b) Smoothness of an isometric immersion at a point of ramification. In Example 4,

we do not know how to choose the lower limits of integration in (46) in such a way that f be
continuous in the whole xy-plane.

(c) Solution of the system (1) when the rank of the matrix P varies. The local coordi-
nate system (s1, s2) introduced in §4 is no more useful. See the remark after (22).

(d) Isometric immersions whose domains of definition are proper subsets of R2. The
mapping associated with (u1, u2) = (

√
x2 − y2,

√
2xy ) will be an example.

(e) Isometric immersions with non-vanishing normal curvature. In the present article,
we do not study at all isometric immersions of “composition“ type.
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