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RICCI CURVATURE AND ALMOST SPHERICAL MULTI-SUSPENSION
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Abstract. In this paper, we give a generalization of Cheeger-Colding’s suspension
theorem for manifolds with almost maximal diameters. We also discuss a relationship between
the eigenvalues of the Laplacian and the structure of tangent cones of non-collapsing limit
spaces.

Introduction. We will study the structure of Riemannian manifolds with positive Ricci
curvature satisfying an almost maximal condition. One of our main results of this paper is the
following:

THEOREM 0.1. Let M be an n-dimensional complete Riemannian manifold (n ≥ 2)
with RicM ≥ n − 1. Given a sufficiently small positive number ε > 0, we assume that there
exist k pairs (p1, q1), . . . , (pk, qk) of points of M such that |pi, qi − π | < ε holds for each i,
and that |pi, pj − π/2| < ε holds for i �= j . Then we have the following:

(1) k is at most n+ 1.
(2) If 1 ≤ k ≤ n− 1, then there exists a compact geodesic space Z with diam(Z) ≤ π

such that dGH (M,Sk−1 ∗ Z) < Ψ (ε; n).
(3) If k = n or n+ 1, then dGH(M,Sn) < Ψ (ε; n). In particular, M is diffeomorphic

to Sn.

Here, throughout the article, we denote by Ψ (ε1, ε2, . . . , εk; c1, c2, . . . , cl) (more sim-
ply, Ψ ) some positive function on Rk

>0 × Rl satisfying

lim
ε1,ε2,...,εk→0

Ψ (ε1, ε2, . . . , εk; c1, c2, . . . , cl) = 0

for each fixed c1, c2, . . . , cl . In addition, Sk−1 ∗ Z denotes the k-fold spherical suspension
of Z, dGH is the Gromov-Hausdorff distance between compact metric spaces and x, y is the
distance between x and y. In the last assertion, M is diffeomorphic to Sn by the stability
theorem of Cheeger-Colding (see [6, Theorem A.1.12]).

Let us review some related results. Let M be an n-dimensional complete Riemannian
manifold with RicM ≥ n− 1. Then, it is well-known that M is compact and satisfies

diam(M) ≤ π , rad(M) ≤ π , vol(M) ≤ vol(Sn) .
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Moreover,M is isometric to Sn if and only if the equality holds in one of the above inequali-
ties. A similar theorem described on the volume and the radius is proved by Colding.

THEOREM 0.2 (Colding [12, 13]). Let M be an n-dimensional compact Riemaniann
manifold (n ≥ 2) with RicM ≥ n − 1. Given a sufficiently small positive number ε > 0, we
assume that the inequarity vol(M) ≥ vol(Sn)− ε (or rad(M) ≥ π − ε) is satisfied. Then we
have dGH (M, Sn) < Ψ (ε; n). In particular,M is diffeomorphic to Sn.

We will give an alternative proof of Theorem 0.2 by using Theorem 0.1 (see Remark
1.19). An analogous statement for the diameter is known to be false (see [1] or [25] for
examples). However, the following result is proved by Cheeger and Colding as one of almost
warped product theorems.

THEOREM 0.3 (Cheeger-Colding [6, Theorem 5.12]). Let M be an n-dimensional
compact Riemaniann manifold (n ≥ 2) with RicM ≥ n−1. Given a sufficiently small positive
number ε > 0, we assume that diam(M) ≥ π−ε. Then there exists a compact geodesic space
Z with diam(Z) ≤ π such that dGH (M, S0 ∗ Z) < Ψ (ε; n).

Note that Theorem 0.3 corresponds to the case k = 1 of Theorem 0.1. In Section 1, we
will give a simplified proof of Theorem 0.3. Then we will prove Theorem 0.1.

We will discuss in Section 2 a relationship between the first eigenvalue of the Lapla-
cian and Theorem 0.1. We will calculate the L2-inner product of cosine of distance functions
(Proposition 2.1), and give alternative proofs of results by Aubry [2], Bertrand [3] and Pe-
tersen [28].

We will study the tangent cones on non-collapsing limit spaces in Sections 3 and 4. We
prove that such tangent cones satisfy a similar property to Theorem 0.1, and study the topo-
logical structure of them. We also prove the following theorem which sharpens the conclusion
in Theorem 0.1 when k = n− 1.

THEOREM 0.4. We assume that the assumption in Theorem 0.1 holds with k = n− 1.
Then, there exists 0 ≤ r ≤ 1 such that dGH(M, Sn−2 ∗ S1(r)) < Ψ (ε; n) holds. Here, we set
S1(r) = {x ∈ R2 ; |x| = r} and the metric of S1(r) is the standard Riemannian metric.

We will prove Theorem 0.4 by using Theorem 0.1 and a result about singularities of
non-collapsing limit spaces.
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results. Afterward, we learned from Professor Erwann Aubry that they follow from [3] and [2]. The

author also thanks him for his valuable comments. I am also grateful to the referee for many valuable

advices on the first version.

1. Proof of Theorem 0.1.
1.1. Preliminaries. For a positive number ε > 0, we use the following notation;

a = b ± ε ⇔ |a − b| < ε .



RICCI CURVATURE AND ALMOST SPHERICAL MULTI-SUSPENSION 501

For a metric space Z, a point z ∈ Z and a positive number r > 0, we put

Br(z) = {w ∈ Z ; z,w < r} , B̄r (z) = {w ∈ Z ; z,w ≤ r} , ∂Br(z) = {w ∈ Z ; z,w = r} .
DEFINITION 1.1. We say that Z is a geodesic space if for each z1, z2 ∈ Z, there exists

an isometric embedding c : [0, z1, z2] → Z such that c(0) = z1, c(z1, z2) = z2. Also, we say
that c is a minimal geodesic from z1 to z2.

DEFINITION 1.2. We define the metric on [0, π] × Z/∼ as

(t1, z1), (t2, z2) = arccos(cos t1 cos t2 + sin t1 sin t2 cos min{z1, z2, π}) .
Here, ∼ is the equivalence relation such that {0} ×Z and {π} × Z go to a point, respectively.
Then, this metric space is denoted by S0 ∗Z, and we call it the spherical suspension of Z. We
also define

Sk ∗ Z =
k+1︷ ︸︸ ︷

S0 ∗ (S0 ∗ (· · · ∗ (S0 ∗Z)) · · · ) .
REMARK 1.3. If Z is compact, then S0 ∗ Z is compact. Moreover if Z is a geodesic

space, then S0 ∗ Z is also a geodesic space. We put M = {isometry class of compact metric
spaces}, then S0∗ : M → M is uniformly continuous map for dGH .

Next, we review the segment inequality by Cheeger and Colding. For an n-dimensional
compact Riemannian manifold M (n ≥ 2) with RicM ≥ n − 1 and an integrable function
g : M → R≥0 , we define Fg : M ×M → R≥0 as

Fg(x, y) = inf
γ

∫
γ

g(γ (t))dt .

Here, the infinimum runs over all minimal geodesics γ from x to y.

THEOREM 1.4 (Cheeger-Colding [5, Theorem 2.15]). With notation as above, we
have ∫

M×M
Fg (x, y)dxdy ≤ C(n) vol(M)

∫
M

g(x)dx .

Here, C(n) > 0 is a positive constant depending only on n.

REMARK 1.5. In fact, the theorem above is a special global case of the segment in-
equality that is proved by Cheeger and Colding. They prove a local statement on any complete
Riemaniann manifoldM with RicM ≥ −(n− 1). However, the theorem above is sufficient to
prove our main result.

1.2. Almost cosine formula (a proof of Theorem 0.3). In this subsection, we will give
a comparatively easy proof of Theorem 0.3. Throughout this subsection, we fix an integer
n ≥ 2, a positive number ε > 0, an n-dimensional compact Riemannian manifold M with
RicM ≥ n− 1 and p, q ∈ M such that p, q ≥ π − ε holds. We put f (x) = cosp, x .
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LEMMA 1.6 (Colding [12, Lemma 1.10]). There exists a smooth function f̃ ∈C∞(M)
such that

1

vol(M)

∫
M

|f (x)− f̃ (x)|2dx < Ψ (ε; n) ,
1

vol(M)

∫
M

|∇f − ∇f̃ |2dx < Ψ (ε; n) ,
1

vol(M)

∫
M

|Hessf̃ + f̃ gM |2dx < Ψ (ε; n) .
Here, gM is the Riemannian metric on M .

LEMMA 1.7 (Grove-Petersen [20, Lemma 1]). For every point x in M , we have

p, x + q, x − p, q < Ψ (ε; n) .
See [12], [20] for the proof of Lemmas 1.6 and 1.7.

LEMMA 1.8. Let x be a point in M and t a number in [−1, 1] satisfying f−1(t) �= ∅.
(1) If f (x) ≤ t , then

x, f−1(t)+ p, f−1(t)− x, p = 0 .

(2) If f (x) > t , then

p, x + x, f−1(t)− p, f−1(t) < Ψ (ε; n) .
PROOF. (1) It is easy to see that there exists a point y ∈ f −1(t) such that p, y +

x, y = p, x. On the other hand, for every point z ∈ f−1(t), we have x, y = p, x − p, y =
p, x − p, z ≤ x, z. Thus x, y = x, f−1(t), and we have the claim.

(2) Without loss of generality, we may assume f (q) ≤ t . Then, there exists a point
y ∈ f−1(t) such that x, y + y, q = x, q. By Lemma 1.7, we have p, x + x, y − p, y < Ψ .
Thus, for every point z ∈ f−1(t), we have x, y ≤ p, y − p, x + Ψ = p, z − p, x + Ψ ≤
z, x + Ψ . Therefore,

∣∣x, y − x, f−1(t)
∣∣< Ψ. This implies the claim. �

LEMMA 1.9. We take f̃ ∈ C∞(M) as in Lemma 1.6. Then, for every points x, y, z ∈
M , there exist x̂, ŷ, ẑ ∈ M with the following properties.

(1) x, x̂ < Ψ (ε; n), y, ŷ < Ψ (ε; n), z, ẑ < Ψ (ε; n), |f (x̂) − f̃ (x̂)| < Ψ (ε; n),
|f (ŷ)− f̃ (ŷ)| < Ψ (ε; n), |f (ẑ)− f̃ (ẑ)| < Ψ (ε; n).

(2) x̂ �∈ Cŷ, ŷ �∈ Cẑ, ẑ �∈ Cx̂ . Here, Cm is the cut locus of m ∈ M .

(3) There exists an open set U ⊂ [0, x̂, ŷ] satisfying the following conditions:
(a) H1([0, x̂, ŷ] \U) = 0. Also, for all u ∈ U , there exists a unique minimal geodesic

τu : [0, l(u)] → M (l(u) = ẑ, σ (u)) from ẑ to σ(u). Here, H1 is the one-dimensional
Hausdorff measure and σ is the minimal geodesic from x̂ to ŷ.

(b) We have ∫
U

∣∣f (σ(u))− f̃ (σ (u))
∣∣2
du < Ψ (ε; n) ,

∫
U

∣∣|∇f̃ |(σ (u))− sinp, σ(u)
∣∣2
du < Ψ (ε; n) ,
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∫
U

∫ l(u)

0
|Hessf̃ + f̃ gM |(τu(s))dsdu < Ψ (ε; n) .

PROOF. By Theorem 1.4 applied twice and Lemma 1.6, we have

1

(vol(M))3

∫
M3

Fhc(a, b)dadbdc < Ψ (ε; n) .

Here, hc = F|Hess
f̃
+f̃ gM |(c, ·). Therefore, by the Tchebychev inequarity, there exists a subset

M̃ ⊂ M3 such that for all (a, b, c) ∈ M̃,
• a �∈ Cb, b �∈ Cc, c �∈ Ca and, for a minimal geodesic σ : [0, a, b] → M from a to b,
H1(Image(σ ) ∩ Cc) = 0;

• |f (a)− f̃ (a)| < Ψ (ε; n), |f (b)− f̃ (b)| < Ψ (ε; n), |f (c)− f̃ (c)| < Ψ (ε; n) and

Fhc(a, b) < Ψ (ε; n) ;
• for a minimal geodesic σ : [0, a, b] → M from a to b, we have

∫ a,b

0
|f (σ(t))− f̃ (σ (t))|2dt < Ψ (ε; n) ,

∫ a,b

0

∣∣|∇f̃ (σ (t))| − sinp, σ(t)
∣∣2
dt < Ψ (ε; n) ;

• vol(M̃) ≥ (1 − Ψ (ε; n))(vol(M))3.
By the Bishop-Gromov volume comparison theorem, we have the claim. �

LEMMA 1.10. Let x, y, z be points in M satisfying y, z ∈ f−1(t), t ∈ [−1, 1] and
x, y = x, f−1(t). We take x̂, ŷ, ẑ as in Lemma 1.9.

(1) If f (x) ≤ t , then∫
U

|∇f̃ (σ (u))− sin(p, x − u)σ ′(u)|2du < Ψ (ε; n) .

(2) If f (x) > t , then∫
U

|∇f̃ (σ (u))+ sin(p, x + u)σ ′(u)|2du < Ψ (ε; n) .
PROOF. It is easy to prove the following by Lemma 1.7.
(3) If f (x) ≤ t , then for each u ∈ U , we have

|p, σ(u)− (p, x − u)| < Ψ (ε; n) .
(4) If f (x) > t , then for each u ∈ U , we have

|p, σ(u)− (p, x + u)| < Ψ (ε; n) .
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We give only a proof of (1) by using (3). The proof of (2) is similar to that of (1).

∫
U

|∇f̃ (σ (u))− sin(p, x − u)σ ′(u)|2du

=
∫
U

(|∇f̃ |2(σ (u))− 2 sin(p, x − u)(f̃ ◦ σ)′(u)+ sin2(p, x − u))du

=
∫
U

(sin2(p, x − u)− 2 sin(p, x − u)(f̃ ◦ σ)′(u)+ sin2(p, x − u))du± Ψ

= 2
∫
U

(sin2(p, x − u)− sin(p, x − u)(f̃ ◦ σ)′(u))du± Ψ

= 2
∫
U

sin2(p, x − u)du− 2[sin(p, x − u)f̃ ◦ σ(u)]x̂,ŷ0

+ 2
∫
U

− cos(p, x − u)f̃ ◦ σ(u)du± Ψ

= 2
∫
U

sin2(p, x − u)du− 2(sin(p, x̂ − x̂, ŷ)f̃ (ŷ)− sinp, x f̃ (x̂))

+ 2
∫
U

− cos2(p, x − u)du± Ψ

= 2
∫
U

(sin2(p, x − u)− cos2(p, x − u))du

− 2(sinp, ŷ cosp, y − sinp, x cosp, x)± Ψ

= −2
∫
U

cos(2p, x − 2u)du− sin 2p, y + sin 2p, x ± Ψ

= [sin(2p, x − 2u)]x̂,ŷ0 − sin 2p, y + sin 2p, x ± Ψ = Ψ . �

LEMMA 1.11. With the same assumption as in Lemma 1.9, we have

∣∣∣∣cos ẑ, x̂ − cosp, ẑ cosp, x̂

sinp, x̂
− cos ŷ, ẑ − cosp, ŷ cosp, ẑ

sinp, ŷ

∣∣∣∣ min{sin2 p, x̂, sin2 p, ŷ}
< Ψ (ε; n) .

PROOF. We prove the statement in the case f (x) ≤ t . The case f (x) > t is similarly
proved.

∣∣∣∣cos ẑ, x̂ − cosp, ẑ cosp, x̂

sinp, x̂
− cos ŷ, ẑ − cosp, ŷ cosp, ẑ

sinp, ŷ

∣∣∣∣
=

∣∣∣∣
∫
U

(
cos l(u)− cosp, ẑ cos(p, x̂ − u)

sin(p, x̂ − u)

)′
du

∣∣∣∣
=

∣∣∣∣
∫
U

{
(− sin l(u) l′(u)− cosp, ẑ sin(p, x̂ − u)) sin(p, x̂ − u)

sin2(p, x̂ − u)
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+ (cos l(u)− cosp, ẑ cos(p, x̂ − u)) cos(p, x̂ − u)

sin2(p, x̂ − u)

}
du

∣∣∣∣
≤ 1

min{sin2 p, x̂, sin2 p, ŷ}
{∫

U

∣∣∣∣ − sin l(u) < τ ′
u(l(u)), σ

′(u) > sin(p, x̂ − u)

+ cos l(u)f (σ (u))− cosp, ẑ

∣∣∣∣du± Ψ

}

= 1

min{sin2 p, x̂, sin2 p, ŷ}
{∫

U

∣∣∣∣ − df̃ ◦ τu(s)
ds

∣∣∣
s=l(u)sin l(u)+ cos l(u)f̃ (τu(l(u)))

− f̃ (τu(0))

∣∣∣∣du± Ψ

}

= 1

min{sin2 p, x̂, sin2 p, ŷ}
{∫

U

∣∣∣∣
∫ l(u)

0

d

ds

(
− df̃ ◦ τu(s)

ds
sin s + cos s f̃ (τu(s))

)
ds

∣∣∣∣du
± Ψ

}

≤ 1

min{sin2 p, x̂, sin2 p, ŷ}
{∫

U

∫ l(u)

0
|Hessf̃ + f̃ gM |(τu(s))dsdu± Ψ

}

= 1

min{sin2 p, x̂, sin2 p, ŷ} Ψ . �

PROPOSITION 1.12. There exists a positive constant δ = δ(ε, n) > 0 depending only
on ε, n satisfying the following properties.

(1) We have limε→0 δ(ε, n) = 0 for all n ∈ N .
(2) For every point x ∈ M , we take zx ∈ ∂Bπ/2(p) such that x, zx = x, ∂Bπ/2(p).

Then, for every points x, x ′ ∈ M \ (Bδ(p) ∪ Bδ(q)), we have

cos x, x ′ = cosp, x cosp, x ′ + sinp, x sinp, x ′ cos zx, zx ′ ± Ψ (ε; n) .
PROOF. This follows from Lemma 1.11. �

1.3. Proof of Theorem 0.1. Let X,Z be compact metric spaces and f a map from X

to Z. We say that f is ε-Hausdorff approximation if |x, y − f (x), f (y)| < ε holds for all
x, y∈X, and Bε(Image(f )) = Z holds. If there exists an ε-Hausdorff approximation fromX

to Y , then, we have dGH(X,Z) < 5ε. If dGH (X,Z) < ε, then, there exists a 3ε-Hausdorff
approximation from X to Z.

LEMMA 1.13. Let ε > 0 and let M be an n-dimensional compact Riemannian man-
ifold (n ≥ 2) with RicM ≥ n − 1. We assume that there exist points p, q ∈ M such that
p, q ≥ π − ε holds. Then, we have

dGH(M,S
0 ∗ ∂Bπ/2(p)) < Ψ (ε; n) .

Here, the metric on ∂Bπ/2(p) is the restriction of the metric on M .
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PROOF. With notation as in Proposition 1.12, we define the map

φ : M \ (Bδ(p) ∪ Bδ(q)) → S0 ∗ ∂Bπ/2(p) = [0, π] × ∂Bπ/2(p)/∼

by φ(x) = (p, x, zx). It is easy to check that φ is Ψ (ε; n)-Hausdorff approximation by
Proposition 1.12. �

From now on, we will discuss the limit space.

LEMMA 1.14. By Lemma 1.13, if Y is the Gromov-Hausdorff limit of a sequence {Mi}i
of compact connected, n-dimensional Riemannian manifolds with RicMi ≥ n−1, then we have

(P) for any p, q ∈ Y satisfying p, q = π , we have Y = ({p, q}, dS0) ∗ (∂Bπ/2(p), dY ).
Moreover, (∂Bπ/2(p), dY ) is either equal to a point, equal to S0 or is a convex subspace of
(Y, dY ). In the last case, ∂Bπ/2(p) is itself a geodesic space for dY and satisfies the property
(P).

PROOF. Let p, q be points in Y with p, q = π . We assume that ∂Bπ/2(p) is neither
equal to a point nor equal to S0. Let x, y be points in ∂Bπ/2(p) such that x, y < π/2. We
take a minimal geodesic σ : [0, x, y] from x to y.

CLAIM 1.15. We have σ(t) ∈ Y \ {p, q} for every t ∈ [0, x, y].
We assume that the conclusion is false. Then we can assume that p ∈ Image(σ ) without

loss of generality. Then, we have x, y = x, p + p, y = π/2 + π/2 = π . This contradicts the
assumption. Therefore we have Claim 1.15.

Thus, by Proposition 1.12, for an element zt ∈ ∂Bπ/2(p) such that σ(t), zt =
σ(t), ∂Bπ/2(p) holds, we have the equalities

cos x, σ (t) = sinp, σ(t) cos x, zt ,

cosσ(t), y = sinp, σ(t) cos y, zt .

We shall prove that p, σ(t) = π/2. We give only a proof of the case x, σ (t) ≤ π/2 and
σ(t), y ≤ π/2. We can prove the other case in a similar way. Then, we have cos x, σ (t) ≤
cos x, zt and cosσ(t), y ≤ cos y, zt . Thus, we have x, σ (t) ≥ x, zt and σ(t), y ≥ y, zt .

Especially, x, y = x, σ (t)+ σ(t), y ≥ x, zt + y, zt . Therefore, x, σ (t) = x, zt and σ(t), y =
y, zt hold. Hence, we have cos x, σ (t) = sinp, σ(t) cos x, σ (t) and cosσ(t), y =
sinp, σ(t) cosσ(t), y. Since x, y < π , we have min{x, σ (t), σ (t), y} < π/2. Thus, we have
p, σ(t) = π/2.Moreover, we assume that there exist points p̂, q̂ in ∂Bπ/2(p) such that p̂, q̂ =
π . By the assumption, there exists a point z in ∂Bπ/2(p) \ {p̂, q̂}. By Lemma 1.7, there exists
a minimal geodesic τ from p̂ to q̂ such that z ∈ Image(τ ). Therefore, by an argument above,
we have Image(τ ) ⊂ ∂Bπ/2(p) and ∂Bπ/2(p) is a convex subspace of (Y, dY ). For every
x ∈ ∂Bπ/2(p)\ {p̂, q̂}, we take zx ∈ ∂Bπ/2(p̂) such that x, zx = x, ∂Bπ/2(p̂). Then, we have
zx ∈ ∂Bπ/2(p) ∩ ∂Bπ/2(p̂). Then, we define φ : ∂Bπ/2(p) → S0 ∗ (∂Bπ/2(p) ∩ ∂Bπ/2(p̂))
by φ(x) = (p̂, x, zx) for x ∈ ∂Bπ/2(p) \ {p̂, q̂}, φ(p̂) = (0, ∗) and φ(q̂) = (π, ∗). By
Proposition 1.12, φ is an isometry. Therefore, ∂Bπ/2(p) satisfies the property (P). �
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COROLLARY 1.16. Let Y be the Gromov-Hausdorff limit space of a sequence {Mi}i
of compact connected, n-dimensional Riemannian manifolds with RicMi ≥ n− 1. We assume
that there exist 2 pairs (p1, q1), (p2, q2) of points of Y such that p1, q1 = p2, q2 = π and
p1, p2 = π/2. Then, one of the following (1), (2), (3) occurs.

(1) There exists a compact geodesic space Z with diam(Z) ≤ π such that Y = S1 ∗Z.
(2) Y = S2.

(3) Y = S1.

Similarly, we have the following.

PROPOSITION 1.17. Let Y be the Gromov-Hausdorff limit space of a sequence {Mi}i
of compact connected, n-dimensional Riemannian manifolds with RicMi ≥ n− 1. We assume
that there exist k pairs (p1, q1), . . . , (pk, qk) of points of Y such that pi, qi = π holds for
every i, and that pi, pj = π/2 for every i �= j . Then, one of the following (1), (2), (3)
occurs.

(1) There exists a compact geodesic space Z with diam(Z) ≤ π such that Y = Sk−1 ∗
Z.

(2) Y = Sk .
(3) Y = Sk−1.

THEOREM 1.18. Let Y be the Gromov-Hausdorff limit space of a sequence {Mi}i of
compact connected, n-dimensional Riemannian manifolds with RicMi ≥ n − 1. We assume
that there exist k pairs (p1, q1), . . . , (pk, qk) of points of Y such that pi, qi = π holds for
every i, and that pi, pj = π/2 for every i �= j . Then, we have the following:

(1) k is at most n+ 1.
(2) If 1 ≤ k ≤ n− 1, then there exists a compact geodesic space Z with diam(Z) ≤ π

such that Y = Sk−1 ∗ Z.
(3) If k = n or n+ 1, then we have Y = Sn.

PROOF. By Proposition 1.17 and [13, Lemma 5.10], we have (1) and (2). Note that
Gromov-Hausdorff limits have Hausdorff dimension not greater than n and that dimHSkZ =
dimHZ+k+1 holds for every compact metric space Z (see Proposition 5.6). Thus, it suffices
to prove the case k = n. Then, by Proposition 1.17, we have Y = Sn, or Y = Sn+. Here,
Sn+ = {(x1, x2, . . . , xn+1) ∈ Rn+1; x2

1 +x2
2 +· · ·+x2

n+1 = 1, xn+1 ≥ 0} and the metric is the
restriction of that of Sn. If Y = Sn+, by [7, Theorem 6.2], we have a contradiction. Therefore
we have the claim. �

Gromov’s pre-compactness theorem and Theorem 1.18 imply Theorem 0.1.

REMARK 1.19. Theorem 0.2 follows from Theorem 0.1. Let M be an n-dimensional
compact Riemannian manifold (n ≥ 2) with RicM ≥ n− 1. By the Bishop-Gromov volume
comparison theorem, if vol(M) ≥ vol(Sn)−ε, then rad(M) ≥ π−Ψ (ε; n).Hence, we assume
that rad(M) ≥ π − ε. Then, for every p ∈ M , there exists q ∈ M such that p, q ≥ π − ε
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holds. First, we fix p1 ∈ M . Then, there exists q1 ∈ M such that

p1, q1 ≥ π − ε .

Thus, by Theorem 0.1, M is close to the 1-fold suspension of some compact geodesic space
in the sense of Gromov-Hausdorff distance. Especially, there exists p2 ∈ M such that∣∣∣∣p1, p2 − π

2

∣∣∣∣ < Ψ (ε; n) .

Similarly, there exists q2 ∈ M such that

p2, q2 ≥ π − ε .

Thus, M is close to the 2-fold suspension of some compact geodesic space. Especially,
Aπ/2−Ψ ,π/2+Ψ (p1) ∩ Aπ/2−Ψ ,π/2+Ψ (p2) �= ∅. Here, As,t (x) = B̄t (x) \ Bs(x) for s < t .
By iterating this argument, there exist n + 1 pairs (p1, q1), . . . , (pn+1, qn+1) of points of M
such that |pi, qi − π | < ε holds for each i, and that |pi, pj − π/2| < Ψ (ε; n) holds for
i �= j . It implies Theorem 0.2 by Theorem 0.1.

2. First eigenvalue of the Laplacian. In this section, we explain a relationship be-
tween Theorem 0.1 and the first eigenvalue of the Laplacian. As a key tool, we shall estimate
the L2-inner product of cosine of distance functions.

PROPOSITION 2.1. Let ε > 0,M be an n-dimensional compact Riemannian manifold
(n ≥ 2) with RicM ≥ n − 1. We assume that there exist 2 pairs (p1, q1), (p2, q2) of points
of M such that |p1, q1 − π | < ε and |p2, q2 − π | < ε. We put fi(x) = cospi, x (i = 1, 2).
Then, we have

1

vol(M)

∫
M

f1f2dx = cosp1, p2

n+ 1
± Ψ (ε; n) .

PROOF. We take f̃i ∈ C∞(M) for fi as in Lemma 1.6. Then we have the following

1

vol(M)

∫
M

f 2
i dx = 1

n+ 1
± Ψ (ε; n) ,

1

vol(M)

∫
M

|∇fi |2dx = n

n+ 1
± Ψ (ε; n) ,

1

vol(M)

∫
M

|
f̃i(x)+ nf̃i(x)|2dx < Ψ (ε; n) .

See [12, Lemma 1.10] for the proof. Here, 
 = tr(Hess).
We also take δ = δ(ε, n) as in Proposition 1.12. We putAp1 = B3δ(p1)∪B3δ(q1)∪Cp1 .

For every point x ∈ M \ Ap1 and every s ∈ [0, p1, x], we define cx(s) ∈ M as the point on
the minimal geodesic segment from p1 to x such that x, cx(s) = s holds. It is not difficult to
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see vol(Ap1)/vol(M) ≤ Ψ (ε; n) (see [12, Lemma 1.10]). Then, we have

1

vol(M)

∫
M

gM(∇f1,∇f2)dx = 1

vol(M)

∫
M\Ap1

gM(∇f1,∇f2)dx ± Ψ (ε; n)

= 1

vol(M)

∫
M\Ap1

gM(∇f1,∇f̃2)dx ± Ψ (ε; n)

= 1

vol(M)

∫
M\Ap1

sinp1, x
df̃2 ◦ cx(s)

ds

∣∣∣
s=0
dx ± Ψ (ε; n)

= 1

vol(M)

∫
M\Ap1

{
sinp1, x

(
f̃2 ◦ cx(δ)− f̃2 ◦ cx(0)

δ

− 1

δ

∫ δ

0
(δ − s)

d2f̃2 ◦ cx(s)
ds2

ds

)}
dx ± Ψ (ε; n)

= 1

vol(M)

∫
M\Ap1

sinp1, x

(
f2 ◦ cx(δ)− f2 ◦ cx(0)

δ

)
dx

+ 1

vol(M)

∫
M\Ap1

sinp1, x

(
f̃2 ◦ cx(δ)− f2 ◦ cx(δ)

δ

)
dx

− 1

vol(M)

∫
M\Ap1

sinp1, x

(
f̃2 ◦ cx(0)− f2 ◦ cx(0)

δ

)
dx

− 1

δ vol(M)

∫
M\Ap1

sinp1, x

∫ δ

0
(δ − s)

(
d2f̃2 ◦ cx(s)

ds2 + f̃2 ◦ cx(s)
)
dsdx

+ 1

δ vol(M)

∫
M\Ap1

sinp1, x

∫ δ

0
(δ − s)f̃2 ◦ cx(s)dsdx ± Ψ (ε; n) .

CLAIM 2.2. We have

∣∣∣∣ 1

vol(M)

∫
M\Ap1

sinp1, x

(
f̃2 ◦ cx(δ)− f2 ◦ cx(δ)

δ

)
dx

∣∣∣∣ < Ψ (ε; n) .

PROOF. We use the next estimate:

ESTIMATE 2.3. There exists C(n) > 0 such that, for every 0 ≤ s ≤ δ and for every
integrable function h : M → R≥0, we have

1

vol(M)

∫
M\Ap1

h ◦ cx(s)dx ≤ C(n)

vol(M)

∫
M

h(x)dx .

We put Sp1(1) = {u ∈ Tp1M ; |u| = 1}. For u ∈ Sp1(1), we define t (u) > 0 as the supre-
mum of t ∈ (0,∞) such that expp1

su|[0,t ] is a minimal geodesic segment from p1 to expp1
tu.

Also we put Ŝp1(1) = {u ∈ Sp1(1) ; t (u) > 3δ} and θ(t, u) = tn−1(det(gij |expp1
(tu)))

1/2.
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Here, gij = gM(∂/∂xi, ∂/∂xj ) for a normal coordinate (x1, x2, . . . , xn) around p1. Then,

∫
M\Ap1

h ◦ cx(s)dx ≤
∫
Ŝp1 (1)

∫ t (u)

3δ
h ◦ cexpp1

tu(δ)θ(t, u)dtdu

=
∫
Ŝp1 (1)

∫ t (u)

3δ
h(expp1

((t − δ)u)θ(t, u)dtdu

=
∫
Ŝp1 (1)

∫ t (u)−δ

2δ
h(expp1

(t̂u))θ(t̂ + δ, u)dt̂du .

By the Laplacian comparison theorem, there exists C(n) > 0 such that

θ(t̂ + δ, u) ≤ sinn−1(t̂ + δ)

sinn−1 t̂
θ (t̂, u) ≤ C(n) θ(t̂, u)

for each u ∈ Ŝp1(1) and each t̂ ∈ [2δ, t (u)− δ]. Thus,

∫
M\Ap1

h ◦ cx(s)dx ≤ C(n)

∫
Ŝp1 (1)

∫ t (u)−δ

2δ
h(expp1

(t̂u))θ(t̂, u)dt̂du

≤ C(n)

∫
Sp1 (1)

∫ t (u)

0
h(expp1

(t̂u))θ(t̂ , u)dt̂du

= C(n)

∫
M

h(x)dx .

Therefore, we have Estimate 2.3.
By Estimate 2.3,∣∣∣∣ 1

vol(M)

∫
M\Ap1

sinp1, x

(
f̃2 ◦ cx(δ)− f2 ◦ cx(δ)

δ

)
dx

∣∣∣∣
≤ 1

δ vol(M)

∫
M\Ap1

|f̃2 ◦ cx(δ)− f2 ◦ cx(δ)|dx

≤ C(n)

δ vol(M)

∫
M

|f̃2 − f2|dx

≤ C(n)

δ

(
1

vol(M)

∫
M

|f̃2 − f2|2dx
)1/2

< δ(ε, n)−1Ψ (ε; n) .

We remark that, without loss of generality, we may assume that limε→0 δ(ε, n)
−1Ψ (ε; n) = 0

by exchanging δ if necessary. Therefore, we have Claim 2.2. �

CLAIM 2.4. We have∣∣∣∣ 1

vol(M)

∫
M\Ap1

sinp1, x

(
f̃2 ◦ cx(0)− f2 ◦ cx(0)

δ

)
dx

∣∣∣∣< Ψ (ε; n) .
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PROOF. ∣∣∣∣ 1

vol(M)

∫
M\Ap1

sinp1, x

(
f̃2 ◦ cx(0)− f2 ◦ cx(0)

δ

)
dx

∣∣∣∣
≤ 1

δ vol(M)

∫
M

|f̃2 − f2|dx

≤ 1

δ

(
1

vol(M)

∫
M

|f̃2 − f2|2dx
)1/2

< δ−1Ψ (ε; n) .
Therefore, we have Claim 2.4. �

CLAIM 2.5. We have∣∣∣∣ 1

δ vol(M)

∫
M\Ap1

sinp1, x

∫ δ

0
(δ − s)

(
d2f̃2 ◦ cx(s)

ds2
+ f̃2 ◦ cx(s)

)
dsdx

∣∣∣∣ < Ψ (ε; n) .

PROOF. We use the next estimate.

ESTIMATE 2.6. There exists C(n) > 0 such that, for every integrable function h :
M → R≥0,

1

vol(M)

∫
M\Ap1

∫ δ

0
h ◦ cx(s)dsdx ≤ C(n)δ

vol(M)

∫
M

h(x)dx .

This Estimate 2.6 follows by integrating Estimate 2.3 with respect to s between 0 and δ.
Then,

∣∣∣∣ 1

δ vol(M)

∫
M\Ap1

sinp1, x

∫ δ

0
(δ − s)

(
d2f̃2 ◦ cx(s)

ds2
+ f̃2 ◦ cx(s)

)
dsdx

∣∣∣∣
≤ 1

vol(M)

∫
M\Ap1

∫ δ

0
|Hessf̃2

+ f̃2gM |(cx(s))dsdx

≤ C(n)δ

vol(M)

∫
M

|Hessf̃2
+ f̃2gM |dx

≤ C(n)δ

(
1

vol(M)

∫
M

|Hessf̃2
+ f̃2gM |2dx

)1/2

< Ψ (ε; n) .
Therefore, we have Claim 2.5. �

CLAIM 2.7. We have∣∣∣∣ 1

δ vol(M)

∫
M\Ap1

sinp1, x

∫ δ

0
(δ − s)f̃2 ◦ cx(s)dsdx

∣∣∣∣ < Ψ (ε; n) .

The proof is similar to that of Claim 2.5.
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From these claims, we have

1

vol(M)

∫
M

gM(∇f1,∇f2)dx = 1

vol(M)

∫
M\Ap1

sinp1, x

(
f2 ◦ cx(δ)− f2 ◦ cx(0)

δ

)
dx

±Ψ (ε; n) .

For every x ∈ M \ Ap1 , we take zx, zcx(δ) ∈ ∂Bπ/2(p1) such that x, zx = x, ∂Bπ/2(p1) and
cx(δ), zcx(δ) = cx(δ), ∂Bπ/2(p1). Then, by Proposition 1.12, we have

cos δ = cosp1, x cos(p1, x − δ)+ sinp1, x sin(p1, x − δ) cos zx, zcx (δ) ± Ψ

cos δ = cosp1, x cos(p1, x − δ)+ sinp1, x sin(p1, x − δ).

Therefore, we have

sinp1, x sin(p1, x − δ) = sinp1, x sin(p1, x − δ) cos zx, zcx (δ) ± Ψ.

Thus, we have zx, zcx(δ) < Ψ (ε; n). By Proposition 1.12, we have

sinp1, x(f2 ◦ cx(δ)− f2 ◦ cx(0))
= sinp1, x

(
cosp1, p2 cosp1, cx(δ)

+ sinp1, p2 sinp1, cx(δ)
cosp2, x − cosp1, p2 cosp1, x

sinp1, p2 sinp1, x

)

− sinp1, x cosp2, x ± Ψ (ε; n)
= (sin(p1, x − δ)− sinp1, x) cosp2, x

+ cosp1, p2 (sinp1, x cos(p1, x − δ))− sin(p1, x − δ) cosp1, x)± Ψ (ε; n) .

Therefore,

1

vol(M)

∫
M

gM(∇f1,∇f2)dx

= 1

vol(M)

∫
M\Ap1

sinp1, x

(
f2 ◦ cx(δ)− f2 ◦ cx(0)

δ

)
dx ± Ψ (ε; n)

= 1

vol(M)

∫
M\Ap1

− cosp2, x cosp1, xdx + cosp1, p2 ± Ψ (ε; n)

= − 1

vol(M)

∫
M

f1f2dx + cosp1, p2 ± Ψ (ε; n) .
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On the other hand,

1

vol(M)

∫
M

gM(∇f1,∇f2)dx = 1

2vol(M)

∫
M

|∇f1|2dx + 1

2vol(M)

∫
M

|∇f2|2dx

− 1

2vol(M)

∫
M

|∇f1 − ∇f2|2dx

= n

n+ 1
+ 1

2vol(M)

∫
M

(f̃1 − f̃2)
(f̃1 − f̃2)dx ± Ψ (ε; n)

= n

n+ 1
− 1

2vol(M)

∫
M

n(f̃1 − f̃2)
2dx ± Ψ (ε; n)

= n

vol(M)

∫
M

f1f2dx ± Ψ (ε; n) .
Therefore, we have Proposition 2.1

We shall give several applications of Proposition 2.1. Let M be an n-dimensional com-
pact Riemannian manifold with RicM ≥ n− 1, and

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ λn+1 ≤ · · ·
denote the eigenvalues of −
 onM . By Lichnerowicz-Obata’s theorem, we have the inequar-
ity λ1 ≥ n. Moreover, the equality holds if and only if M is isometric to Sn. The following
Corollaries 2.9 and 2.10 were first proved by Bertrand (see [3, Théorème 2.1, Théorème 3.1]).
We give a new proof of them by using Proposition 2.1.

REMARK 2.8. Proposition 2.1 gives a new simplified proofs of Corollaries 2.9 and
2.10. In addition, by using Proposition 2.1, we can explicitly culculate H 2

1 -inner product for
some eigenfunctions in a limit space. For example, let Z be a compact geodesic space as
in Corollary 4.8. Then there exists a Gromov-Hausdorff (renormalized) limit measure υ on
Z, the cannonical Laplace operator on L2(Z) and exist linearly independent eigenfunctions
f1, . . . , fn−1 whose eigenvalues are all n and whose norms in H 2

1 are all 1 (for example, see
[7, 8, 9]). We take p1, . . . , pn−1 ∈ Z such that fi(pi) = maxfi . Then, by Proposition 2.1
and by an argument similar to the proof of Corollary 2.10, we have∫

Y

fifj dυ = cospi, pj
n+ 1

and
∫
Y

〈dfi, dfj 〉dυ = n cospi, pj
n+ 1

.

COROLLARY 2.9 (Bertrand [3, Théorème 2.1]). Let ε > 0 and let M be an
n-dimensional compact Riemannian manifold with n ≥ 2 and RicM ≥ n − 1. We assume
that there exist k pairs (p1, q1), . . . , (pk, qk) of points of M such that |pi, qi − π | < ε holds
for each i, and that |pi, pj − π/2| < ε holds for i �= j . Then, we have

λk = n± Ψ (ε; n) .
PROOF. We put fi(x) = cospi, x for every 1 ≤ i ≤ k. By Proposition 2.1, {(n +

1)1/2fi}i form an almost orthonormal family in L2
1(M). By min-max principle, we have

λk ≤ sup

{∫
M

|∇Σaifi |2dx
/∫

M

(Σaifi)
2dx; (ai)i ∈ Rk \ 0k

}
.
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Proposition 2.1 implies∫
M

|∇Σaifi |2dx
/∫

M

(Σaifi)
2dx ≤ n+ Ψ (ε; n)

for every (a1, a2) ∈ Rk \ 0k. Therefore, we have Corollary 2.9. �

COROLLARY 2.10 (Bertrand [3, Théorème 3.1]). Let ε > 0 and let M be an
n-dimensional compact Riemannian manifold with RicM ≥ n−1. We assume that λk = n±ε.
Then, there exist k pairs (p1, q1), . . . , (pk, qk) of points ofM such that |pi, qi−π | < Ψ (ε; n)
holds for each i, and that |pi, pj − π/2| < Ψ (ε; n) holds for i �= j .

PROOF. Let us recall several inequalities in [28]. Let f̃i ∈ C∞(M) (i = 1, 2, . . . , k) be
eigenfunctions satisfying

−
f̃i = λif̃i , |λi − n| < ε for every i and
∫
M

f̃i f̃j dx = 0 for every i �= j .

Then, we can assume that
f̃ 2
i + |∇f̃i |2 ≤ 1 ,

1

vol(M)

∫
M

f̃ 2
i dx = 1

n+ 1
± Ψ (ε; n) ,

1

vol(M)

∫
M

|∇f̃i |2dx = n

n+ 1
± Ψ (ε; n) ,

1

vol(M)

∫
M

|f̃ 2
i + |∇f̃i |2 − 1|dx < Ψ (ε; n) ,

hold (see [28, Lemma 3.1]).
Hence, for each p ∈ M , there exists p̃ ∈ M such that p, p̃ < Ψ (ε; n) and f̃ 2

i (p̃) +
|∇f̃i |2(p̃) = 1 ± Ψ (ε; n). We fix a function Ψ (ε; n) which satisfies the inequalities above
and denote it byψ(ε; n). We take pi, qi ∈ M such that f̃i (pi) = max f̃i and f̃i(qi) = min f̃i .
Let gi (x) = f̃i(pi)− f̃i(x)+ψ(ε; n) and hi(x) = f̃i (x)− f̃i(qi)+ψ(ε; n). By Cheng-Yau’s
gradient estimate, we have

|∇gi |2
g2
i

,
|∇hi |2
h2
i

<
C(n)

ψ(ε; n) .

Here, C(n) is a positive constant depending only on n (see [5, 11]). Thus, if we take p̃i , q̃i ∈
M as above, then we have

|∇f̃i |2(p̃i ) , |∇f̃i |2(q̃i) < Ψ (ε; n) .
Especially, we have

|f̃i (pi)− 1|, |f̃i (qi)+ 1| < Ψ (ε; n) .
We put fi(x) = cospi, x. By |∇ arccos f̃i | ≤ 1, we have

f̃i > fi − Ψ (ε; n) .
Thus, we have


(f̃i − fi) < Ψ (ε; n)
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in the barrier sense (see [5, Definition 4.4] for the definition of barriers). By [28, Theorem
7.2], we have

|f̃i − fi | < Ψ (ε; n) .
Especially,

pi, qi ≥ π − Ψ (ε; n) .
Hence, by Proposition 2.1, we have

1

vol(M)

∫
M

f̃i f̃j dx = cospi, pj
n+ 1

± Ψ (ε; n)

for every i �= j . Since the left-hand side is equal to 0, we have∣∣∣∣pi, pj − π

2

∣∣∣∣ < Ψ (ε; n) .

Therefore, we have Corollary 2.10. �

We get also a result of Petersen as a corollary of Theorem 0.1.

COROLLARY 2.11 (Petersen [28, Theorem 1.1]). Let M be an n-dimensinal compact
Riemaniann manifold with RicM ≥ n − 1. We assume that |λn+1 − n| < ε. Then, we have
dGH (M,S

n) < Ψ (ε; n).
Next corollary was first proved by Aubry. It follows also by Theorem 0.1, Corollary 2.9

and Corollary 2.10. Note that he gives more explicit estimate for Ψ (ε; n) (see [2]). Hence,
next corollary is weaker than his theorem.

COROLLARY 2.12 (Aubry [2, Proposition 19]). Let M be an n-dimensional compact
Riemaniann manifold with RicM ≥ n − 1. We assume that |λn − n| < ε. Then, we have
|λn+1 − n| < Ψ (ε; n).

Next corollary was first proved by Gallot. Note that he estimates C(n) in Corollary 2.13
explicitly. Therefore, Corollary 2.13 is weaker than the statement proved by him. However,
we could give a new proof by using the theory of limit spaces.

COROLLARY 2.13. There exists a positive constant C(n) > n such that, for every
n-dimensional compact Riemannian manifoldM with RicM ≥ n− 1,

λn+2 ≥ C(n) > n

holds.

PROOF. If the assertion is false, then there exists a sequence of compact Riemannian
manifolds {Mk}k with RicMk ≥ n − 1 such that the (n + 2)-th eigenvalue λkn+2 satisfies
limk→∞ λkn+2 = n. By taking a subsequence, if necessary, we can assume that Mk converges
to some compact geodesic space Y in the sense of Gromov-Hausdorff convergence. By Corol-
lary 2.9, there exist (n+ 2) pairs (p1, q1) · · · (pn+2, qn+2) of points of Y such that pi, qi = π

holds for every i, and that pi, pj = π/2 holds for i �= j . This contradicts Theorem 0.1. �
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3. A note on the structure of tangent cones of non-collapsing limit spaces. In this
section, we discuss a relationship between Theorem 0.1 and the structure of tangent cones of
non-collapsing limit spaces.

DEFINITION 3.1. For a metric space Z, we define the metric on [0,∞)× Z/{0} × Z

as

(t1, z1), (t2, z2) =
√
t21 + t22 − 2t1t2 cos min{z1, z2, π} .

This metric space is denoted by C(Z) and is called the metric cone of Z. We put z∗ = [(0, z)].
Throughout this section, let {Mi}i be a sequence of n-dimensional complete Riemannian

manifolds (n ≥ 2) with RicMi ≥ −(n − 1), mi ∈ Mi , and Y a proper geodesic space with
y ∈ Y . Here, we say that a metric space W is proper if every bounded closed set is compact.
We assume that
• The sequence (Mi,mi) converges to (Y, y) in the sense of pointed Gromov-Hausdorff con-

vergence.
• There exists v > 0 such that vol(B1(mi)) ≥ v > 0 holds for each i.
We say that (Y, y) is a non-collapsing limit space.

DEFINITION 3.2. Let (W,w) be a pointed proper geodesic space. We say that (W,w)
is a tangent cone at x ∈ Y if there exists a sequence of positive numbers {ri}i such that
ri converges to 0 and (Y, r−1

i dY , x) converges to (W,w) in the sense of pointed Gromov-
Hausdorff convergence.

Cheeger and Colding proved the following result for tangent cones of non-collapsing
limit spaces.

THEOREM 3.3 (Cheeger-Colding [7, Theorem 5.2]). Let (TxY, 0x) be a tangent cone
at x ∈ Y . Then, there exists a compact geodesic space Z with diam(Z) ≤ π such that
(C(Z), z∗) is isometric to (TxY, 0x).

We shall prove an analogous statement to Theorem 0.1 for tangent cones.

THEOREM 3.4. Let (TxY, 0x) be a tangent cone at x ∈ Y and Z a compact geodesic
space with diam(Z) ≤ π such that (TxY, 0x) is isometric to (C(Z), z∗). We assume that there
exist k pairs (p1, q1), . . . , (pk, qk) of points of Z such that pi, qi = π holds for every i, and
that pi, pj = π/2 holds for i �= j . Then, we have the following:

(1) k is at most n.
(2) If 1 ≤ k ≤ n− 2, then there exists a compact geodesic spaceX with diam(X) ≤ π

such that Z = Sk−1 ∗X.
(3) If k = n− 1 or n, then Z = Sn−1.

PROOF. First, we remark the following.
(1) For every metric space X, C(Sk−1 ∗X) is isometric to Rk × C(X).
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(2) If there exist z1, z2 ∈ Z such that z1, z2 = π holds, then z1, z + z, z2 = π for
every z ∈ Z. This is a consequence of a splitting theorem for limit spaces (see [6, Theorem
6.64]).

(3) We have Z �= Sk for every 1 ≤ k ≤ n − 2. It follows from dimHZ = n − 1 (see
Proposition 5.6). Here dimHZ is the Hausdorff dimension of Z. Compare this fact with [13,
Lemma 5.10].

We assume that there exist points z1, z2 ∈ Z such that z1, z2 = π . Then, by the definition
of the metric of C(Z), there exists an isometric embedding γ : R → C(Z) such that γ (0) =
z∗, γ (−1) = (1, z1) and γ (1) = (1, z2). Thus, by the splitting theorem for limit space and (1)
above, we haveZ = ({z1, z2}, dS0)∗(∂Bπ/2(p), p). Theorem 3.4 follows from this argument,
(1), (2), (3) above and an argument similar to that in Section 1. �

Similarly, we have the following.

COROLLARY 3.5. Let (TxY, 0x) be a tangent cone at x ∈ Y andZ a compact geodesic
space with diam(Z) ≤ π such that (TxY, 0x) is isometric to (C(Z), z∗). We assume that there
exist k pairs (p1, q1), . . . , (pk, qk) of points of Z such that pi, qi = π for each i and that
det((cospi, pj )i,j ) �= 0. Then, we have the following.

(1) k is at most n.
(2) If 1 ≤ k ≤ n− 2, then there exists a compact geodesic spaceX with diam(X) ≤ π

such that Z = Sk−1 ∗X.
(3) If k = n− 1 or n, then Z = Sn−1.

PROOF. We give only a proof of the case k = 2. By the assumption and Theorem
3.4, there exists a compact geodesic space X such that Z = S0 ∗ X with p1 = (0, ∗) and
q1 = (π, ∗). By the assumption, we have p2, q2 ∈ S0 ∗ X \ {p1, q1}. Especially, we have
diamX = π by the definition of the metric of S0 ∗ X. Therefore, by Theorem 3.4, we have
the assertion. �

4. The topological structure of tangent cones of non-collapsing limit spaces and a
proof of Theorem 0.4. Throughout this section, we use the same notation as in Section 3.
For a proper geodesic space X, we put

Rn
ε (X) = {x ∈ X ; There exists a positive number r > 0 such that for every 0 < s < r ,

dGH (B̄s(x), B̄s(0n)) ≤ εs holds.}

Rn(X) = ⋂
ε>0 Rn

ε (X) .

Here, ε is a positive number and B̄s(0n) ⊂ Rn. Let (Y, y) be a non-collapsing limit space of
a sequence of pointed n-dimensional compact Riemaniann manifolds.

THEOREM 4.1 (Cheeger-Colding [5, Theorem 9.73]). We have

Rn
ε (Y ) ⊂ Int(Rn

Ψ (ε|n)(Y )) and dimH(Y \ Rn(Y )) ≤ n− 2 .
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Here, for a subset A ⊂ Y , IntA is the interior of A. Especially, we have

Rn(Y ) =
⋂
ε>0

Int(Rn
ε (Y )) .

Cheeger-Colding also proved the following important result.

THEOREM 4.2 (Cheeger-Colding [7, Theorem A.1.1]). There exists a positive num-
ber εn > 0 satisfying the following property. For every 0 < ε < εn, there exist a complete
n-dimensional Riemannian manifold M , and a homeomorphism f : Int(Rn

ε (Y )) → M such
that f, f−1 are (1 − Ψ (ε; n))-locally Hölder continuous.

We shall prove an analogous statement to Theorem 4.2 for tangent cones.

THEOREM 4.3. Let k be a non-negative integer, (TxY, 0y) a tangent cone at x and
X a compact geodesic space with diam(X) ≤ π such that (TxY, 0y) is isometric to (Rk ×
C(X), (0k, x∗)). Then, we have dimHX = n − k − 1, Rn−k−1

ε (X) ⊂ Int(Rn−k−1
Ψ (ε;n) (X)) and

dimH(X \ Rn−k−1(X)) ≤ n − k − 3. Also, there exists a postive number εn > 0 satisfying
the following property: For every 0 < ε < εn, there exist a complete (n− k − 1)-dimensional
Riemannian manifoldM and a homeomorphism f : Int(Rn−k−1

ε (X)) → M such that f, f−1

are (1 − Ψ (ε; n))-locally Hölder continuous.

PROOF. First, we remark the following claims.

CLAIM 4.4. Let X be a proper geodesic space, x ∈ X and ε, r positive numbers. We
assume that dGH(B̄r (0, x), B̄r (0n)) ≤ εr holds. Here,

B̄r (0, x) ⊂ (R ×X,
√
(dR)2 + (dX)2) .

Then, we have dGH (B̄r (x), B̄r (0n−1)) ≤ Ψ (ε)r .

CLAIM 4.5. Let Z be a compact geodesic space with diam(Z) ≤ π and ε,R positive
numbers. We consider the next metric balls. Here be careful about the metrics.

(1) B̄R×Z
R (0, z) ⊂ (R × Z,

√
(dR)2 + (ε−1dZ)2),

(2) B̄
C(Z)
R (1, z) ⊂ (C(Z), ε−1dC(Z)).

Then, we have

dGH ((B̄
R×Z
R (0, z), (0, z)), (B̄C(Z)R (1, z), (1, z))) ≤ Ψ (ε;R) .

We skip the proof of these claims because it is not difficult. We have Rn−k−1
ε (X) ⊂

Int(Rn−k−1
Ψ (ε;n) (X)) by these claims and Theorem 4.2. Therefore, by an argument similar to the

proof of Theorem 4.2, we have Theorem 4.3 (see [7,Theorem 5.14] and [7,Theorem A.1.2]).
　 �

COROLLARY 4.6. If the assumption in Theorem 3.4 holds with k = n − 2, then there
exists 0 < r ≤ 1 such that Z = Sn−3 ∗ S1(r) holds. Here, S1(r) = {x ∈ R2 ; |x| = r}, and
the metric dS1(r) on S1(r) is the standard Riemannian metric.

PROOF. First, the next claim is straightforward.
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CLAIM 4.7. Let d be a metric on S1 such that (S1, d) is a geodesic space homeomor-
phic to the standard unit sphere (S1, dS1). Then, there exists a positive number 0 < r < ∞
such that (S1, d) is isometric to (S1(r), dS1(r)).

By Theorem 3.4, there exists a compact geodesic spaceX with diam(X) ≤ π such thatZ
is isometric to Sn−3 ∗X. By Theorem 4.3, we can prove thatX is homeomorphic to some one-
dimensional connected compact manifold. Namely,X is homeomorphic to S1. Therefore, by
Claim 4.7, there exists 0 < r ≤ 1 such that X = S1(r) holds. �

Similarly, we have the following.

COROLLARY 4.8. Let Z be a compact geodesic space and {Mi}i a sequence of com-
pact n-dimensional Riemannian manifolds with RicMi ≥ n−1. We assume thatMi converges
to Z in the sense of Gromov-Hausdorff convergence and limi→∞ λin−1 = n. Then, there exists

0 ≤ r ≤ 1 such that Z is isometric to Sn−1 ∗ S1(r).

PROOF. By Theorem 0.1, there exists a compact geodesic space X such that Z =
Sn−1 ∗ X. First, we assume that Z is a collapsing and X is not a point. Then, since X is
a geodesic space, we have dimH Z = dimH Sn−1 ∗ X ≥ n + 1 (see Proposition 5.6). This
is a contradiction. Therefore, if Z is a collapsing, then X is a point. On the other hand, if Z
is a non-collapsing, then X = S1(r) for some r > 0 by an argument similar to the proof of
Corollary 4.6. Therefore, we have the assertion. �

This is equivalent to Theorem 0.4 by Gromov’s pre-compactness theorem.

5. Appendix: A calculation of Hausdorff dimension. In this appendix, we will
prove the equality

dimH(Rk × C(X)) = k + 1 + dimH(X) ,

for every compact metric space X. Throughout this section, we assume that a metric space X
always satisfies the following property (Q).

(Q) For every positive number ε > 0, there exists a countable collection {pi}i of points
of X such that X = ⋃

i Bε(pi).

LEMMA 5.1. Let l be a positive real number and A be a subset on X satisfying
Hl+1(A) = 0. Then, we have Hl (∂Br(x) ∩ A) = 0 for every x ∈ X and for a.e. r > 0.

PROOF. For z ∈ X and t > 0, we put a function φtz : R>0 → R as φtz(r) = 15t if
∂Br(x)∩ B̄t (z) �= ∅, and as φtz(r) = 0 if otherwise. This function is a Borel function. We put
s1 = infw∈B̄t (z) x,w and s2 = supw∈B̄t (z) x,w. Then, we have

∫ ∞

0
(φtz(r))

ldr =
∫ s2

s1

(φtz(r))
ldr ≤ (15t)l

∫ s2

s1

dr ≤ 30l+1t l+1 .

By the assumption, for every positive numbers ε, δ > 0, there exists a countable collection
{B̄ri (xi)}i such that A ⊂ ⋃

i B̄ri (xi), ri < δ and
∑
i r
l+1
i < ε. Here, we define a function

φlδ,ε : R>0 → R ∪ {∞} as φlδ,ε(r) = ∑
i (φ

ri
xi (r))

l . This function is also a Borel function. We
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have ∑
i

∫ ∞

0
(φrixi )

ldr ≤ 30l+1
∑
i

r l+1
i < 30l+1ε .

By the monotone convergence theorem, we have∫ ∞

0
φlδ,ε(r)dr < 30l+1ε .

On the other hand, by definition, we have Hl
δ(A ∩ ∂Br(x)) ≤ φlδ,ε(r) for every r > 0. Since

φlδ,ε → 0 in L1(R>0) as ε → 0, there exists a Borel set V ⊂ R>0 and exists a sequence {εi}i
such that H1(R>0 \ V ) = 0 holds, εi → 0 holds as i → ∞ and that limi→∞ φlδ,εi (r) = 0

for every r ∈ V . Therefore, we have Hl
δ(A ∩ ∂Br(x)) = 0 for every r ∈ V . Especially, the

function, r → Hl
δ(A∩∂Br(x)) is Lebesgue measurable and the function r → Hl (A∩∂Br(x))

is also Lebesgue measurable. Since∫ ∞

0
Hl
δ(A ∩ ∂Br(x))dr = 0 ,

we have ∫ ∞

0
Hl (A ∩ ∂Br(x))dr = 0 .

Therefore, we have the assertion. �

LEMMA 5.2. For every positive number l > 0 and every subset A in X, Hl (A) = 0
holds if and only if Hl+1(R ×A) = 0.

PROOF. First, we assume that Hl (A) = 0. Since Hl
δ(A) = 0 for every δ > 0, there

exists a countable collection {B̄ri (xi)}i such that ri < δ, A ⊂ ⋃
i B̄ri (xi) and

∑
i r
l
i < ε. For

every i and for every 0 ≤ k ≤ [1/ri]+ 1, we define t ik ∈ [0, 1] by t ik = k([1/ri]+ 1)−1. Here,
[r] = sup{s ∈ Z ; r ≥ s} for a real number r .

CLAIM 5.3. [0, 1] ×A ⊂ ⋃
i,k B̄100ri (t

i
k, xi) .

We will prove Claim 5.3. For every (t, x) ∈ [0, 1]×A, we chose i such that x ∈ B̄ri (xi).
We also chose k such that |t − t ik| ≤ [1/ri]−1. Then, by [1/ri]−1 ≤ ri/(1 − ri ), we have√

(ti − t)2 + xi, x
2 ≤ |ti − t| + xi, x

[
1

ri

]−1

+ ri ≤ ri

1 − ri
+ ri ≤ 5ri .

Therefore, we have Claim 5.3.
Since ∑

i,k

rl+1
i ≤ 2

∑
i

r li ≤ 2ε ,

we have Hl+1
δ ([0, 1] × A) = 0. Thus we have the assertion.

Next, we assume that Hl+1(R × A) = 0. By Lemma 5.1, for every x ∈ X, we have
Hl (∂Br(0, x) ∩ R × A) = 0 for a.e. r > 0. Let π : R × X → X be the projection. Since
B̄r (x) ∩ A ⊂ π(∂Br(0, x) ∩ R ×A), we have Hl (B̄r (x) ∩ A) = 0 for a.e. r > 0. Therefore,
we have the assertion. �
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COROLLARY 5.4. For every A ⊂ X and k ∈ N , we have dimH(Rk × A) = k +
dimHA.

PROPOSITION 5.5. For every compact metric space Z and for every l > 0,
Hl+1(C(Z)) = 0 holds if and only if Hl (Z) = 0 holds. Especially, we have dimHC(Z) =
dimHZ + 1.

PROOF. Since Ar1,r2(z∗) is bi-Lipshithz equivalent to As1,s2(z∗) for every r1 < r2 and
for every s1 < s2, we know that Hl+1(C(Z)) = 0 holds if and only if Hl+1(A1/2,2(z∗)) = 0
holds. Clearly, A1/2,2(z∗) is bi-Lipshitz equivalent to [1/2, 2] × Z. Therefore, by applying
Lemma 5.2, we have the assertion. �

Corollary 5.4 and Proposition 5.5 implies

dimH(Rk × C(X)) = k + 1 + dimH(X)

for every compact metric space X. Similarly, we have the following proposition.

PROPOSITION 5.6. For every compact metric space X and for every k ≥ 0, we have
dimH(Sk ∗X) = k + 1 + dimH(X).
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