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Abstract. We consider solvable Lie groups which are isomorphic to unimodulariza-
tions of products of affine groups. It is shown that a lattice of such a Lie group is determined,
up to commensurability, by a totally real algebraic number field. We also show that the outer
automorphism group of the lattice is represented faithfully in the automorphism group of the
number field. As an application, we obtain a classification of codimension one, volume pre-
serving, locally free actions of products of affine groups.

1. Introduction. For V ∼= Rn, W ∼= Rn+1 and ψ ∈ Hom(V , SL(W)), the semidi-
rect product V �ψ W is the group which has the group law

(t, x)(s, y) = (t + s, x + ψ(t)(y)) (t, s ∈ V, x, y ∈ W) .
All Lie groups of the form V �ψ W are isomorphic if the homomorphism ψ is injective and
splits as a direct sum of non-equivalent 1-dimensional representations. Throughout this paper,
we denote by H such a Lie group.

In this paper, we study lattices of H by using notions related to algebraic number fields.
Here a lattice means a cocompact discrete subgroup.

Let Γ and Γ ′ be lattices of H . Recall that they are said to be commensurable if [Γ :
Γ ∩Γ ′] < ∞ and [Γ ′ : Γ ∩Γ ′] < ∞ (see e.g., [12]). We say they are weakly commensurable
if there exists an automorphism ϕ of H such that ϕ(Γ ) and Γ ′ are commensurable. Given a
lattice Γ ⊂ H , we define a totally real algebraic number field k(Γ ) of degree n+ 1. The first
of our main theorems is the following.

THEOREM 1.1. The map


the set of all weakly
commensurable classes of
lattices of H


 →




the set of all isomorphism
classes of totally real algebraic
number fields of degree n+ 1




induced from the map Γ �→ k(Γ ) is bijective.

Secondly we define a homomorphismAΓ from Aut(Γ ) to Aut(k(Γ )/Q) (see (3.1)). For
ϕ ∈ Aut(Γ ), the imageAΓ (ϕ)may be regarded as a permutation of n+1 1-dimensional direct
summands of ψ which is induced from ϕ. If AΓ (ϕ) = id, then there exists h0 ∈ H such that

2000 Mathematics Subject Classification. Primary 22E25; Secondary 22F30, 57S20.
Key words and phrases. Solvable Lie groups, lattices, homogeneous actions.



350 N. TSUCHIYA AND A. YAMAKAWA

ϕ2(γ ) = h0γ h
−1
0 (γ ∈ Γ ) (Corollary 3.11). We show that each subgroup of Aut(k(Γ )/Q)

is realized as the image of a lattice commensurable with Γ .

THEOREM 1.2. Let Γ be a lattice ofH . For each subgroup F of Aut(k(Γ )/Q), there
exists a lattice Γ ′ ⊂ H commensurable with Γ such that AΓ ′(Aut(Γ ′)) = F .

Finally we apply the properties of AΓ to the classification problem of homogeneous
actions, which was our original motivation of this research. Let Aff+(R) denote the group
of all orientation preserving affine transformations of the real line and let G := Aff+(R)n.
Then G̃ := G �∆ R is unimodular, solvable and isomorphic to H where ∆ is the modular
function of G. In [13] the authors showed that if n ≥ 2, then H ∼= G̃ is the unique (2n+ 1)-
dimensional, simply connected, unimodular Lie group which contains G. For a lattice Γ of
H , the homogeneous manifold H/Γ admits a homogeneous action of G induced from the
left translations of G on H . Denote by Conj(H/Γ ) the set of all analytic conjugacy classes
of homogeneous G actions on H/Γ . It is seen that the set of all inner conjugacy classes of
subgroups of H isomorphic to G consists of n + 1 elements (Proposition 2.3 ), and hence
| Conj(H/Γ )| ≤ n+ 1.

THEOREM 1.3. Let Γ be a lattice of H . Then we have

| Conj(H/Γ )| = n+ 1

|AΓ (Aut(Γ ))| .

Furthermore, for each subgroup F of Aut(k(Γ )/Q), there exists a lattice Γ ′ ⊂ H

commensurable with Γ such that

| Conj(H/Γ ′)| = n+ 1

|F | .

In [13, Theorem 1], the authors showed that a codimension one locally free C∞-action
of G on a closed manifold is C∞-conjugate to a homogeneous action if it preserves a volume
form (see also [2]). Thus the above Theorem 1.3 gives a classification of volume preserving,
codimension one, locally free actions ofG on closed manifolds (see [11] for a survey of codi-
mension one locally free actions). In Theorem 1.3 we do not have to specify the class of dif-
ferentiability of the conjugacy because an equivariant Cr -diffeomorphism (r = 0, 1, 2, . . . )
between two homogeneous G actions turns out to be analytic (Proposition 5.1).

In §2 we give cohomological descriptions of subgroups, automorphisms and lattices of
H . In §3 we define the algebraic number field k(Γ ) associated with a lattice Γ and give a
proof of Theorem 1.1. In §4 we first define the homomorphism AΓ and then give a proof of
Theorem 1.2. In the last section §5, we prove Theorem 1.3.

2. Subgroups, automorphisms and lattices of H .
2.1. Subgroups of H and their cohomological descriptions. Recall that H is a Lie

group of the form H1 �ψ H0 where H0 (resp. H1) denotes [H,H ] (resp. H/H0). Let K be a
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closed subgroup of H . The group structure of K is described by using continuous cohomol-
ogy. Put K0 := K ∩ H0 and K1 := K/K0. Then K1 is a closed subgroup of H1 and K0 is a
K1-invariant closed subgroup of H0.

Let A be a topological K1-module by a homomorphism ρ : K1 → Aut(A). For each
non-negative integer p, let CpN(K1, A) denote the module consisting of all normalized contin-
uous maps fromK

p

1 to A, where a cochain ξ is said to be normalized if ξ(t1, t2, . . . , tp) = 0
whenever some t i is zero (cf. [4, p. 19]). Then the cochain complex {C∗

N(K1, A), δ} defines
the cohomology groupH ∗(K1, A) in the usual way. Recall that the definitions of the cobound-
ary operator δ : Cp−1

N (K1, A) → C
p
N(K1, A) and a cochain homotopy Dt0 : CpN(K1, A) →

C
p−1
N (K1, A) for t0 ∈ K1 (ξ ∈ Cp−1

N (K1, A), η ∈ CpN(K1, A), t i ∈ K1, i = 1, 2, . . . , p) are
as follows:

(δξ)(t1, t2, . . . , tp) = ρ(t1)
(
ξ(t2, . . . , tp)

)

+
p−1∑
i=1

(−1)iξ(t1, . . . , t i−1, t i + t i+1, t i+2, . . . , tp)+ (−1)pξ(t1, t2, . . . , tp−1) .

(Dt0(η))(t1, t2, . . . , tp−1) =
p∑
i=1

(−1)i+1η(t1, . . . , t i−1, t0, t i , . . . , tp−1) .

By direct calculations, we obtain (1) of the following lemma. The remaining assertions
follow from (1).

LEMMA 2.1. (1) For each ξ ∈ C
p

N(K1, A) (p ≥ 0) and t0 ∈ K1, the equation
Dt0 ◦ δ(ξ)+ δ ◦Dt0(ξ) = ρ(t0) ◦ ξ − ξ holds.

(2) If there exists t0 ∈ K1 such that the homomorphism ρ(t0) − id : A → A is
invertible, then Hp(K1, A) = {0} for any p ≥ 0.

(3) If there exists t0 ∈ K1 such that the homomorphism ψ(t0) − id : H0 → H0 is
invertible, then Hp(K1,H0/K0) is naturally isomorphic to Hp+1(K1,K0) for any p ≥ 0.

Choose a cochain η ∈ C1
N(K1,H0) such that (t, η(t)) ∈ K for any t ∈ K1. Then the

subset K and its multiplication law are expressed as follows:

K = {(t, η(t)+ x) ; t ∈ K1, x ∈ K0} ⊂ H1 �H0 = H ,

(t, η(t)+ x) (s, η(s)+ y) = (t + s, η(t + s)+ x + ψ(t)(y)+ δη(t, s)) .
(2.1)

We say a cochain ξ ∈ C1
N(K1,H0) is a modK0 relative cocycle (or a relative cocycle in short)

if δξ ∈ C2
N(K1,K0). From (2.1), the cochain η is a relative cocycle.

Conversely, given a closed subgroup K1 of H1, a ψ(K1)-invariant closed subgroup K0

ofH0 and a modK0 relative cocycle η, we can construct a subgroupK ofH by following the
rules in (2.1). We denote by Gr(K0,K1, η) the subgroup obtained in this way. The proof of
the following lemma is easy and is omitted.

LEMMA 2.2. (1) The equality Gr(K0,K1, η) = Gr(K ′
0,K

′
1, η

′) holds if and only if
Ki = K ′

i (i = 0, 1) and η′ − η ∈ C1
N(K1,K0).
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(2) The group Gr(K0,K1, η) is a semidirect product of K0 and K1 if and only if there
exists a cocycle ξ ∈ C1

N(K1,H0) such that ξ − η ∈ C1
N(K1,K0).

Let H0 = ⊕n+1
i=1 Wi be the splitting of the H1-module H0, and, for each i, put W(i) :=⊕

j 
=i Wj and G(i) := H1 �ψ W(i) ⊂ H . The following proposition will become a basic

fact in classifying codimension one homogeneous actions of Aff+(R)n in §5. For h0 ∈ H , let
Ad(h0) : H → H be the automorphism defined by Ad(h0)(h) = h0hh

−1
0 (h ∈ H).

PROPOSITION 2.3. LetK be a subgroup ofH which is isomorphic toG = Aff+(R)n.
Then there exist an integer i (1 ≤ i ≤ n + 1) and an element h0 ∈ H such that K =
Ad(h0)(G(i)).

PROOF. PutK = Gr(K0,K1, η). ThenK1 = H1 and there exists i (1 ≤ i ≤ n+1) such
that K0 = W(i). By Lemma 2.2, we may assume δη = 0. By Lemma 2.1 (2),H 1(H1,H0) =
0 and hence there exists x0 ∈ H0 such that η = δx0. Thus we get K = Gr(W(i),H1, δx0) =
Ad((0,−x0))(G(i)). �

2.2. Automorphisms ofH . Let K = Gr(K0,K1, η) andK ′ = Gr(K ′
0,K

′
1, η

′) be two
isomorphic closed subgroups of H and φ : K → K ′ an isomorphism such that φ(K0) = K ′

0.
Then φ is described as

(t, η(t)+ x) �→ (φ1(t), η
′(φ1(t))+ φ0(x)+ ξ(φ1(t))) (t ∈ K1, x ∈ K0)(2.2)

where φi (i = 0, 1) are the induced isomorphisms from Ki to K ′
i and ξ ∈ C1

N(K
′
1,K

′
0).

Because φ is a homomorphism, these maps satisfy the following two conditions:

ψ(φ1(t))(φ0(x)) = φ0(ψ(t)(x)) (x ∈ K0, t ∈ K1) ,(2.3)

φ0 ◦ δη = (δξ + δη′) ◦ (φ1 × φ1) .(2.4)

We call (2.3) the compatibility condition for (φ0, φ1) and denote this isomorphism φ by
hom(φ0, φ1, ξ). In the case where K = H , we may put η = η′ = 0 in (2.2) and obtain
the following lemma from (2.4) and Lemma 2.1.

LEMMA 2.4. Let ϕ be an automorphism of H . Then there exists an element x0 ∈ H0

such that ϕ = hom(ϕ0, ϕ1, δx0). In particular, for h0 = (t0, x0) ∈ H , we have Ad(h0) =
hom(ψ(t0), id,−δx0).

2.3. Lattices of H . First we review a known result.

PROPOSITION 2.5 ([13, Lemma 2.4]). A closed subgroup Γ = Gr(Γ0, Γ1, η) of H is
a lattice if and only if Γi is a lattice of Hi (i = 0, 1).

By Lemma 2.1(3) and Proposition 2.5, for a lattice Γ , we have H 1(Γ1,H0/Γ0) ∼=
H 2(Γ1, Γ0). The set of equivalence classes of group extensions of Γ1 by Γ0 corresponds
bijectively to H 2(Γ1, Γ0) ([5, p. 162]), and hence to H 1(Γ1,H0/Γ0). We show that this set is
finite.

PROPOSITION 2.6. The group H 1(Γ1,H0/Γ0) is finite.
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PROOF. Choose a basis {t1, t2, . . . , tn} of Γ1 ∼= Zn such that det(ψ(t1)− id) 
= 0. Let
(H0/Γ0)

t1 denote the finite group {x ∈ H0/Γ0 ; (ψ(t1)− id)(x) = 0}. Then by Lemma 2.1
(1) the short exact sequence of Γ1-modules

0 → (H0/Γ0)
t1 → H0/Γ0

ψ(t1)−id−→ H0/Γ0 → 0

induces a short exact sequence

0 → H 0(Γ1,H0/Γ0) → H 1(Γ1, (H0/Γ0)
t1) → H 1(Γ1,H0/Γ0) → 0 .(2.5)

If a Γ1-module A is finite, then the group H 1(Γ1, A) is known to be finite ([9, p. 189]).
Thus H 1(Γ1, (H0/Γ0)

t1) is finite. By (2.5), the group H 1(Γ1,H0/Γ0) is also finite. �

REMARK 2.7. (1) When n = 1, it is easy to see thatH 1(Γ1,H0/Γ0) = {0} for every
lattice Γ ⊂ H . It follows that Γ is inner conjugate to Gr(Γ0, Γ1, 0).

(2) When n ≥ 2, there exists a lattice Γ ⊂ H such that H 1(Γ1,H0/Γ0) 
= {0}. For
example, take an injective homomorphism ψ1 : R2 → SL(3,R) given by

ψ1

((
1
0

))
=


 1 −2 1

−2 5 −2
4 −10 5


 and ψ1

((
0
1

))
=


 −7 10 6

−12 17 10
−20 28 17


 .

Then, for Γ := Z2�ψ1 Z3 ⊂ R2�ψ1 R3 ∼= H , one can show thatH 1(Γ1,H0/Γ0) ∼= Z2⊕Z2.

By Remark 2.7, a lattice is not always a semidirect product. However the following
proposition shows that every lattice of H contains a sublattice of finite index which has a
semidirect product structure.

PROPOSITION 2.8. Let Γ = Gr(Γ0, Γ1, η) be a lattice of H . Then there exists a sub-
group Γ ′ (resp. Γ ′

1) of finite index of Γ (resp. Γ1) such that Γ ′ is conjugate to Gr(Γ0, Γ
′

1, 0).

PROOF. By Proposition 2.6 there exist a natural number p and y0 ∈ H0 such that
ζ := η − δy0 ∈ C1

N(Γ1, (1/p)Γ0). Put Γ ′
1 := {t ∈ Γ1 ; ζ(t) ∈ Γ0}. The subset Γ ′

1 is a
subgroup of Γ1 from the fact

δζ(t, s) = ζ(t)− ζ(t + s)+ ψ(t)(ζ(s)) = δη(t, s) ∈ Γ0 (t, s ∈ Γ1) .

Let s ∈ Γ1. Then there exist integers l1, l2 such that 0 < l1 < l2 ≤ pn+1 + 1 and ζ(l2s) −
ζ(l1s) ∈ Γ0. Because ζ(l1s)−ζ(l2s)+ψ(l1s)(ζ((l2 − l1)s)) ∈ Γ0, we have ζ((l2 − l1)s) ∈ Γ0

and hence pn+1! s ∈ Γ ′
1. We have proved [Γ1 : Γ ′

1] < ∞.
Put Γ ′ := Gr(Γ0, Γ

′
1, η|Γ ′

1
). Then, from Lemmas 2.2 and 2.4, we obtain

Γ ′ = Gr(Γ0, Γ
′

1, δy0) = Ad((0,−y0))(Gr(Γ0, Γ
′

1, 0)) . �

Although the following rigidity theorem is a special case of a general result of Saito ([10,
Theorem 5]), we give a proof here because it is simple and because we will need a description
of φ ∈ Aut(Γ ) shown in the proof.
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PROPOSITION 2.9. Let Γ = Gr(Γ0, Γ1, η) and Γ ′ = Gr(Γ ′
0, Γ

′
1, η

′) be lattices of H
and φ : Γ → Γ ′ an isomorphism. Then φ can be extended uniquely to an automorphism of
H .

PROOF. From Proposition 2.5, each of the groups Γ ′
0 and Γ0 is non-trivial. Then Γ ′

0
and φ(Γ0) coincide because both are maximal normal nilpotent subgroups of Γ ′ and a poly-
cyclic group admits a unique maximal normal nilpotent subgroup. Hence we can write φ =
hom(φ0, φ1, ξ) where φi : Γi → Γ ′

i (i = 0, 1) are the induced isomorphisms and ξ ∈
C1
N(Γ

′
1, Γ

′
0). Let ϕi ∈ Aut(Hi) be the linear isomorphism of Hi extending φi (i = 0, 1). By

(2.4) and Lemma 2.1 (3) there exists x0 ∈ H0 such that ξ +η′ −φ0 ◦η ◦φ−1
1 = δx0. It is easy

to see that the isomorphism ϕ := hom(ϕ0, ϕ1, δx0) is the unique automorphism of H which
extends φ. �

3. Arithmeticity of lattices ofH .
3.1. Algebraic number field associated with Γ . Let Wi (resp. W(i)) be the 1-dimen-

sional subspace (resp. hyperplane) of H0 defined in §2.1. For t ∈ H1 and 1 ≤ i ≤ n + 1, let
λi(t) denote the eigenvalue of ψ(t)|Wi . Consider the map lψ : H1 → Rn+1 defined by

lψ (t) = (logλ1(t), logλ2(t), . . . , logλn+1(t)) .

The map lψ is a linear isomorphism from H1 to the hyperplane V := {(µ1, µ2, . . . , µn+1) ;∑n+1
i=1 µi = 0} ⊂ Rn+1. For a subset S ⊂ {1, 2, . . . , n+ 1}, letΣS := {(µ1, µ2, . . . , µn+1) ;∑
i∈S µi = 0} ⊂ V and Σ := ⋃

∅
=S�{1,2,...,n+1}ΣS . Put H 0
1 := (lψ)

−1(V \Σ) ⊂ H1.
Take a lattice Γ = Gr(Γ0, Γ1, η) of H . By Proposition 2.5, there exist isomorphisms

(Γ0,H0) ∼= (Zn+1,Rn+1) and (Γ1,H1) ∼= (Zn,Rn). Under these identifications, the rep-
resentation ψ : H1 → GL(H0) is a homomorphism from Rn to SL(n + 1,R) such that
ψ(Zn) ⊂ SL(n + 1,Z). For a vector w ∈ Γ0 ⊗ Q (resp. a Q-linear isomorphism B ∈
GL(Γ0 ⊗ Q)), let w̄ ∈ Qn+1 (resp. B̄ ∈ GL(n + 1,Q)) denote the corresponding vector
(resp. matrix). Choose t0 ∈ H 0

1 ∩ Γ1 and let A := ψ(t0) ∈ Aut(Γ0) ⊂ GL(H0). We show
that the characteristic polynomial χA(x) of A is Z-irreducible. Suppose there exists an inte-
gral polynomial f (x) of degree m < n + 1 which divides χA(x). Let {λj ; 1 ≤ j ≤ m} be
the roots of f (x). Then f (x) is monic, f (0) = (−1)m and each λj (1 ≤ j ≤ m) is positive
because χA(x) is monic, χA(0) = (−1)n+1 and each λi(t0) (1 ≤ i ≤ n + 1) is positive. It
follows that

∏m
j=1 λj = 1 and hence lψ(t0) is in Σ , which contradicts the hypothesis. Thus

χA(x) is Z-irreducible, hence is Q-irreducible and has distinct roots.
Let Q[Ā] denote the polynomial ring {g(Ā) ; g(X) ∈ Q[X]} ⊂ M(n+ 1,Q).

LEMMA 3.1. The centralizer of Ā in GL(n + 1,Q) coincides with Q[Ā] ∩ GL(n +
1,Q).

PROOF. Choose v0 ∈ (
H0 \ ⋃n+1

i=1 W(i)
) ∩ Γ0. Let B̄ ∈ GL(n + 1,Q) such that

B̄Ā = ĀB̄. Then, because the vectors {v̄0, Āv̄0, Ā
2v̄0, . . . , Ā

nv̄0} are independent, the vector
B̄v̄0 ∈ Qn+1 can be written as B̄v̄0 = b0v̄0 + b1Āv̄0 + · · · + bnĀ

nv̄0 (bi ∈ Q, 0 ≤ i ≤ n).
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Thus we obtain B̄ = b0E + b1Ā+ · · · + bnĀ
n since B̄(Āi v̄0) = Āi(B̄v̄0) = (b0E + b1Ā+

· · · + bnĀ
n)Āi v̄0 for any i (0 ≤ i ≤ n). �

Let HomQ(Γ0 ⊗ Q) denote the ring of all Q-linear homomorphisms of Γ0 ⊗ Q.

COROLLARY 3.2. Q[A] = Q[{ψ(t) ; t ∈ Γ1}] ⊂ HomQ(Γ0 ⊗ Q).

Put α := λ1(t0). As mentioned above, the number α is an algebraic integer of degree
n + 1 and is totally positive in the sense that each conjugate number αi := λi(t0) (1 ≤ i ≤
n+ 1) of α is positive. The field Q(α) is isomorphic to the field

Q(A) :=
{

g(A)
f (A)

; f (X), g(X) ∈ Q[X], f (A) 
= 0

}
⊂ HomQ(Γ0 ⊗ Q)

and Q[A] = Q(A). By Corollary 3.2, the field Q(A) does not depend on the choice of
t0 ∈ H 0

1 ∩ Γ1. We denote by k(Γ ) the field Q(A) ⊂ HomQ(Γ0 ⊗ Q) and call it the
algebraic number field associated with Γ . Obviously the field k(Γ ) ∼= Q(α) is totally real.

For an isomorphism ϕ = hom(ϕ0, ϕ1, δx0) ∈ Aut(H) and a lattice Γ of H , let ϕ∗ :
HomQ(Γ0 ⊗ Q) → HomQ(ϕ0(Γ0)⊗ Q) be the natural homomorphism defined by ϕ∗(f ) =
ϕ0 ◦ f ◦ ϕ−1

0 (f ∈ HomQ(Γ0 ⊗ Q)).

LEMMA 3.3. Let Γ and Γ ′ be lattices of H . Suppose Γ is weakly commensurable
with Γ ′ by ϕ ∈ Aut(H). Then k(Γ ′) = ϕ∗(k(Γ )).

PROOF. Since ϕ(Γ ) and Γ ′ are commensurable, the lemma follows from Corollary 3.2
and the compatibility condition (2.3). �

Note in particular that the field k(Γ ) depends only on the commensurability class of Γ .
3.2. Lattices defined from an algebraic number field. Let k be a totally real algebraic

number field of degree n + 1 over Q. (Such a field exists for each n ≥ 1. See Lemma 2.6 in
[13] for a concrete example.) Let O(k) denote the subring of all algebraic integers in k and
E(k) the unit group of O(k). It is well-known that O(k) is isomorphic to Zn+1 as an abelian
group.

Let Imb(k) = {f (1), f (2), . . . , f (n+1)} be the set of all imbeddings of the field k into
R. Let E+(k) := {ε ∈ E(k) ; f (i)(ε) > 0 (1 ≤ i ≤ n + 1)} and E+

n+1(k) := {ε ∈
E+(k) ; deg(ε) = n+ 1}. Define an injective map lk : E+(k) → Rn+1 by

lk(ε) = (log(f (1)(ε)), log(f (2)(ε)), . . . , log(f (n+1)(ε))) .

The image of lk is contained in the hyperplane V ⊂ Rn+1 defined in §3.1. Dirichlet’s unit
theorem asserts that the image lk(E+(k)) is a lattice of the vector group V (see e.g., [3]).
Obviously E+

n+1(k) ⊃ l−1
k (V \Σ) ∩ E+(k) and is not empty.

Let Aut(O(k)) denote the group of all automorphisms of the abelian group O(k), and
GL(k) (resp. GL(k ⊗ R)) the group of all isomorphisms of the Q-vector space k (resp. R-
vector space k ⊗ R). We sometimes identify an element of Aut(O(k)) with an element of
GL(k) or GL(k ⊗ R). Let ιk : k → HomQ(k) be the tautological map given by ιk(β)(γ ) =
βγ (β, γ ∈ k) where HomQ(k) denotes the ring of all Q-linear maps from k to k.
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Let ψk : lk(E+(k)) → Aut(O(k)) be the homomorphism given by ψk ◦ lk = ιk. Take
a basis of O(k) and an element α ∈ E+

n+1(k). We identify ιk(α) ∈ Aut(O(k)) with a matrix
Ā ∈ GL(n+1,Z) with respect to the basis chosen above. Then the matrix Ā is diagonalizable
over R and the set of the eigenvalues of Ā coincides with {f (i)(α) ; 1 ≤ i ≤ n + 1}. In
particular, Ā is in SL(n + 1,Z). Choose a matrix P̄ ∈ GL(n + 1,R) diagonalizing Ā and
define

ψ̃k : V = lk(E+(k))⊗ R → GL(n+ 1,R) ∼= GL(O(k)⊗ R) = GL(k ⊗ R)

by
ψ̃k((µ1, µ2, . . . , µn+1)) = P̄ diag(eµ1, eµ2, . . . , eµn+1)P̄−1.

The homomorphism ψ̃k : V → GL(O(k)⊗R) is injective and does not depend on the choice
of a basis of O(k).

Put Γk := lk(E+(k))�ψk
O(k), Hk1 := lk(E+(k))⊗ R, Hk0 := O(k)⊗ R and Hk :=

Hk1 �
ψ̃k
Hk0. Because the representation ψ̃k is injective and is a direct sum of non-equivalent

real 1-dimensional representations, the Lie groupHk is isomorphic to H = Rn �ψ Rn+1. By
Proposition 2.5, Γk is a lattice of Hk

∼= H . The following lemma follows directly from the
definitions.

LEMMA 3.4. The algebraic number field k(Γk) associated with Γk coincides with
ιk(k).

The above construction of lattices of H is described briefly by Ghys ([8, p. 298]), who
attributes the idea to Haefliger. One can also find analogous descriptions in [12, p. 33, Ex-
ample 7.6]. Our construction is a generalization of them. An additive subgroup M ⊂ k of
rank n + 1 is called a full module of k ([3, Chapter 2.1]). Two full modules M and M′ are
said to be similar if M′ = γM for some γ ∈ k× := k \ {0}. It is obvious that an arbitrary
full module of k is similar to a full module contained in O(k). Let E be a subgroup of finite
index of E+(k). We say a full module M is E-invariant if EM ⊂ M. Using the notation in
§2.1, for an E-invariant full module M and a mod M relative cocycle η ∈ C1

N(lk(E), k ⊗R),
we can define a lattice Gr(M, lk(E), η) of Hk. It is easy to see that Gr(γM, lk(E), γ η) is
isomorphic to Gr(M, lk(E), η) for any γ ∈ k×.

LEMMA 3.5. Let Γ be a lattice of Hk which is commensurable with Γk . Then there
exist a subgroup E of finite index of E+(k), an E-invariant full module M ⊂ k and a mod M
relative cocycle η ∈ C1

N(lk(E), k ⊗ R) such that Γ = Gr(M, lk(E), η).
PROOF. Put M := Γ0 = Γ ∩ Hk0. Then M is a full module of k which is commen-

surable with (Γk)0 = O(k). Let t ∈ Γ1 ⊂ Hk1. Because ψ̃k(t) preserves M and commutes
with ψ̃k ◦ lk(α) (α ∈ E+

n+1(k)), by Lemma 3.1, there exists β ∈ E+(k) such that t = lk(β).

Thus we obtain E := l−1
k
(Γ1) ⊂ E+(k). Obviously M is E-invariant. Hence we can write Γ

as Γ = Gr(M, lk(E), η) where η is a relative cocycle. �
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3.3. Proof of Theorem 1.1. We return to the case where Γ is a lattice of the Lie group
H and prove Theorem 1.1. In 3.1, we defined a linear isomorphism lψ : H1 → V ⊂ Rn+1.

Choose t0 ∈ H 0
1 ∩Γ1 and putA := ψ(t0). Choose a vector v0 ∈ (H0 \⋃n+1

i=1 W(i))∩Γ0

and define ρ : Γ0 ⊗ Q → Q(A) by ρ(
∑n
i=0 aiA

iv0) = ∑n
i=0 aiA

i (ai ∈ Q, 0 ≤ i ≤ n).
The map ρ : Γ0 ⊗ Q → Q(A) is an isomorphism of Q-vector spaces, and the image ρ(Γ0)

is commensurable with O(Q(A)).
By Dirichlet’s unit theorem, the imageψ(Γ1) is a subgroup of finite index of E+(Q(A)).

Put k := k(Γ ) = Q(A). Define fi ∈ Imb(k) by fi(A) = λi(t0). Then we have Imb(k) =
{f1, f2, . . . , fn+1}. Using these imbeddings, we defined an injective map lk : E+(k) →
V ⊂ Rn+1 in 3.2. By renumbering the indices if necessary, we may assume lψ |Γ1 = lk ◦
ψ|Γ1 : Γ1 → lk(E+(k)) ⊗ R = V . Then the map lψ induces a Q-vector space isomorphism
Γ1 ⊗ Q → lk(E+(k))⊗ Q.

LEMMA 3.6. There exists an isomorphism ΨΓ : H → Hk such that ΨΓ (Γ ) is weakly
commensurable with Γk , where k := k(Γ ).

PROOF. Define a mapΨ : Γ1×Γ0 → Hk byΨ (t, x) = (lψ(t), ρ(x)) (t ∈ Γ1, x ∈ Γ0).
Let ψ(t) = f (A) and x = g(A)v0 ((t, x) ∈ Γ1 × Γ0 and f (X), g(X) ∈ Q[X]). Then we
have

ψk(lψ(t))(ρ(x))=(ψk ◦ lk(f (A))) · g(A)= ιk(f (A)) · g(A)=f (A)g(A)=ρ(ψ(t)(x)) .

Thus the map Ψ is a homomorphism from Gr(Γ0, Γ1, 0) = Γ1 �ψ Γ0 to Hk. Clearly, the
homomorphism extends to an isomorphism ΨΓ : H → Hk. Since ΨΓ (Gr(Γ0, Γ1, 0)) is
commensurable with Γk , by Proposition 2.8, ΨΓ (Γ ) is weakly commensurable with Γk �

PROOF OF THEOREM 1.1. By Lemma 3.3, the map in the theorem is well-defined. For
each totally real algebraic number field k of degree n + 1, choose an arbitrary isomorphism
Φk : Hk → H . Then the correspondence k �→ Φk(Γk) induces a right (resp. left) inverse of
the map in the theorem by Lemma 3.4 (resp. Lemma 3.6). �

From Lemmas 3.5 and 3.6, every lattice of H is described as follows.

PROPOSITION 3.7. Let Γ be a lattice of H . Then there exist an isomorphism Ψ :
H → Hk(Γ ), a subgroup E of finite index of E+(k(Γ )), an E-invariant full module M ⊂
k(Γ ) and a mod M relative cocycle η ∈ C1

N(lk(Γ )(E), k(Γ ) ⊗ R) such that Ψ (Γ ) =
Gr(M, lk(Γ )(E), η).

3.4. The homomorphism AΓ . Let Γ be a lattice ofH . By Proposition 2.9 we identify
an automorphism φ of Γ with its extension ϕ ∈ Aut(H).

Let Com(Γ ) denote the set of all lattices ofH commensurable withΓ and put Autcom(Γ )

:= {ϕ ∈ Aut(H) ; ϕ(Γ ) ∈ Com(Γ )}. For each Γ ′ ∈ Com(Γ ), we can regard Aut(Γ ′) as a
subgroup of Autcom(Γ ).

Define a homomorphism ÃΓ : Autcom(Γ ) → Aut(k(Γ )/Q) by ÃΓ (ϕ) = ϕ∗ (see
Lemma 3.3) and define AΓ : Aut(Γ ) → Aut(k(Γ )/Q) by AΓ = ÃΓ |Aut(Γ ).
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Let ϕ = hom(ϕ0, ϕ1, δx0) ∈ Autcom(Γ ), g(X) ∈ Q[X] and t ∈ H 0
1 ∩ Γ1. Then, from

the compatibility condition (2.3), we have

ÃΓ (ϕ)(g(ψ(t))) = ϕ0 ◦ g(ψ(t)) ◦ ϕ−1
0 = g(ψ(ϕ1(t))) .(3.1)

We omit the proof of the following easy lemma. For a bijection f : X → Y and a map
g : X → X, let Ad(f )(g) := f ◦ g ◦ f−1 : Y → Y .

LEMMA 3.8. (1) If Γ ′ ∈ Com(Γ ), then we have ÃΓ = ÃΓ ′ : Autcom(Γ ) →
Aut(k(Γ )/Q).

(2) If ϕ : H → H ′ is an isomorphism, then we have Aϕ(Γ ) ◦ Ad(ϕ) = Ad(ϕ∗) ◦ AΓ .

Let k be a totally real algebraic number field of degree n+1 over Q. For σ ∈ Aut(k/Q),
let σ0 ∈ GL(k ⊗ R) (resp. σ1 ∈ GL(lk(E+(k))⊗ R)) denote the linear extension of σ (resp.
Ad(lk)(σ |E+(k))).

LEMMA 3.9. For i = 1, 2, let Γ(i) = Gr(Mi , lk(Ei ), ηi) ∈ Com(Γk) where Ei
is a subgroup of finite index of E+(k), Mi is an Ei -invariant full module of k and ηi ∈
C1
N(lk(Ei ), k ⊗ R) is a relative cocycle. Let ϕ = hom(ϕ0, ϕ1, δx0) be an automorphism of
Hk such that ϕ(Γ(1)) = Γ(2). Put σ := Ad(ι−1

k
)(ÃΓk

(ϕ)) ∈ Aut(k/Q). Then we have the
following.

(1) ϕ1 = σ1 and σ(E1) = E2.
(2) There exists γ ∈ k such that ϕ0 = ιk(γ ) ◦ σ0. In particular M2 = γ σ(M1).

PROOF. By definition, ÃΓk
(ϕ) is given by Ad(ι−1

k
)(ÃΓk

(ϕ))|E+
n+1(k)

=
Ad(l−1

k )(ϕ1)|E+
n+1(k)

. Therefore we get σ1 = ϕ1 and the assertion (1). Because the isomor-

phism ϕ0 ∈ GL(k ⊗ R) sends M1 to M2, we obtain ϕ0(k) = k. Put γ := ϕ0(1) ∈ k. Then,
for any α ∈ E1 ∩ E+

n+1(k), we have

ϕ0(α) = ϕ0(ιk(α)(1)) = ψk(ϕ1 ◦ lk(α))(ϕ0(1)) = ιk(σ (α))(γ ) = σ(α) · γ .
Thus we obtain (2). �

COROLLARY 3.10. Let Γ ′ = Gr(M, lk(E), 0) ∈ Com(Γk) where E is a subgroup of
finite index of E+(k) and M ⊂ k is an E-invariant full module. Then we have

Ad(ι−1
k
)(AΓ ′(Aut(Γ ′))) = {σ ∈ Aut(k/Q) ; σ(E) = E and σ(M) is similar to M} .

Let Γ be a lattice of H . We can now determine the kernel of the homomorphism AΓ .

COROLLARY 3.11. Let Γ be a lattice of H and ϕ an automorphism of Γ . Suppose
AΓ (ϕ) = id ∈ Aut(k(Γ )/Q). Then there exists h0 ∈ H such that ϕ2 = Ad(h0).

PROOF. Because AΓ (ϕ) = id, we have ψ(ϕ1(t)) = ψ(t) for any t ∈ H 0
1 ∩ Γ1, and

hence ϕ1 = id. Thus we can write ϕ as ϕ = hom(ϕ0, id, δx0) ∈ Aut(Γ ) ⊂ Aut(H). By
Proposition 3.7, there exists an isomorphismΨ : H → Hk such thatΨ (Γ ) =: Gr(E,M, η) ∈
Com(Γk) where k = k(Γ ). Applying Lemma 3.9 to Ad(Ψ )(ϕ), there exists γ ∈ k such that
γM = M and AdΨ (ϕ0) = ιk(γ ). Because γM = M, we have γ ∈ E(k) and hence
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γ 2 ∈ E+(k). Put t0 := Ψ−1(lk(γ
2)) ∈ H1 and h0 := (t0,−x0 − ϕ0(x0)) ∈ H . Then, using

Lemma 2.4, it is easy to see that ϕ2 = hom(ϕ2
0, id, δ(x0 + ϕ0(x0)) = Ad(h0). �

4. Proof of Theorem 1.2.
4.1. Proof of Theorem 1.2 for the case where n ≥ 2. In this subsection we assume

n ≥ 2. Let k be a totally real algebraic number field of degree n + 1. From Lemmas 3.6 and
3.8, to prove Theorem 1.2, we may assume Γ = Γk ⊂ Hk. Put F0 := Aut(k/Q), and take
a subgroup F1 of F0. We show that there exists a subgroup Γ ′ of finite index of Γk such that
Ad(ι−1

k
)(ÃΓk

(Aut(Γ ′))) = Ad(ι−1
k
)(AΓ ′(Aut(Γ ′))) = F1. By Corollary 3.10, if F1 = F0, it

suffices to put Γ ′ := Γk. In general, we seek for Γ ′ in the form lk(E1)� O(k) where E1 is a
subgroup of finite index of E+(k).

We use the following theorem due to Herbrand and Artin [1] on relative fundamental
units. We say that a subset {η1, η2, . . . , ηk} of an abelian group (written multiplicatively) is
independent if an arbitrary relation of the form

∏k
i=1 η

ai
i = 1 (ai ∈ Z, 1 ≤ i ≤ k) implies

ai = 0 for all i.

THEOREM 4.1 (Artin). Let k be a totally real algebraic number field and k0 a subfield
of k. Let [k : k0] = d and [k0 : Q] = r . Suppose the extension k/k0 is Galois with the Galois
group F0 = {gj ; 1 ≤ j ≤ d}.

Then there exist ξi ∈ E(k0) (1 ≤ i ≤ r − 1) and εj ∈ E(k) (1 ≤ j ≤ r) satisfying the
following properties.

(1) The set {ξi ; 1 ≤ i ≤ r−1} is independent and generates a subgroup of finite index
of E(k0).

(2) For each j (1 ≤ j ≤ r), we have
∏d
k=1 gk(εj ) = 1.

(3) For each j (1 ≤ j ≤ r), and for each subset Ej of {gk(εj ) ; 1 ≤ k ≤ d} consisting
of d − 1 elements, the set {ξi ; 1 ≤ i ≤ r − 1} ⋃

1≤j≤r Ej is independent and generates a
subgroup of finite index of E(k).

We return to our case where k is a totally real algebraic number field of degree n+ 1 and
F0 = Aut(k/Q). Let k0 be the invariant field of k, that is, k0 = kF0 := {β ∈ k ; g(β) =
β for all g ∈ F0}, and let r := [k0 : Q]. By the fundamental theorem of Galois theory, the
extension k/k0 is Galois with the Galois group F0. Given a subgroup F1 ⊂ F0, put k1 := kF1 ,
[k : k1] =: e and [k1 : k0] =: f . We are assuming n+ 1 = ef r ≥ 3 and k0 � k1, and hence
f ≥ 2.

Let F1 = {σ1 = id, σ2, . . . , σe} and let {τ1 = id, τ2, . . . , τf } ⊂ F0 be a complete set
of representatives of the left cosets F1\F0. Then we can express F0 as {σµτν ; 1 ≤ µ ≤
e, 1 ≤ ν ≤ f }. Applying Theorem 4.1 to our case and using the fact that ε ∈ E(k) implies
ε2 ∈ E+(k), there exist {ξi ; 1 ≤ i ≤ r − 1} ⊂ E+(k) ∩ k0 and {εj ; 1 ≤ j ≤ r} ⊂ E+(k)
which satisfy the properties (1), (2) and (3) of Theorem 4.1, where d = ef .

Consider the set Σ1 given by

Σ1 := {ξ3(r−1)
1 , ξi , σµτν(ε1)

ν!ξr−1
1 , σµτν(εj ) ;

2 ≤ i ≤ r − 1, 1 ≤ µ ≤ e, 1 ≤ ν ≤ f, 2 ≤ j ≤ r} .
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Let E1 be the subgroup of E+(k) generated by Σ1. By (3) of Theorem 4.1, we have [E+(k) :
E1] < ∞.

LEMMA 4.2. The subgroup Fix(E1) := {g ∈ F0 ; g(E1) = E1} coincides with F1.

It is obvious from the choice of Σ1 that F1 ⊂ Fix(E1). Take g ∈ (F1)
c ∩ F0. Then g is

described as σµ0τν0 where ν0 ≥ 2. To prove the lemma, it is sufficient to show the following.

CLAIM 4.3. g(E1) � E1.

PROOF. Suppose g(σ1τ1(ε1)ξ
r−1
1 ) = σµ0τν0(ε1)ξ

r−1
1 ∈ E1. Then, from (3) of Theorem

4.1, there exist integersm,nµ,ν, ai , bj,µ,ν (1 ≤ µ ≤ e, 1 ≤ ν ≤ f, 2 ≤ i ≤ r−1, 2 ≤ j ≤ r)

such that

σµ0τν0(ε1)ξ
r−1
1 = ξ

3(r−1)m
1

∏
i

ξ
ai
i

∏
µ,ν

σµτν(ε1)
ν!·nµ,ν ξ (r−1)nµ,ν

1

∏
j,µ,ν

σµτν(εj )
bj,µ,ν .

From (2) and (3) of Theorem 4.1, we have ai = 0 (2 ≤ i ≤ r − 1),
∏
µ,ν σµτν(εj )

bj,µ,ν = 1
(2 ≤ j ≤ r) and hence

σµ0τν0(ε1)
1−ν0!·nµ0 ,ν0 = ξ

(3m−1+∑
µ,ν nµ,ν )(r−1)

1

∏
(µ,ν) 
=(µ0,ν0)

σµτν(ε1)
ν!·nµ,ν .

It follows, again from (2) and (3) of Theorem 4.1, that the integers m,nµ,ν must satisfy the
following equations: (

3m− 1 +
∑
µ,ν

nµ,ν

)
(r − 1) = 0 ,(4.1)

ν! · nµ,ν − ν0! · nµ0,ν0 + 1 = 0 ((µ, ν) 
= (µ0, ν0)) .(4.2)

Case 1: e ≥ 2. In this case we can take µ1 such that µ1 
= µ0. The equation (4.2) for
(µ, ν) = (µ1, ν0) gives

ν0! · nµ1,ν0 − ν0! · nµ0,ν0 + 1 = 0 ,

which is impossible because ν0 ≥ 2.
Case 2: e = 1 and f ≥ 3. Take ν1 such that ν1 
= ν0 and 1 < ν1 ≤ f . Then the

equation (4.2) for (µ, ν) = (1, ν1) gives

ν1! · n1,ν1 − ν0! · n1,ν0 + 1 = 0 ,

which is impossible because ν0, ν1 ≥ 2.
Case 3: e = 1 and f = 2. In this case we have r ≥ 2 from the assumption ef r ≥ 3.

Then the equations (4.1) and (4.2) can be read as{
3m− 1 + n1,1 + n1,2 = 0

n1,1 − 2n1,2 + 1 = 0 .

The subtraction of the second equation from the first shows that this is impossible. �
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PROOF OF THEOREM 1.2 FOR THE CASE WHERE n ≥ 2. Put k := k(Γ ). Let F be a
subgroup of F0 := Aut(k/Q). As was remarked at the beginning of this subsection, we
may assume that f := [F0 : F ] ≥ 2. Take E1 ⊂ E+(k) as in Lemma 4.2 and put Γ ′ :=
lk(E1)�O(k) ⊂ Γk . Then we have Ad(ι−1

k
)(ÃΓk

(Aut(Γ ′))) = Ad(ι−1
k
)(AΓ ′(Aut(Γ ′))) = F

by Corollary 3.10. �

4.2. The 3-dimensional case. In this subsection we treat the case where n = 1. That
is, we consider G = Aff+(R) and the 3-dimensional Lie group H = R �ψ R2. Let Γ be
a lattice of H . Then the group Aut(k(Γ )/Q) is isomorphic to Z/2Z. Theorem 1.2 is stated,
when n = 1, as follows.

PROPOSITION 4.4. Let Γ be a lattice ofH = R�R2. Then there exist lattices Γ ′, Γ ′′
commensurable with Γ such that AΓ ′(Aut(Γ ′)) ∼= Z/2Z and AΓ ′′(Aut(Γ ′′)) = {id}.

Take A ∈ SL(2,Z) with trace(A) > 2. Choose P ∈ GL(2,R) such that P−1AP =(
λ 0
0 λ−1

)
for some λ > 0. Define a representation ψA : R → SL(2,R) by

ψA(t) = At := P

(
λt 0
0 λ−t

)
P−1 (t ∈ R) .

Denote by HA (resp. ΓA) the Lie group R �ψA R2 (resp. the lattice Z �ψA Z2 of HA). In
order to prove Proposition 4.4, we may put H = HA and Γ = ΓA for some A (see e.g., [7,
Proposition II.2.3]).

We say a matrix B ∈ SL(2,Z) is Z-conjugate (resp. Q-conjugate) to B ′ ∈ SL(2,Z) if
there exists P ∈ GL(2,Z) (resp. P ∈ GL(2,Q)) such that B ′ = P−1BP .

LEMMA 4.5. Let B ∈ SL(2,Z) (trace(B) > 2). Then AΓB (Aut(ΓB)) 
= {id} if and
only if B is Z-conjugate to B−1.

PROOF. An automorphism ϕ of ΓB induces ϕ0 ∈ Aut((ΓB)0) ∼= GL(2,Z) and ϕ1 ∈
Aut((ΓB)1) ∼= GL(1,Z). Suppose there exists ϕ ∈ Aut(ΓB) such that AΓB (ϕ) 
= {id}. Then,
from the compatibility condition (2.3), we have ϕ1 = − id, and hence B−1 = ϕ0Bϕ

−1
0 . The

converse statement is proved similarly. �

The Z-conjugacy classes of matrices in SL(2,Z) are studied explicitly by Fukuhara and
Sakamoto [6]. Each matrix B ∈ SL(2,Z) with trace(B) > 2 is Z-conjugate to a form

(
a b
c d

)
where a ≥ c ≥ d ≥ 0 and a ≥ b ≥ d . For a matrix B = (

a b
c d

)
of the above form, let

a

c
= l1 + 1

l2 + 1

· · · + 1

l2r−1 + 1

l2r

, (r, l1, l2, . . . , l2r ∈ Z+)

be the continued fraction expansion of a/c into even number of terms. Then B is Z-conjugate
to B−1 if and only if the sequence (l1, l2, . . . , l2r ) coincides with the inverse sequence
(l2r , . . . , l2, l1) up to a repetition of the cyclic permutation of this order ([6, p. 316]).
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Let B ∈ SL(2,Z). Suppose there exist p ∈ Z and P ∈ GL(2,Q) such that B =
P−1ApP . Then we can define an isomorphism ΦApB : HB → HA by (t, x) �→ (pt, Px)

((t, x) ∈ HB). It is easy to see that ΦApB(ΓB) is commensurable with ΓA.

PROOF OF PROPOSITION 4.4. The existence of a lattice Γ ′ follows from the argument
in the first paragraph of 4.1.

Take a matrix A ∈ SL(2,Z) with τ := trace(A) > 2 and put Γ = ΓA. Put

A′′ :=
(
τ 6 − 6τ 4 + 9τ 2 − τ − 1 (τ − 2)(τ 4 + τ 3 − 4τ 2 − 2τ + 5)

τ 2 τ − 1

)
.

Then we have

τ 6 − 6τ 4 + 9τ 2 − τ − 1

τ 2
= τ 4 − 6τ 2 + 8 + 1

1 + 1

τ − 2 + 1

τ + 1

.

The quadruple (τ 4 − 6τ 2 + 8, 1, τ − 2, τ + 1) is not equal to (τ + 1, τ − 2, 1, τ 4 − 6τ 2 + 8)
up to cyclic permutations because 1 ≤ τ − 2 < τ + 1 < τ 4 − 6τ 2 + 8. By the criterion of
Fukuhara and Sakamoto, the matrix A′′ is not Z-conjugate to its inverse.

If λ, λ−1 are eigenvalues of A, then λ+ λ−1 = τ . So,

trace(A6) = λ6 + λ−6 = (λ3 + λ−3)2 − 2 = (τ 3 − 3τ )2 − 2 .

Thus we have trace(A′′) = (τ 3 − 3τ )2 − 2 = trace(A6). It is easy to see that both A′′ and A6

are Q-conjugate to their common companion matrix
(

0 −1
1 trace(A′′)

)
(see e.g., [13, p. 249]).

Put Γ ′′ :=ΦA6A′′(ΓA′′). Then Γ ′′ is commensurable with Γ =ΓA and AΓ ′′(Aut(Γ ′′)) =
{id} by Lemma 4.5. This completes the proof of Proposition 4.4. �

5. Codimension one homogeneous actions of Aff+(R)n. Let Φi : Gi ×Mi → Mi

(i = 1, 2) be an action of a Lie groupGi on a manifoldMi . They are said to be Cr -conjugate
(0 ≤ r ≤ ω) if there exist an isomorphism ρ : G1 → G2 and a Cr -diffeomorphism f :
M1 → M2 such that Φ2(ρ(g), f (x)) = f (Φ1(g, x)) for all (g, x) ∈ G1 ×M1.

Let Γ ⊂ H be a lattice and let G′ ⊂ H be a subgroup isomorphic to G = Aff+(R)n.
Denote by Φ(G′,Γ ) the homogeneous action of G′ on H/Γ . The following proposition is
much stronger than what is needed for the proof of Theorem 1.3. But we give a proof here
because the assertion seems to be of some independent interest.

PROPOSITION 5.1. Let Gi (i = 1, 2) be subgroups of H which are isomorphic to
G = Aff+(R)n and let Γi (i = 1, 2) be lattices of H . Suppose the homogeneous action
Φ(G1,Γ1) is C0-conjugate to Φ(G2,Γ2) by a homeomorphism f : H/Γ1 → H/Γ2 and an
isomorphism ρ : G1 → G2. Let f̃ : H → H be a lift of f . Then there exists h0 ∈ H such
that ϕ := Lh0 ◦ f̃ is an automorphism of H and ρ = Ad(h−1

0 ) ◦ ϕ|G1 where Lh0 denotes the
left translation of H by h0. In particular the homeomrphism f is analytic.
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PROOF. Because every isomorphism between lattices of H extends uniquely to an
automorphism of H (Proposition 2.9), by composing an automorphism of H , we may as-
sume that Γ1 = Γ2 and f : H/Γ1 → H/Γ1 is isotopic to the identity. Then we have
sup{d(h, f̃ (h)) ; h ∈ H } < ∞ where d is a right invariant metric of H . Put h0 := f̃ (e)−1

and ϕ := Lh0 ◦ f̃ where e is the unit element of H . It suffices to show that ϕ = id.
It is easy to see that ρ = Ad(h−1

0 ) ◦ ϕ|G1 and ϕ(ghγ ) = ϕ(g)ϕ(h)γ where g ∈
G1, h ∈ H and γ ∈ Γ1. Suppose there exists g ∈ G1 such that ϕ(g) 
= g . Then the set
{d(gn, ϕ(gn)) ; n ∈ Z} = {d(gn, ϕ(g)n) ; n ∈ Z} ⊂ R is easily seen to be unbounded. This
contradiction shows that ϕ|G1 = idG1 . Because G1Γ1 is dense in H ([7]) and ϕ|G1Γ1 =
idG1Γ1 , we obtain ϕ = id. Hence we have proved the proposition. �

Denote by C(G) the set of all inner conjugacy classes of subgroups of H which are
isomorphic to G. By Proposition 2.3, we have C(G) = {[G(i)] ; 1 ≤ i ≤ n + 1}, where
G(i) = H1 �ψ W(i). Choose t0 ∈ H 0

1 ∩ Γ1 and let A := ψ(t0) ∈ k(Γ ). Recall that
fi ∈ Imb(k(Γ )) is the imbedding defined by fi(A) = λi(t0), which is the eigenvalue of
ψ(t0)|Wi . To prove Theorem 1.3 we consider the following maps.

(1) S : Aut(H) → Aut(C(G)) defined by S(ϕ)([G′]) = [ϕ(G′)] ([G′] ∈ C(G)).
(2) The bijection ι : C(G) → Imb(k(Γ )) given by ι([G(i)]) = fi (1 ≤ i ≤ n+ 1).
(3) RΓ : Aut(k(Γ )/Q) → Aut(Imb(k(Γ ))) defined by RΓ (σ)(f ) := f ◦ σ−1 (σ ∈

Aut(k(Γ )/Q), f ∈ Imb(k(Γ )).

LEMMA 5.2. We have Ad(ι) ◦ S|Aut(Γ ) = RΓ ◦ AΓ .

PROOF. Let ϕ ∈ Aut(Γ ). Suppose ϕ([G(i)]) = [G(j)]. Then we have ϕ0(Wi) = Wj .
From the compatibility condition (2.3), we obtain fi ◦AΓ (ϕ)−1(ψ(t0)) = λi(ψ(ϕ

−1
1 (t0))) =

λj (ψ(t0)). It follows that ι ◦ S(ϕ)([G(i)])) = RΓ (AΓ (ϕ))(fi). �

PROOF OF THEOREM 1.3. By Proposition 2.3, there are at most n + 1 homogeneous
actions Φ(G(i),Γ ) (1 ≤ i ≤ n + 1) of G = Aff+(R)n on H/Γ up to inner conjugacy.
By Propositions 5.1 and 2.9, the set Conj(H/Γ ) is in bijective correspondence with the set{
Φ(G(i),Γ ) ; 1 ≤ i ≤ n+ 1

}
/ ∼ where the equivalence relation ∼ is defined by Φ(G(i),Γ ) ∼

Φ(G(j),Γ ) if and only if there exists ϕ ∈ Aut(H) such that (i) ϕ(Γ ) = Γ and (ii) S(ϕ)[G(i)] =
[G(j)]. By Lemma 5.2, the condition (ii) is equivalent to the condition (ii′)RΓ (AΓ (ϕ))(fi) =
fj . Thus Conj(H/Γ ) is in bijective correspondence with the quotient set Imb(k(Γ ))/RΓ ◦
AΓ (AutΓ ). Because RΓ gives a free action of Aut(k(Γ )/Q) on Imb(k(Γ )), we obtain the
first assertion of the theorem. The second assertion follows from Theorem 1.2 and the first
assertion. �

REMARK 5.3. The number | Aut(k(Γ )/Q)| divides n + 1 because k(Γ ) is an exten-
sion field of degree n+ 1 over Q.
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