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Abstract. Let B be a normal affine C-domain and let A be a C-subalgebra of B such
that B is a finite A-module. Let δ be a locally nilpotent derivation on A. Then δ lifts uniquely
to the quotient field L of B, which we denote by ∆. We consider when ∆ is a locally nilpotent
derivation of B. This is a classical subject treated in [17, 19, 16]. We are interested in the
case where A is the G-invariant subring of B when a finite group G acts on B. As a related
topic, we treat in the last section the finite coverings of log affine pseudo-planes in terms of
the liftings of the A1-fibrations associated with locally nilpotent derivations.

1. Introduction. An algebraic action of the additive group scheme Ga on an affine
scheme Spec A over the complex number field C is described in terms of a locally nilpotent
derivation on the C-algebra A (see [3]). We have to consider often the liftability of the Ga-
action (or the associated A1-fibration) on SpecA via a finite covering SpecB → SpecA. This
is a special case of the classical problem of lifting derivations via finite extensions of algebras
which are not necessarily locally nilpotent.

Let B be an integral domain defined over C and let A be its C-subalgebra such that B

is a finite A-module. Given a C-derivation δ on A, δ extends to the quotient field K of A.
Since the quotient field L of B is a simple extension of K , L is written as L = K(θ) for
some θ ∈ L. Let F(X) be the minimal polynomial of θ over K . Then it is well-known that δ

lifts uniquely to a C-derivation ∆ on L such that ∆(θ) = −Fδ(θ)/F ′(θ), where Fδ(X) is the
polynomial with all the coefficients of F(X) replaced by their δ-images. The derivation ∆ on
L does not necessarily restrict to a derivation on B, i.e., ∆(B) ⊂ B. By Vasconcelos [19], if
∆(B) ⊆ B is satisfied, then ∆ is locally nilpotent provided so is δ.

Let R be the radical of the annihilator Ann(ΩB/A) and let b = A ∩R, which we call the
reduced ramification ideal and the reduced branch ideal of B over A, respectively. Suppose
that A and B are noetherian normal domains over C. According to Scheja-Storch [16] where
the assumption is a little more relaxed to the effect that B and A are Krull rings, ∆(B) ⊆ B if
and only if δ(p) ⊆ p for every height 1 prime divisor p of b. In particular, if ΩB/A = (0), i.e.,
B is unramified over A, then ∆ satisfies ∆(B) ⊆ B, i.e., δ lifts to a derivation ∆ of B.

Since we need the liftability criterion in more algebro-geometric settings, it is desirable
to have a more geometric proof of the liftability criterion for locally nilpotent derivations
without the normality of rings B and A if possible. This is our first objective. Hereafter in the
first two sections, we assume that δ is locally nilpotent. We state the following results.
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THEOREM 1.1. Suppose that B is an affine domain over C and that B is étale over A.
Then ∆(B) ⊂ B and ∆ is a locally nilpotent derivation on B.

In the non-étale case, we can show the following two results. Theorem 1.2 is weaker
than the result of Vasconcelos [19], though the proof is different.

THEOREM 1.2. Suppose that B is an affine C-domain and that ∆(B) ⊂ B. Then ∆ is
locally nilpotent if and only if there exists an element a of A such that δ(a) = 0 and B[a−1]
is étale over A[a−1].

THEOREM 1.3. Suppose that B and A are normal affine domains over C. Suppose
further that there exists a nonzero ideal a of A satisfying the conditions:

(1) The ideal a has height at least two.
(2) The associated morphism Spec B → Spec A is étale outside V (a).

Then ∆(B) ⊂ B and ∆ is locally nilpotent.

These theorems are proved in the next section. In the third section, we elucidate the
liftability of derivations and the local nilpotency of the lifted derivations by giving examples
of G-invariant derivations which satisfy or dissatisfy the assumptions for a finite group G (see
Theorems 3.2, 3.5, 3.6 and 3.7). In the last section, we give algebraic characterizations for
an affine normal surface to be isomorphic to A2/G for a finite cyclic group G (see Theorem
4.4). The existence of Ga-actions on such surfaces are also treated in detail in [2].

2. Proof of theorems.
2.1. Proof of Theorem 1.1. The proof is also outlined in [8]. Since B is étale over

A, it follows that ΩA/C ⊗A B ∼= ΩB/C . Since the given derivation δ on A is locally nilpo-
tent, there exist a nonzero element a ∈ A and an element x in A[a−1] such that δ(x) = 1
and hence A[a−1] ∼= R[x], where R is the kernel of δ extended to A[a−1]. The exact se-
quence of differential modules applied to the inclusions R[x] ⊃ R ⊃ C yields a direct sum
decomposition

ΩR[x]/C ∼= (ΩR/C ⊗R R[x]) ⊕ R[x]dx .

By tensoring it with B[a−1], we obtain a direct sum decomposition

ΩR[x]/C ⊗R[x] B[a−1] ∼= (ΩR/C ⊗R B[a−1]) ⊕ B[a−1]dx .

Since A[a−1] ⊂ B[a−1] is étale, we have

ΩB[a−1]/C ∼= ΩA[a−1]/C ⊗A[a−1] B[a−1] ∼= ΩR[x]/C ⊗R[x] B[a−1] .

Hence we have a direct sum decomposition

ΩB[a−1]/C ∼= (ΩR/C ⊗R B[a−1]) ⊕ B[a−1]dx .

The derivation ∆ of the quotient field L, which is the extension of δ, is given as a B[a−1]-
module homomorphism α from ΩB[a−1]/C to L. Here the restriction of α onto the direct
summand ΩR/C ⊗R B[a−1] is zero because δ is zero on R, and α(dx) = ∆(x) = δ(x) = 1.
This implies that ∆(B[a−1]) ⊂ B[a−1]. In fact, for any z ∈ B[a−1], we have ∆(z) = α(dz)
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and dz = ω + f dx, where ω ∈ ΩR/C ⊗R B[a−1] and f ∈ B[a−1]. Then ∆(z) = α(ω +
f dx) = f α(dx) = f ∈ B[a−1].

We directly show that ∆ is locally nilpotent on B[a−1]. Let C = Spec R, let Xa =
Spec A[a−1] and let Ya = Spec B[a−1]. Then Xa

∼= C × A1. Hence Xa is topologically
contractible to C. This implies that π1(Xa) ∼= π1(C) and that Ya is a fiber product of an
algebraic scheme D and A1, where D is a finite étale covering of C. Let S be the coordinate
ring of D. Then B[a−1] ∼= S[x], where S is étale and finite over R. Since ∆ is trivial on R, it
follows that ∆ is trivial on S. Thus ∆ is locally nilpotent on B[a−1].

We shall show that ∆(B) ⊂ B. Since B is A-flat, we have isomorphisms of B-modules
(see [9, Theorem 7.11]):

DerC(B,B) ∼= Hom A(ΩA/C, B) ∼= DerC(A,A) ⊗A B .

Hence there exists a unique element ∆′ of DerC(B,B) which corresponds to δ ⊗ 1B of
DerC(A,A) ⊗A B. Hence the restriction of ∆′ on A is the given derivation δ. By the unique-
ness of the extended derivation on L, we conclude that ∆′ = ∆. Thereby, we conclude that
∆(B) ⊂ B.

It is now easy to see that ∆ itself is a locally nilpotent derivation since ∆ restricted on
B[a−1] is locally nilpotent.

2.2. Proof of Theorem 1.2. Suppose first that δ(a) = 0 and B[a−1] is étale over
A[a−1] for an element a of A. By Theorem 1.1, the derivation δ on A[a−1] lifts to a locally
nilpotent derivation δa on B[a−1]. Then δa coincides with ∆ on B[a−1]. Let b be any element
of B. Then ∆n(b) = δn

a (b) which is zero if n � 0. Hence ∆ is a locally nilpotent derivation
of B.

Consider the differential module ΩB/A which is a finite B-module. For a prime ideal
P of B and its contraction p = P ∩ A, the extension BP is ramified over Ap if and only if
ΩB/A ⊗B BP

∼= ΩBP/Ap �= (0). This condition is equivalent to the condition that R ⊂ P,
where R is the reduced ramification ideal. Let b = R ∩ A be the reduced branch ideal.
Suppose now that ∆ is locally nilpotent. Then ∆ defines a Ga-action τ : Ga × Y → Y

on Y = Spec B which extends the Ga-action σ : Ga × X → X on X = Spec A, i.e.,
p · τ = σ · (id Ga × p) holds on Ga × Y , where p : Y → X is the natural finite morphism.
For any λ ∈ C, denote by λ(P) (resp. λ(p)) the image τ (λ,P) (resp. σ(λ, p)). Then λ(p) =
λ(P)∩A, and Bλ(P) is unramified over Aλ(p) if and only if so is BP over Ap. In other words,
λ(P) ⊃ R if and only if P ⊃ R, and hence, λ(p) ⊃ b if and only if p ⊃ b. This implies
that λ(R) = R (resp. λ(b) = b) for every λ ∈ C. This can be said that R (resp. b) is a
∆-ideal of B (resp. δ-ideal of A) in the sense that ∆(R) ⊆ R (resp. δ(b) ⊆ b). If b = A,
then R = B and therefore ΩB/A = (0), that is to say, B is étale over A (see Remark 2.1
below). In this case, we take a = 1. Suppose that b �= A. For a general choice of P, we
have ΩB/A ⊗B BP = (0). Hence b �= (0). Since b is a nonzero δ-ideal, we can choose a
nonzero element a of b such that δ(a) = 0 and that B[a−1] is étale and finite over A[a−1].
This completes a proof of Theorem 1.2.
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REMARK 2.1. With the above notations, suppose that ΩB/A = (0). Then, for any
maximal ideal M of B and m = M ∩ A, it holds that MBM = mBM and hence the comple-
tions B̂M and Âm coincides with each other. Since B̂M (resp. Âm) is faithfully flat over BM

(resp. Am), it follows that BM is a flat Am-module. Hence B is unramified and flat over A.
So, B is étale over A.

2.3. Proof of Theorem1.3. Note that ht(aB) ≥ 2 because p : Y → X is a finite
morphism. Let DerC(Y ) be the coherent OY -Module HomOY

(ΩY/C,OY ). Then, by [4, Cor.
5.10.6], the canonical homomorphism

Γ (Y,DerC(Y )) → Γ (Y − V (aB),DerC(Y ))

is an isomorphism. Since ∆Y−V (aB) is the lifting of δX−V (a), we have ∆Y−V (aB) ∈ Γ (Y −
V (aB),DerC(Y )) by the condition (2) and Theorem 1.1. Hence ∆Y−V (aB) extends to a C-
derivation ∆′ ∈ Γ (Y,DerC(Y )). Since both ∆ and ∆′ restricted on the function field L is the
extension of δ, it follows that ∆′ = ∆. This implies that ∆(B) ⊂ B. Then, by Vasconcelos
[19], ∆ is locally nilpotent. This completes a proof of Theorem 1.3.

REMARK 2.2. In the above proof of Theorem 1.3, we can show that ∆ is locally nilpo-
tent without using a result of Vasconcelos if the ideal a is a δ-ideal, i.e., δ(a) ⊂ a. In fact,
since a is a nonzero δ-ideal, there exists a nonzero element a of a such that δ(a) = 0. Then
by the condition (2), B[a−1] is étale over A[a−1]. Hence the restriction ∆|B[a−1] is locally
nilpotent (see the proof of Theorem 1.1). It then follows that ∆ is locally nilpotent.

If we assume that a is generated by finitely many elements a1, . . . , am such that δ(ai) =
0 for every 1 ≤ i ≤ m, then we can give another proof to Theorem 1.3. In fact, choose
any ai and denote it by a. Then the open set D(a) is contained in Spec A \ V (a). Hence
B[a−1] is finite and étale over A[a−1] by the condition (2). Then ∆ is a locally nilpotent
derivation on B[a−1] by Theorem 1.1. In particular, ∆(B) ⊂ B[a−1]. Hence it follows
that ∆(B) ⊂ ⋂m

i=1 B[a−1
i ]. Meanwhile, let p be a prime ideal of A with ht(p) = 1. Since

ht(a) ≥ 2 by the hypothesis, p does not contain ai for some i. Let Bp := B ⊗A Ap. Then
Bp ⊃ B[a−1

i ]. Hence ∆(B) ⊂ Bp. Since we can take p as an arbitrary prime ideal of A with
height one, we have ∆(B) ⊂ ⋂

ht(p)=1 Bp = B since B is a finite A-module and A is normal.

3. G-invariant derivations. Let G be a finite group and let G act faithfully on the
affine domain B over C. Let A be the ring of G-invariants of B. Then B is a finite A-
module. With the same notations as in the previous sections, we let L and K be respectively
the quotient fields of B and A. Then K is the G-invariant subfield of L. For a C-algebra R,
we denote by DerC(R,R) or simply DerC(R) the R-module of C-derivations of R into R.

We shall begin with some elementary observations on the derivations.

LEMMA 3.1. Suppose that G acts on a C-algebra R. Then the following assertions
hold.

(1) G acts on DerC(R,R) by g(∆)(x)=g(∆(g−1(x))), where g ∈G,∆∈DerC(R,R)

and x ∈ R.
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(2) Taking the above L as R, ∆∈DerC(L,L) is a lifting of an element δ∈DerC(K,K)

if and only if g(∆) = ∆ for every g ∈ G.
(3) Taking the above B as R, ∆∈DerC(B,B) is a lifting of an element δ∈DerC(A,A)

if and only if g(∆) = ∆ for every g ∈ G.

PROOF. (1) It is straightforward to verify that g(∆) ∈ DerC(R,R).
(2) Suppose that ∆ is a lifting of δ ∈ DerC(K,K). Then, for z ∈ K , we compute

as g(∆)(z) = g(∆(g−1(z))) = g(δ(z)) = δ(z). This implies that g(∆) is also a lifting of δ.
Since the lifting of δ is unique, we have g(∆) = ∆ for every g ∈ G. Conversely, if g(∆) = ∆,
then for z ∈ K , we have g(∆(z)) = (g(∆))(g(z)) = ∆(z), whence ∆(z) ∈ K . So, ∆ induces
an element δ ∈ DerC(K,K). Hence ∆ is a lifting of δ.

(3) In the above proof, if ∆ ∈ DerC(B,B), then g(∆) ∈ DerC(B,B). Then the above
proof applies to the present case. Q.E.D.

For an algebraic group G not necessarily finite, the action of G on DerC(R,R) is defined
as above.

With the notations of the above assertion (3), if ∆ ∈ DerC(B,B) is locally nilpotent, so
is the derivation δ ∈ DerC(A,A). But the converse does not hold as shown in Proposition 3.4.

3.1. Symmetric derivations. We consider the case where G is the symmetric group Sn

on n letters and G acts on the polynomial ring B = C[x1, . . . , xn] in the standard way such
that σ(xi) = xσ(i) for σ ∈ Sn. Then A = BG = C[s1, . . . , sn] = C[t1, . . . , tn], where si and
ti are the i-th elementary symmetric polynomials

si =
∑

j1<···<ji

xj1xj2 · · · xji , ti =
n∑

j=1

xi
j .

The quotient field L of B is a minimal splitting field of F(X) over the quotient field K of A,
where

F(X) = Xn − s1X
n−1 + · · · + (−1)isiX

n−i + · · · + (−1)nsn .

Let ∆ ∈ DerC(L,L) be a lifting of δ ∈ DerC(A,A). Since every xi is a root of F(X) = 0, it
follows that

∆(xi) = −Fδ(xi)

F ′(xi)
.

Furthermore, since ∆ is G-invariant, ∆ is in fact determined by ∆(x1). We denote by
DerGC (B,B) the A-module of G-invariant derivations of B.

THEOREM 3.2. (1) Let ∆ ∈ DerC(L,L) be a lifting of δ ∈ DerC(A,A). Then
∆ ∈ DerC(B,B) if and only if F ′(x1) divides Fδ(x1) in B.

(2) The A-module DerGC (B,B) is freely generated by

∆i = xi
1∂x1 + · · · + xi

n∂xn

for 0 ≤ i ≤ n − 1.
(3) If ∆ ∈ DerGC (B,B) is locally nilpotent, then ∆ = f ∆0 where f is an element of A

such that ∆0(f ) = 0.
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PROOF. (2) It is easily checked that ∆i is a G-invariant homogeneous derivation for
0 ≤ i ≤ n − 1. We show that DerGC (B,B) is generated by ∆0, . . . ,∆n−1 over A. Let
∆ ∈ DerGC (B,B). Then ∆ is written as

∆ = f1∂x1 + · · · + fn∂xn

where fi ∈ B. Since ∆ is G-invariant, it follows that σfi = fσ(i) for any σ ∈ G. In particular,
σf1 = f1 for any permutation σ of 2, 3, . . . , n and fi = τ(1,i)f1 for i ≥ 2 where τ(1,i) is the
transposition of 1 and i. We may assume that f1 is homogeneous. Let r be the degree of f1

of ∆. If r = 0, then ∆ = c∆0 for c ∈ C. Let r ≥ 1. Since σf1 = f1 for any permutation σ

of 2, 3, . . . , n, it follows that

f1 = crx
r
1 + cr−1S1(x2, . . . , xn)x

r−1
1

+ · · · + c1Sr−1(x2, . . . , xn)x1 + c0Sr(x2, . . . , xn)

where Sk(x2, . . . , xn) is a symmetric polynomial of x2, . . . , xn of degree k and ck ∈ C.
Note that S1(x2, . . . , xn) is the first symmetric polynomial s1(x2, . . . , xn) = x2 + · · · + xn

of x2, . . . , xn. Suppose that r ≤ n − 1. It suffices to show that ∆ is written as a sum of
∆0, . . . ,∆r over A when f1 = Sk(x2, . . . , xn)x

r−k
1 for 1 ≤ k ≤ r . For k ≥ 2, Sk(x2, . . . , xn)

is expressed by a linear combination of sk(x2, . . . , xn) = ∑
2≤j1<···<jk

xj1xj2 · · · xjk and the
products sk1(x2, . . . , xn) · · · skj (x2, . . . , xn) such that k1 + · · · + kj = k. Since

s1(x2, . . . , xn) + x1 = s1

s2(x2, . . . , xn) + s1(x2, . . . , xn)x1 = s2

· · ·
sn−1(x2, . . . , xn) + sn−2(x2, . . . , xn)x1 = sn−1 ,

it follows inductively on k that sk(x2, . . . , xn)x
r−k
1 is written as a linear sum of skx

r−k
1 ,

sk−1x
r−k+1
1 , . . . , xr

1. Furthermore, by the above relations, the products sk1(x2, . . . , xn) · · ·
skj (x2, . . . , xn) of degree k are reduced, inductively on k, to a sum of x

j

1 for 0 ≤ j ≤ k over

A. Hence it follows that ∆ with f1 = Sk(x2, . . . , xn)x
r−k
1 for 1 ≤ k ≤ r is written as a sum

of ∆0, . . . ,∆r over A when r ≤ n − 1. Suppose that r ≥ n. Since Sk(x2, . . . , xn) is a linear
combination of the products of s1(x2, . . . , xn), . . . , sn−1(x2, . . . , xn) of degree k, it follows
by the argument as above that Sk(x2, . . . , xn) is written by a sum of x

j

1 for 0 ≤ j ≤ k over A.
By the above relations and

x1sn−1(x2, . . . , xn) = sn ,

it follows that

xn
1 = s1x

n−1
1 − s2x

n−2
1 + · · · + (−1)n−2sn−1x1 + (−1)n−1sn .

Hence xr
1 for r ≥ n is written as a sum of x

j

1 for 0 ≤ j ≤ n − 1 over A. It follows that
∆ with f1 = Sk(x2, . . . , xn)x

r−k
1 for 1 ≤ k ≤ r and with f1 = xr

1 are written as a sum of
∆0, . . . ,∆n−1 over A when r ≥ n.

We show that ∆0, . . . ,∆n−1 are linearly independent over A. Suppose that a0∆0 +· · ·+
an−1∆n−1 = 0 for a0, . . . , an−1 ∈ A. Then we have a0 + a1xi + · · · + an−1x

n−1
i = 0 for
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1 ≤ i ≤ n. In a matrix form, tV t (a0, . . . , an−1) = t (0, . . . , 0) where V is the van der Monde
matrix. Multiplying the adjoint matrix of tV , we have d · t (a0, . . . , an−1) = t (0, . . . , 0) where
d = ∏

i<j (xi − xj ). Hence it follows that ai = 0 for all i, and the assertion follows.
(3) Write ∆ as ∆ = f1∂x1 + · · · + fn∂xn for fi ∈ B. Since fi = τ(1,i)f1 for i ≥ 2,

it follows that ∆(xi − xj ) = fi − fj ∈ (xi − xj ). This implies that ∆(xi − xj ) = 0
since ∆ is locally nilpotent (see [3, Cor. 1.20]). Hence fi = ∆(xi) = ∆(xj) = fj for any
i and j . Thus ∆ is written as ∆ = f ∆0 for f ∈ B. Since ∆ is G-invariant, it follows that
∆(s1) = nf ∈ A, i.e., f ∈ A. Furthermore, since ∆(f ) = f ∆0(f ) and ∆ is locally nilpotent,
we have ∆(f ) = 0 [3, ibidem]. Hence ∆0(f ) = 0. Q.E.D.

REMARK 3.3. Let δ0 = ∆0|A. Then the locally nilpotent derivation δ0 on
A = C[t1, . . . , tn] is triangular, i.e., δ0(ti) ∈ C[t1, . . . , ti−1] and has a slice s = t1/n.
Hence the kernel of δ0 is a polynomial ring C[πs(t2), . . . , πs(tn)] where πs(a) =∑

i≥0((−1)i/i!)δi
0(a)si for a ∈ A.

By Theorem 3.2 together with a result of Vasconcelos, a lifting ∆ ∈ DerC(L,L) of a
locally nilpotent derivation δ on A satisfies ∆(B) ⊂ B if and only if δ = f δ0 where δ0 =
∆0|A and f is an element of A such that δ0(f ) = 0. Let d = ∏

i<j (xi − xj ) (resp. D = d2)
be the discriminant (resp. the determinant) of B over A. Since δ0(D) = 0, our result accords
with the criterion of Scheja-Storch [16]. We give an example of a lifting ∆ ∈ DerC(L,L)

which is not a derivation of B.

PROPOSITION 3.4. Let δ be a locally nilpotent derivation on A such that δ(si) = 0
for 1 ≤ i < n and δ(sn) = 1. Then ∆(x1), . . . ,∆(xn) are determined as

t (∆(x1), . . . ,∆(xn)) = 1

d
V ∗t (0, . . . , (−1)n+1) ,

where V ∗ is the adjoint matrix of the van der Monde matrix

V =




1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

· · ·
xn−1

1 xn−1
2 · · · xn−1

n


 .

Hence ∆(B) �⊂ B.

PROOF. Note that ti ∈ C[s1, . . . , si ] for 1 ≤ i ≤ n − 1 and that tn + (−1)nnsn ∈
C[s1, . . . , sn−1]. Hence we have ∆(ti) = 0 for 0 ≤ i ≤ n − 1 and ∆(tn) = (−1)n+1n, i.e.,∑n

j=1 xi
j∆(xj ) = 0 for 0 ≤ i < n − 1 and

∑n
j=1 xn−1

j ∆(xj ) = (−1)n+1. Namely we have




1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

· · ·
xn−1

1 xn−1
2 · · · xn−1

n







∆(x1)

∆(x2)
...

∆(xn)


 =




0
0
...

(−1)n+1


 .
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Thence follows the assertion. Q.E.D.

Let sln be the Lie algebra with the adjoint action of SLn. Then the algebraic quotient
sln//SLn is isomorphic to t/W where t is the Lie subalgebra of a maximal torus T of SLn and
W is the Weyl group which is isomorphic to Sn. Let R (resp. B) be the coordinate ring of sln
(resp. t). Then B ∼= C[x1, . . . , xn]/(x1 + · · · + xn) and W = Sn acts on B by permutation
of the coordinates x̄i’s where x̄i ∈ B denotes the residue class of xi . As remarked above, the
SLn-invariant subring RSLn is isomorphic to BW . As an application of Theorem 3.2, we show
the following.

THEOREM 3.5. There exists no non-trivial, SLn-invariant, locally nilpotent derivation
on R. Hence there is no non-trivial Ga-action on sln which commutes with the adjoint SLn-
action.

PROOF. Let ∆ be an SLn-invariant locally nilpotent derivation on R. Then since the
corresponding Ga-action on sln commutes with the SLn-action, it induces a Ga-action on
slTn = t commuting with the action of W = NT/T , where slTn is the T -fixed locus of sln and
NT is the normalizer of T in SLn. Let ∆′ be the corresponding W(= Sn)-invariant locally
nilpotent derivation on B = C[x1, . . . , xn]/(x1 + · · · + xn). Via an isomorphism α : B →
C[x1, . . . , xn−1] defined by α(x̄i ) = xi for 1 ≤ i ≤ n − 1 and α(x̄n) = −(x1 + · · · + xn−1),
∆′ induces a locally nilpotent derivation ∆̄′ on C[x1, . . . , xn−1]. Since ∆′ is W -invariant, ∆̄′
is invariant under the action of Sn−1 which permutes the coordinates x1, . . . , xn−1. Hence by
Theorem 3.2, ∆̄′ is of a form f ∆0 where ∆0 = ∂x1 +· · ·+∂xn−1 and f ∈ C[x1, . . . , xn−1]Sn−1

satisfies ∆0(f ) = 0. Since α ◦ ∆′ = ∆̄′ ◦ α, we have α(∆′(x̄i)) = f for 1 ≤ i ≤ n −
1 and α(∆′(x̄n)) = −(n − 1)f . It holds that τ(1n)∆

′(x̄1) = ∆′(τ(1n)x̄1) since ∆′ is W -
invariant. Applying α on both sides, we obtain f (−(x1 +· · ·+xn−1), x2, . . . , xn−1) = −(n−
1)f (x1, . . . , xn−1). Further, by applying ∆0 to the above equation, we induce ∂x1f = 0.
Hence it follows that f = 0, i.e., ∆′ = 0, and the Ga-action on t is trivial. Since the Ga-
action commutes with the SLn-action, it is trivial on SLn · t, which is open in sln. Hence the
assertion follows. Q.E.D.

3.2. Dd -invariant derivations. Consider the case G is a dihedral group Dd = Z/dZ�

Z/2Z for an odd prime integer d . Let B = C[x, y] and G acts on B by

σ(x, y) = (ζ x, ζ−1y) , τ (x, y) = (y, x)

where σ is a generator of Z/dZ, τ the generator of Z/2Z, and ζ is a d-th primitive root of
unity. Then A = BG = C[s, t] where s = xd + yd and t = xy. The minimal polynomial
F(X) of L over K is

F(X) = X2d − sXd + td .

THEOREM 3.6. (1) Let ∆ ∈ DerC(L,L) be a lifting of δ ∈ DerC(A,A). Then
∆ ∈ DerC(B,B) if and only if xd − yd divides δ(s)x − dyd−1δ(t) in B.
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(2) If ∆ ∈ DerGC (B,B), then

∆ = f1(x∂x + y∂y) +
l∑

i=1

f2i (y
id−1∂x + xid−1∂y)

where f1, f2i ∈ A and l ≥ 1.

(3) There is no non-trivial derivation ∆ ∈ DerGC (B,B) which is locally nilpotent.

PROOF. (1) The assertion follows from Fδ(x) = −(δ(s)x − dyd−1δ(t))xd−1 and
F ′(x) = d(xd − yd)xd−1. Here we note that ∆(x) ∈ B if and only if ∆(y) ∈ B since ∆ is
G-invariant.

(2) Write ∆ as ∆ = f ∂x + g∂y for f, g ∈ B. Since ∆ is G-invariant, it follows that
f (ζx, ζ−1y) = ζf (x, y) and g(x, y) = f (y, x). Hence f = f1x + ∑l

i=1 f2iy
id−1 and

g = f1y + ∑l
i=1 f2ix

id−1 for f1, f2i ∈ C[s, t]. Now the derivation is written as in the
statement.

(3) With the above notations, suppose that ∆ is locally nilpotent. Since ∆(xd − yd) is
in (xd − yd), we induce ∆(xd − yd) = 0 by [3, 1.4]. Hence we obtain s∆(s) = 2dtd−1∆(t)

by

∆((xd − yd)2) = ∆(s2 − 4td) = 0 .

Since ∆|A is locally nilpotent, it is trivial (cf. ibid.). Hence ∆(t) = 0. Since ∆(x)y =
−x∆(y), it follows that ∆ = 0 (cf. ibid.) Q.E.D.

3.3. Z/nZ-invariant derivations. Let G = Z/nZ be a cyclic group of order n which
acts linearly on B = C[x, y]. Suppose that the isotropy group of every closed point of SpecB

except the origin is trivial. Then by choosing an appropriate generator σ of G, we may assume
that the G-action on B is given by σ(x, y) = (ζ x, ζ dy), where ζ is a primitive n-th root of
unity and d is an integer such that 0 < d < n and (d, n) = 1. Then the G-invariant subring
A = BG is generated by monomials xiyj such that i + dj ≡ 0 (mod n). The quotient field
L of B is a minimal splitting field of F(X) = X2n − (xn + yn)Xn + xnyn over the quotient
field K of A.

THEOREM 3.7. (1) Let ∆ ∈ DerC(L,L) be a lifting of δ ∈ DerC(A,A). Then ∆ is
in DerC(B,B) if and only if δ(xn) is divided by xn−1 and δ(yn) is divided by yn−1 in B.

(2) If ∆ ∈ DerGC (B,B), then

∆ = (a1x + a2y
d ′

)∂x + (b1x
d + b2y)∂y

where a1, a2, b1, b2 ∈ A and d ′ is an integer such that 0 < d ′ < n and dd ′ ≡ 1 (mod n).

PROOF. (1) Since x is a root of F(X) = 0, it follows that ∆(x) = −Fδ(x)/F ′(x).
Similarly as for y, we obtain ∆(y) = −Fδ(y)/F ′(y), and the assertion follows.

(2) We write ∆ as ∆ = f ∂x + g∂y for f, g ∈ B. Since ∆ is G-invariant, it follows that
σf = ζf and σg = ζ dg . Since the A-module B1 = {b ∈ B ; σb = ζb} is generated by x and
yd ′

, f is written as f = a1x + a2y
d ′

for a1, a2 ∈ A. As for g , it follows that g = b1x
d + b2y
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for b1, b2 ∈ A since Bd = {b ∈ B ; σb = ζ db} is generated by xd and y over A. Hence the
assertion follows. Q.E.D.

It is easily checked that ∆ = bxd∂y with b ∈ C[xn] and ∆′ = ayd ′
∂x with a ∈ C[yn] are

G-invariant locally nilpotent derivations on B, hence restrict to locally nilpotent derivations
on A. We show in a geometric way that any G-invariant locally nilpotent derivation on B is
of the form ∆ or ∆′ (Theorem 4.5).

REMARK 3.8. Let G be a finite group and let ρ : G → GL(n,C) be a non-trivial
representation. We consider the G-action on the polynomial ring B = C[x1, . . . , xn] induced
by ρ. Let ∆ = c1∂x1 + · · · + cn∂xn be a linear derivation of B with ci ∈ C. Then it is easy to
see that ∆ is G-invariant if and only if the column vector t (c1, . . . , cn) is an eigenvector with
value 1 of ρ(g) for all g ∈ G. Hence ∆ = 0 if ρ is irreducible.

4. Algebraic characterizations of A2/G with G cyclic. A normal affine surface X

is called a log affine pseudo-plane if it has an A1-fibration over A1 such that all fibers are
isomorphic to A1 when reduced and there is at most one multiple fiber [15, 14]. If a log affine
pseudo-plane is smooth, it is simply called an affine pseudo-plane. The significance of affine
pseudo-planes is clear from the following fact [15, Theorem 1.2]:

Let X be a Q-factorial smooth affine surface. Then X is an affine pseudo-plane if and
only if there exists a dominant morphism p : A2 → X.

The quotient surface A2/G of the affine plane A2 = Spec B by a linear action of a
finite cyclic group G = Z/nZ described in the previous subsection 3.3 is one of log affine
pseudo-planes (see Theorem 4.3). To fix the notation, let σ be a generator of G and define a
G-action on B = C[x, y] by σ(x, y) = (ζ x, ζ dy), where ζ is a primitive n-th root of unity
and d is a positive integer with (d, n) = 1. As remarked in 3.3, the G-invariant subring A of
B is given as A = C[xn, yn, xiyj ; i +dj ≡ 0 (mod n)]. The quotient surface A2/G by this
G-action is Spec A. We then say that A2/G has a cyclic quotient singularity of type (n, d).
In the sequel, we mean by A2/G the quotient surface Spec A. The objective of the present
section is to characterize A2/G in terms of the liftings of A1-fibrations on A2/G.

We shall first collect some known results on an A1-fibration on a normal affine surface.
Given a fibration ρ : X → C and a point p ∈ C, we denote by ρ∗(p) (resp. ρ−1(p)) the
scheme-theoretic (resp. set-theoretic) fiber of ρ over p.

LEMMA 4.1. Let X be a normal affine surface and let ρ : X → C be an A1-fibration
with a smooth curve C. Let P0 be a singular point on X and let F0 := ρ∗(p0) with p0 =
ρ(P0). Let σ : Y → X be the minimal resolution of singularities of X and let τ : Y → C be
the A1-fibration which is the extension of ρ. Then the following assertions hold.

(1) The point P0 is a cyclic quotient singular point, say, of type (n, d) with 0 < d < n

and (n, d) = 1 and the fiber ρ−1(p0) is a disjoint union of the affine lines, each of which
carries at most one singular point.

We assume below that the fiber F0 is irreducible.
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(2) There exist a smooth projective surface V and a P 1-fibration ϕ : V → C̄ such that
Y is an open set of V , C̄ is the smooth completion of C, the P 1-fibration ϕ induces the A1-
fibration τ and the σ ∗(F0) is a part of the degenerate fiber Σ0 := ϕ∗(p0). We may assume
that the weighted dual graph of Σ0 is the following slanted tree and the exceptional locus
σ−1(P0) is the rightmost, horizontal linear twig sprouting from E, where E is the proper
transform of ρ−1(p0) and a unique (−1) curve of Σ0:
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B0 B1 B2 Br E︸ ︷︷ ︸
σ−1(F0)

D0 D1 Dr−1

−1

The contraction of Σ0 to a smooth fiber starts with the contraction of E followed by a suc-
cessive contractions of all components which lie on the right side of the component Br . After
these contractions, the component Br becomes a (−1) curve, and Br as well as all compo-
nents lying on the right side of Br−1 are contracted. Continuing the contractions of this kind,

we can contract all components except for the leftmost component B0 which becomes finally
a smooth fiber.

(3) Let m be the multiplicity of the fiber F0. Let mi be the multiplicity of the component
Bi in the fiber Σ0 for 0 ≤ i ≤ r . Then m0 = 1,mi | mi+1 for 1 ≤ i < r and mr | m.

(4) The right side part of the component Br is produced by blowing up a point on
Br and its infinitely near point, i.e., reversing the contracting process in (2) above, with Br

viewed as a smooth fiber L of a P 1-fibration on a smooth projective surface. This blowing-up
process is determined by the pair (n, d) or (n, d ′), where d ′ is an integer such that 0 < d ′ < n

and dd ′ ≡ 1 (mod n). More precisely, define a sequence of positive integers [a1, a2, . . . , as]
with ai ≥ 2 by expanding n/d into a continued fraction

n

d
:= [a1, a2, . . . , as] = a1 − 1

a2 − 1

. . .

as−1 − 1

as

and also a sequence [b1, b2, . . . , bt ] by

n

n − d
= [b1, b2, . . . , bt ]
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Then there is a sequence of blowing-ups which starts from a point P on L of the smooth
projective surface such that the total transform of L containing the proper transform L′ of L

has one of the following linear chains consisting of rational curves:

� � � � � � � � � � � � � � � � �

−b1 −b2 −bt−1 −bt −1 −as −as−1 −a2 −a1

L′ E
(Case 1)

� � � � � � � � � � � � � � � � �

−bt −bt−1 −b2 −b1 −1 −a1 −a2 −as−1 −as

L′ E
(Case 2)

Let A be the part consisting of vertices with self-intersection numbers −as,−as−1, . . . ,−a2,

−a1. Then the fiber F0 is obtained from the above fiber Σ0 by contracting the part A to
the singular point P0 and removing all other components except for E. The self-intersection
number of Br in the fiber Σ0 is −(b1 + 1) or −(bt + 1) in the case 1 or 2, respectively.

(5) We have m = nmr .
(6) For an irreducible fiber F = m′�′ of ρ with multiplicity m′, there is no singular

point on F if m′ = 1.

PROOF. (1) See [12]. It is also shown that the proper transform of each irreducible
component of ρ−1(p0) meets one of the end components of the linear chain which constitute
the exceptional locus of the minimal resolution of the singular point.

(2) We may assume that the component E, which corresponds to the fiber ρ−1(p0), is
the unique (−1) component in the fiber Σ0. Then we obtain the above slanted tree as the dual
graph of Σ0.

(3) Reversing the contraction process, one can obtain the fiber Σ0 by blowing up a
point on B0 and its infinitely near points. When we blow up a point on B1, the exceptional
curve has the same multiplicity m1, and the exceptional curves appearing by further blowing-
ups have multiples of m1 as multiplicities. Hence m1 | m2. By a similar reason, we have
further divisions mi | mi+1 for 2 ≤ i < r and mr | m.

(4) The integer d ′ is obtained from the pair (n, d) as the denominator of

n

d ′ = [as, as−1, . . . , a1] .

Hence the pairs (n, d) and (n, d ′) yield a cyclic singular point with the same resolution graph.
In order to show the assertion, we may assume that the dual graph of Σ0 is a linear chain,
i.e., B0 coincides with Br . By making use of [6, Lemma 6.1] and by induction on n, one can
readily show that m = n. We refer to the arguments in [10] for the assertion that the linear
chain in Case 2 is also obtained by blowing-ups from a smooth fiber of a P 1-fibration.

(5) This follows from the assertions (3) and (4).
(6) This is a corollary of the assertion (5). Q.E.D.
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Concerning the slanted tree given in the assertion (2) of Lemma 4.1, we write it as

� � � � � � � � � � � � �

B0 B1 D0

Γ1

where Γ1 is the side tree sprouting out from the component B1. The horizontal chain is called
the first linear chain of the fiber Σ0. Similarly, for 1 ≤ i ≤ r , we call the following horizontal
chain the i-th linear chain of Σ0, where Γi is the connected component of Σ0,red \ Bi that
contains the component E.

� � � � � � � � � � � � �

Bi−1 Bi Di−1

Γi

Suppose, in Lemma 4.1, that the base curve C of the A1-fibration ρ is the affine line.
Let p∞ be the point at infinity of C. Let µ1 : C1 → C be a cyclic covering of degree m1

which ramifies at the points p0 and p∞. Let X1 be the normalization of the fiber product
X ×C C1 and let ν1 : X1 → X be the normalization morphism composed with the projection
onto X. The projection ρ1 : X1 → C1 is an A1-fibration with the fiber ρ∗

1 (p1), where p1 is
the unique point of C1 lying over p0. For 1 ≤ i ≤ r , we define inductively a cyclic covering
µi : Ci → Ci−1 of degree mi/mi−1, a point pi of Ci and an affine normal surface Xi with an
A1-fibration ρi : Xi → Ci such that

(i) the covering µi : Ci → Ci−1 ramifies totally at the points pi−1 and the point at
infinity of Ci−1, where Ci−1 ∼= A1 and C0 = C, and

(ii) Xi is the normalization of Xi−1 ×Ci−1 Ci and ρi is the projection from Xi to Ci .
Finally, let µ : C̃ → Cr be a cyclic covering of degree n ramifying at the point pr and the
point at infinity of Cr , and let X̃ be the normalization of Xr ×Cr C̃. The projection ρ̃ : X̃ → C̃

is an A1-fibration. The composite µ̃ := µ1 · · · µr ·µ : C̃ → C is a cyclic covering of degree m

which ramifies over the point p0 and the point at infinity p∞ of C, and X̃ is the normalization
of X ×C C̃. Let p̃0 be the unique point lying over p0 (and hence over the point pr of Cr ).

The following result gives a description of the fibers ρ∗
i (pi).

LEMMA 4.2. The following assertions hold.
(1) Suppose that r = 0 and the graph of Σ0 is reduced to the chain
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� � � � � � � � � � � � �

−1

B0 E D0︸ ︷︷ ︸
σ−1(F0)

Then ρ̃∗(p̃0) is a smooth A1-fiber.
(2) Suppose r > 0. The fiber ρ∗

1 (p1) splits into a disjoint sum of m1 irreducible com-
ponents, each of which has multiplicity m/m1 and carries a cyclic quotient singularity of the
same type (n, d) as in Lemma 4.1, (4).

(3) Suppose r > 0 and 1 ≤ i ≤ r . Then the fiber ρ∗
i (pi) is a disjoint union of mi

copies of irreducible components, each of which has multiplicity m/mi and carries a cyclic
quotient singularity of the same type (n, d) as in Lemma 4.1, (4).

(4) Finally, the fiber ρ̃∗(p̃0) is a disjoint union of mr smooth reduced components.

PROOF. (1) In the fiber Σ0, the component E (resp. the components B0 and D0) has
multiplicity n (resp. 1). Let Ṽ be the normalization of V ×C̄ D, where D is the smooth
completion of C̃ and hence D ∼= P 1. The projection ϕ̃ : Ṽ → D is a P 1-fibration. Let
ν̃ : Ṽ → V be the normalization morphism composed with the projection onto V . The
fiber ϕ̃−1(p̃0) carries, in general, cyclic quotient singularities which lie over the intersection
points of the components of Σ0. Since the components B0 and D0 of Σ0 have multiplicity 1, ν̃
ramifies totally over B0 and D0. Then the inverse image by ν̃ of the components adjacent to B0

or D0 is irreducible since the degenerate P 1-fiber cannot contain a loop. By the same reason,
all irreducible components of Σ0 are irreducible on Ṽ . Note that ν̃ is unramified over the
component E. Since ν̃∗(Σ0) = nϕ̃∗(p̃0), it follows that the respective inverse images B̃0, D̃0

and Ẽ of B0,D0 and E by ν̃ have multiplicities 1 in the fiber ϕ̃∗(p̃0). This implies that, after
resolving minimally all singular points lying over ϕ̃∗(p̃0), all the components except for the
proper transform of Ẽ are contractible to smooth points. The assertion (1) follows readily
from this observation.

(2) We apply the arguments in the assertion (1) to the first linear chain of Σ0, where
the components B0,D0 and B1 have multiplicities 1, 1 and m1, respectively. In fact, instead
of Ṽ and ν̃ above, we consider the normalization V1 of V ×C̄ C̄1, where C̄1 is the smooth
completion of C1, and a finite covering ν̄1 : V1 → V of degree m1 which is the normalization
morphism composed with the projection to V . Then the morphism ν̄1 is unramified over B1

and the inverse image ν̄−1(B1) is irreducible and has multiplicity 1 in the fiber ϕ∗
1 (p1), where

ϕ1 : V1 → C̄1 is the induced P 1-fibration. Furthermore, the inverse image of the side tree Γ1

splits into a disjoint union of m1 copies of Γ1. After resolving the cyclic quotient singularities
on the inverse image by ν̄1 of the first linear chain, we can contract all the components to
smooth points except for the proper transform B̃1 of B1 and ν̄−1

1 (Γ1). Since the multiplicity
of B̃1 is 1, all the components of ν̄−1

1 (Γ1) have multiplicities equal to the corresponding
multiplicities in Σ0 divided by m1. Thence follows the assertion (2).
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(3) Suppose i ≥ 2. Let C̄i be the smooth completion of Ci . We construct a projective
normal surface Vi and a P 1-fibration ϕi : Vi → C̄i inductively as follows. The surface Vi is
the normalization of Vi−1 ×C̄i−1

C̄i and ϕi is the projection to C̄i . Let ν̄i : Vi → Vi−1 be the
composite of the normalization morphism and the projection to Vi−1. It is a finite covering
of degree mi/mi−1. Let τi = ν̄1 · · · ν̄i : Vi → V . In the fiber ϕ∗

i−1(pi−1), the inverse image

τ−1
i−1(Bi−1) is a disjoint union of the irreducible components B

(j)

i−1 (1 ≤ j ≤ mi−2), each of
which has multiplicity 1 and meets a disjoint union of mi−1/mi−2 copies of the (i − 1)-st
linear chain with the side tree Γi−1 added and Bi−2 subtracted, where all the multiplicities
are one mi−1-th of those in Σ0. Here we understand m0 = 1. Now ν̄i is a finite covering of
degree mi/mi−1 which are totally ramifying over the B

(j)

i−1 and the opposite end components
of (the copies of) the (i − 1)-st linear chain and unramified over the mi−1 copies of Bi .
Hence, in the fiber ϕ∗

i (pi), the inverse image τ−1
i (Bi) consists of the irreducible components

B
(j)
i (1 ≤ j ≤ mi−1), each of which has multiplicity 1 and meets a disjoint union of mi/mi−1

copies of the i-th linear chain with the side tree Γi added and Bi−1 subtracted. In Vi , there
appear cyclic quotient singularities lying over the intersection points of the components of
ϕ∗

i−1(pi−1). After resolving the singularities and contracting the possible components, the
fiber ϕ∗

i (pi) is modified to a fiber with the following dual graph, where the vertical dots below
the vertex B̃i mean that the graph lying on the right side of the vertex is copied mi/mi−1 times
and attached to the vertex B̃i . We call this operation the completion of the graph at the vertex
B̃i . As for the vertex B̃i−1, the graph lying on the right side of the vertex is copied mi−1/mi−2

times after the completion at B̃i and attached to the vertex B̃i−1. We continue the operations of
completing the right subgraph, copying and attaching them at the vertices B̃i−2, . . . , B̃2, B̃1.
All components between B̃1 and B̃i have multiplicity 1, and all the unnamed components in
between B̃1 and B̃i have self-intersection number −2. The assertion (3) follows easily from
this observation.
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(4) If i = r , there are mr -copies of B̃r in the fiber ϕ∗
r (pr ), each of which has multi-

plicity 1 and the same linear chain as the one in the assertion (1) where the component B0

is replaced by B̃r . Then the assertion is proved by the same argument as in the proof of the
assertion (1). Q.E.D.
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Let X be a normal algebraic variety and let X◦ be the smooth locus of X. Suppose that
π1(X

◦) is a finite group. Let Z be the universal covering of X◦, which is an algebraic variety.
The normalization X̃ of X in the function field of Z is a normal algebraic variety containing
X as an open set. We call X̃ the quasi-universal covering of X. A normal affine surface X

is called a log affine surface if it has at worst quotient singularities. The Makar-Limanov
invariant ML(X) is defined for a normal affine surface as in the case X is smooth.

THEOREM 4.3. Let X be a normal affine surface. Then the following assertions hold.
(1) X is isomorphic to A2/G with a finite cyclic group G if and only if X is a log affine

pseudo-plane and the quasi-universal covering X̃ is isomorphic to A2.
(2) Suppose that X is a log affine pseudo-plane with a cyclic quotient singular point

P0 of type (n, d). Let ρ : X → C be an A1-fibration and let F0 be the fiber through P0. Then
ML(X) = C if and only if either r = 0 or r = 1 and d = n − 1 with the notations in Lemma
4.1.

(3) With the hypothesis in (2) above, X is isomorphic to A2/G if and only if r = 0.
(4) Let X be a log affine pseudo-plane. Then the quasi-universal covering space of X

is a Danielewski surface which is, by definition, a smooth affine surface with an A1-fibration
over A1 such that all fibers are smooth but possibly only one reduced, reducible fiber.

PROOF. (1) Only if part. With the notations before Lemma 4.1, define a G-invariant
locally nilpotent derivation ∆ on B by ∆(x) = 0 and ∆(y) = xd . Then ∆ induces a locally
nilpotent derivation δ on A, hence an A1-fibration ρ : X → C, where X = Spec A and
C = Spec C[u] with u = xn. Let M = (x, y) be the maximal ideal of B and let m = M ∩ A.
Then it is known that the quotient morphism q : Spec B → Spec A is étale outside V (m)

and M = √
mB. Hence q : A2 → A2/G is the quasi-universal covering. The linear pencil

{u = c ; c ∈ C} defines the A1-fibration ρ, and the A1-fibration ρ lifted onto A2 = Spec B

is defined by the linear pencil {x = c ; c ∈ C}. Since the fiber x = 0 is G-stable, the fiber
F0 of ρ passing through the singular point is irreducible. This implies that X is a log affine
pseudo-plane.

If part. Let q : A2 → X be the quasi-universal covering with group G. Then X is
isomorphic to A2/G. Since X has an A1-fibration, G is a cyclic group.

(2) Only if part. The minimal normal compactification, say V , of X has the boudary
divisor ∆ = L∞ + S + Σ̄0 such that

(i) L∞ (resp. S) is the smooth fiber (resp. a cross-section) of a P 1-fibration ϕ : V → C̄

lying outside X, where we may assume that (L∞2) = (S2) = 0, and
(ii) Σ̄0 is the fiber Σ0 given in Lemma 4.1 with σ−1(F0) contracted to the fiber F0 with

the singular point P0.
Then, by [5, Theorems 2.9, 2.10], ML(X) = C if and only if ∆ is a linear chain. The last
condition is equivalent to saying that either r = 0 or r = 1 and σ−1(F0) − E is a linear
(−2)-chain, i.e., every vertex has weight −2. Hence d = n − 1.

(3) If r = 1, then B1 has multiplicity ≥ 2. Hence the quasi-universal covering of X

has m1 affine lines mapped onto F0. Hence we have the assertion.
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(4) The assertion follows from Lemma 4.2, (4). Q.E.D.

Given a cyclic quotient singularity P0 of type (n, d) on a normal algebraic surface, we
call the integer n the order of P0. It is, in fact, the order of the local fundamental group at
P0. With this terminology, the condition that r = 0 in the assertion (3) above is equivalent to
saying that the multiplicity m of the fiber F0 is equal to n. This is the case for any A1-fibration
on X and its fiber F0 passing through P0.

The following result is a restatement of Theorem 4.3.

THEOREM 4.4. Let X = Spec A be a singular normal affine surface. Then X is iso-
morphic to the quotient surface A2/G with a finite cyclic group G if and only if the following
three conditions satisfied.

(1) |π1(X
◦)| < ∞, where X◦ is the smooth part of X.

(2) The divisor class group of X is a torsion group.
(3) X has a non-trivial Ga-action such that the fiber of the A1-fibration associated with

a Ga-action has multiplicity equal to the order of the singular point.
If X is isomorpic to A2/G with a finite cyclic group G, then the divisor class group and
π1(X

◦) are isomorphic to Z/nZ, where n = |G|.
PROOF. Only if part. If X ∼= A2/G then π1(X

◦) is a homomorphic image of G.
Furthermore, if q : A2 → X is the quotient morphism, then (deg q)D = q∗q∗(D) ∼ 0
for any divisor on X. So, the divisor class group of X is a torsion group. The condition (3)
follows from the above remark.

If part. Let ρ : X → C be the A1-fibration as given by the condition (3). Since
π1(X

◦) is a finite group, the base curve C is a rational curve. Hence C is an open set of A1.
Furthermore, since Cl(X) is a torsion group, the fibration ρ has only irreducible fibers, and
C is not a complete curve. The fibers of ρ passing through the singular points of X must
be multiple fibers because all singular points are cyclic quotient singular points (see Lemma
4.1, (6)). If C is not isomorphic to A1, let A1 − C = {p1, . . . , ps} and let p∞ be the point
at infinity of A1. By [1], there exists a Galois ramified covering α : D → P 1 with branch
locus p1, . . . , ps, p∞ with arbitrarily assigned multiplicities µ1, . . . , µs, µ∞. If s = 1, we
must have µ1 = µ∞. Let C′ = α−1(C) and let ν = α|C ′ . Then the normalization X′ of the
fiber product X ×C C′ yields a finite étale covering of X◦. Hence the condition (1) implies
that C ∼= A1. If a fiber of ρ not passing through a singular point is a multiple fiber, we can
argue exactly in the same way as above. Hence only multiple fibers are those passing through
singular points. Note that each fiber of ρ has at most one singular point (see Lemma 4.1).
If there are two singular points, we can argue as above to find out that π1(X

◦) is an infinite
group. So, X has only one singular point. Let m be the multiplicity of the fiber F0 of ρ passing
through the singular point P0. Let p0 = ρ(P0) and let τ : C′ → C be a cyclic covering of
order m ramifying totally at the point p0. Let X′ be the normalization of the fiber product
X ×C C′. Then the projection ρ′ : X′ → C′ is an A1-fibration over C′ ∼= A1 such that every
fiber is irreducible and reduced. Hence X′ is isomorphic to A2 and X is isomorphic to the
quotient surface X′/G, where G ∼= Z/mZ.
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The rest of the assertion is easy to show. Q.E.D.

Let X = A2/G be a quotient surface of A2 = Spec B by G = Z/nZ. Then as observed
in 3.3, there exists a G-invariant locally nilpotent derivation ∆ = xd∂y on B = C[x, y],
which defines a locally nilpotent derivation on A. Let δ′ be a locally nilpotent derivation
on A. Since the singular point of X is fixed by the Ga-action induced by δ′, it follows that
δ′(m) ⊂ m where m = M ∩ A and M = (x, y) is the maximal ideal of B. We can determine
a locally nilpotent derivation of A.

THEOREM 4.5. Let δ′ be an arbitrarily chosen, locally nilpotent derivation on A such
that m is a δ′-ideal and let ∆′ be the locally nilpotent derivation on B which lifts δ′. Then, after
a suitable change of coordinates x, y of B, ∆′ is given by ∆′ = f (xn)∆ with f (xn) ∈ C[xn].

PROOF. Let Y = Spec B,X = Spec A and q : Y → X the associated morphism.
The derivation δ′ gives rise to a Ga-action on X and hence an A1-fibration ρ : X → C.
Note that the base curve C is a smooth rational curve with only constants as units, whence
it is isomorphic to A1. Let ρ̃ : Y → C̃ be the A1-fibration which is a lifting of ρ, where
C̃ ∼= A1. Let x be a coordinate of C̃. Then the G-action maps the fibers of ρ̃ to the fibers.
This implies that σ(x) = ζ ix + c with c ∈ C and 0 < i < n. Since the inverse image q−1(F )

of a general fiber F of ρ is a disjoint union of n distinct fibers of ρ̃, we have (n, i) = 1. We
may take i = 1. By the change of coordinates x �→ x + c/(ζ − 1), we may assume that
σ(x) = ζx. Now the generic fiber of ρ̃ has the coordinate ring C(x)[y] and σ induces an
automorphism on it. Hence we may write σ(y) = f (x)y + g(x) with f (x), g(x) ∈ C[x]. If
we write σn(y) = A(x)y + B(x), then A(x) = ∏n−1

i=0 f (ζ ix), which must be 1 as σn is the
identity automorphism. This implies that f (x) is a constant and an n-th root of unity. Write
f (x) = ζ e with 0 ≤ e < n. Write g(x) = ∑m

j=0 kjx
j . Then we can compute

B(x) =
m∑

j=1

kj (ζ
(n−1)e + ζ (n−2)e+j + · · · + ζ (n−1)j )xj .

If ζ j �= ζ e, a coordinate change y �→ y + kjx
j /(ζ e − ζ j ) allows us to assume kj = 0. We

make this change of coordinates for every j with ζ j �= ζ e. If ζ j = ζ e, then we have

ζ (n−1)e + ζ (n−2)e+j + · · · + ζ (n−1)j = nζ (n−1)e �= 0 .

Since B(x) = 0, we must have kj = 0 if ζ j = ζ e. Thus we may assume that σ(y) = ζ ey.
Now the quotient surface of Y under this action of G coincides with X, and hence has the
cyclic singularity of type (n, d). Write n/d = [a1, a2, . . . , as] as a continued fraction with
ai ≥ 2. Then the fiber F0 = m�0 of ρ passing through the singular point P0 after a minimal
resolution of the singular point is a linear chain with the dual graph

where m is the multiplicity of the fiber, �′
0 is the proper transform of �0 and [α1, α2, . . . , αs ]

is equal to either [a1, a2, . . . , as] or [as, as−1, . . . , a1]. By Theorem 4.4, we have m = n.
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� � � � � � � � � � � � � �

�′
0 Es Es−1 E2 E1

−1 −αs −αs−1 −α2 −α1

Hence e = d or e = d ′ with dd ′ ≡ 1 (mod n). In the case e = d ′, the G-action is writ-
ten as σ(x, y) = (ζ x, ζ d ′

y) = (ζ d
1 x, ζ1y), where ζ1 = ζ d ′

. Hence the change of coordi-
nates (x, y) �→ (y, x) will give the desired G-action. Now consider the derivation ∆′. Since
∆′(x) = 0, it induces a locally nilpotent derivation on the coordinate ring C(x)[y] of the
generic fiber of ρ̃. Then ∆′(y) is equal to an element h(x) in C[x]. Since ∆′ is G-invariant,
it follows that σ(∆′(σ−1y)) = ζ−dh(ζx) = h(x). This implies that h(x) = xdf (xn) with
f (xn) ∈ C[xn]. So, ∆′ = f (xn)∆. Q.E.D.

It should be noted that a G-invariant locally nilpotent derivation on C[x, y] is not essen-
tially unique. It is unique up to a change of coordinates and the multiplication factor f (xn).
In fact, the derivation ∆1 determined by ∆1(y) = 0 and ∆1(x) = yd ′

is also G-invariant and
locally nilpotent. In fact, the Makar-Limanov invariant of A is equal to C.
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