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Introduction. Let V and W be connected compact complex manifolds.
According to Douady [2], the set H(V, W) of all holomorphic maps of
V into W admits an analytic space*’ structure whose underlying topology
is the compact-open topology. For fe H(V, W), the Zariski tangent
space T H(V, W) to H(V, W) at f is canonically isomorphic to a subspace
of H'(V, f*TW), the zero-th cohomology group of (the sheaf of holomorphic
sections of) the pull back f*TW of the holomorphic tangent bundle TW of
W over f. (See §1.)

Now, we say that fe H(V, W) is stable if and only if there is an
open neighbourhood U of f in H(V, W) such that, for each ge U, there
are automorphisms (holomorphic isomorphisms) @ of V and b of W with
g=>bfa.

We also say that a map fe H(V, W) is infinitesimally stable if and
only if

f*H (W, TW) + f.H(V, TV) = H(V, f*TW),

where

f*: H(W, TW)— H(V, f*TW),

fs«: H(V, TV)— H(V, f*TW)
be the induced linear maps defined by f*(%) = nf, for ye H(W, TW) and
F+(8) = (@f)©), for e H(V, TV).

The purpose of this paper is to prove the following theorem. (cf.,

Mather [5]).

THEOREM 1. A holomorphic map f of V into W is infinitesimally
stable if and only if (1) f is stable and (2) the Zariski tangent space
T,H(V, W) to H(V, W) at f 1is isomorphic to H(V, f*TW).

As an example, let V be a compact Riemann surface and let P' be
the complex projective line. Then H(V, P') is the set of all algebraic

*) By an analytic space, we mean a reduced, Hausdorff, complex analytic space.
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functions on V. We prove:
THEOREM 2. Any algebraic function of order 2 on V is stable.

1. Infinitesimal displacement maps. Let V, W and H(V, W) be as
above. The map

F:(P, f)e Vx HV, W)y— f(P)e W
is holomorphic. Following Kodaira [4], we define a linear map
or: TH(V, W)— H'(V, f*TW)

by o0,(0/0s) = (0F/0s);, where s is a coordinate in an ambient space of
H(V, W) around f. We call g, the infinitesimal displacement map at f.

The map o, is injective. In fact, as was shown in [6], (considering
the graph I'; of f), the analytic space H(V, W) is locally (around f)
identified with

S = {¢e B|K(§) = 0},

where B is an open neighbourhood of 0 in HV, f*TW) and K is a
holomorphic map of B into H(V, f*TW), the first cohomology group of
(the sheaf holomorphic sections of) f*TW. Moreover, it is easy to see
that o, is identified with the inclusion map T,Sc H'(V, f*TW).

Note that the automorphism groups Aut (V) of V and Aut(W) of
W are open (and closed®) in H(V, V) and in H(W, W), respectively.
We denote by ¢ and ¢’ the identities of Aut (V) and Aut (W), respectively.
Then the infinitesimal displacement maps

0. T, Aut(V)— H(V,TV),
o,: T, Aut (W) — H (W, TW)

are linear isomorphisms. Infact, each &€ H(V, TV)(resp. ne H(W, TW))
defines the one-parameter group expité, t€C, (resp. exptn, te C) of au-
tomorphisms of V (resp. W). We have then

dexpty _
dt t=0 - )7> ‘

d exp té
dt
Now, for fe H(V, W), we define a holomorphic map
A Aut (W) x Aut (V)— H(V, W)
by A;(®, a) = bfa, for (b, a)e Aut (W) x Aut (V).

LeEMMA 1. The following diagram is commutative:

=& (resp.

t=0

* Using Hurwitz’s theorem, we can easily show that Aut (V) is closed in H(V, V).
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T, Aut (W) x T, Aut (V) Z4299 0 5oy, w)

oo X o‘el Ufl

H(W, TW) x H(V, TV) ", gvv, 1wy,

where (f* + f.)(, &) = f* + fi&, for (,8e H(W, TW) x H(V, TV).

Proor. Let {U}..; and {Uj}},.; be finite open coverings of V such
that, for each t¢ I,
(1) U, cU, (ie., the closure U, is compact and is contained in U7}),
(2) there is on U; a coordinate system

2= (219 "'72?) .

Let {W.}..; and {W}},.; be finite open coverings of f(V) such that, for
each 7€ I,
(3) £(U)ecw,
(4) W, Wi,
(5) there is on W; a coordinate system
w; = (w‘iy Yy w:) .
The map f is expressed by the equations
w; = fi(z:), 2,€ U, 1el,

where f; is a vector valued holomorphic function on U;.
Let ¢ be a small positive number. We denote by B. the e-disc in
C with the center 0. For &e H(V, TV) and ne H (W, TW), the one-
parameter families exp té, t€ B,, and exp s?, s€ B,, of automorphisms of
V and W, respectively, are expressed as
(2,t)e U, X B.—az,t)c U;,
(wi; S) € Wz X Be - bz(wu S) € W: ’

respectively. Then the map exp sy f expité, (s, t) € B, X B., is expressed
by the equations:

w, = b(f(az;, t),s), for (z,s, t)e U, x B, X B, .
Hence we have

(6) (0w,[0t),= = (0f:/02:).(00:/0t)es = (0.1 s/0%:).,£(2:),
(7)) (Owi/0s)e0 = NS (21)),

where & = {£(z)}icr and 1 = {D(woker.
Now, (6) and (7) imply Lemma 1. g.e.d.

2. Proof of Theorem 1. Assume that f is infinitesimally stable.
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Then, by Lemma 1, o, is a linear isomorphism and (dAy). .. is surjective.
Since Aut (W) x Aut (V) is non-singular, this implies that H(V, W) is
non-singular at f and A, is a local submersion around (¢’,e). Hence f
is stable and T,H(V, W) is isomorphic to H(V, f*TW).

Conversely, assume that f is stable and T H(V, W) is isomorphic
to HY(V, f*TW). Since f is stable, H(V, W) is non-singular at f.
Assume that f is not infinitesimally stable. Then, by Lemma 1, (dA;) .o
is not surjective. Let M be a complex submanifold through f of an
open neighbourhood of f in H(V, W) such that

(@Af) e, (T Aut (W) x T,Aut (V) D T'M = T,H(V, W) .

Then dim M > 0.

LEMMA 2. If M is sufficiently small, then M N A; (Aut (W) x Aut(V))
18 at most countable.

ProoF oF LEMMA 2. (cf., Chevalley [1], p. 95). We put
G = Aut (W) x Aut(V),
I; = {(, a)e G|bfa = f}.

Then I, is a closed submanifold of G through (¢, e).
Let L be a closed submanifold of a small open neighbourhood of (¢,
e) in G passing (¢, ¢) such that

T ,ols ® T .ol = Tier,nG .
We define a holomorphic map
A:Gx H(V, W)y— H(V, W)
by A((b, @), 9) = bga, for ((b, a), 9)e G x H(V, W). Then
@A), 0101t Ttor,o LD TrM— T,H(V, W)
is a linear isomorphism. Hence, we may assume that
A:L X M—U

is a holomorphic isomorphism, where U is an open neighbourhood of f
in H(V, W).

For m e M, we put
S, = {bma|(d, a)e L} .

Then it is easy to see that, for any m e M, either S, N A,(G) is empty
or S,C Ay,G). It is also easy to see that, for any compact subset K
of G,
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{meM|S, N A;(K) is not empty}
is a finite set.

Now, G satisfies the second axiom of countability. Hence G is
written as

¢=UK.,
where each K, is a compact subset of G. Then
A(®) = U A/K,) .
Hence, noting that me S,, for me M, we have

Mn A/(G) = {me M|S, O(Q Af(K,,)> is not empty}
={meM|S, N As(K,) is not empty for some n}

=UM,,
where M, = {me M|S, N A(K,) is not empty} is a finite set, for each
n=12,---. Thus MNAsG) is at most countable. q.e.d. of Lemma 2

Now, by Lemma 2, for any open neighbourhood U of f in H(V, W),
UNM-— A; (Aut (W) x Aut (V)

is not empty. This shows that f is not stable, a contradiction.
This completes the proof of Theorem 1.

3. Proof of Theorem 2. Let V be a compact Riemann surface of
genus g. Let P' be the complex projective line. Then H(V, P') is the
set of all algebraic functions on V.

LEMMA 3. Let f be an algebraic function on V. Then
f*reP = [2D.],

where D, is the polar divisor of f and [2D,] is the line bundle determined
by the divisor 2D.. Moreover, if f is of order n = g, then

dim HY(V, f*TP)=2n +1—g.

PrOOF. Let (2, 2) be the standard homogeneous coordinate on P*.
Then we have easily TP' = [2(c0)], where (o) is the divisor of the point
oo = (0,1)e P'. Hence

F*TP = f*[2()] = [2D.] .



484 M. NAMBA

If f is of order n = g, then
deg 2D,)=2n >29 — 2.
Hence, by Riemann-Roch Theorem,
dim H(V, f*TP') = dim H(V,[2D.]))=2n+1—g.
q.e.d.
Now, we prove Theorem 2 by dividing into three cases.

Case 1: g = 2. Let f be an algebraic function of order 2 on V. In
this case, V is a hyperelliptic Riemann surface. f is a two sheeted
ramified covering of V onto P' with (29 + 2)-branch points. Let P be
one of the branch points. Let b be an automorphism of P' mapping f(P)
to «© = (0,1). Then P is the only pole of order 2 of the function bf.
By Lemma 3 above and by Theorem 14, [3],

dim H(V, (bf)*TP*) = dim H(V, [4P])
=4+ 1 — {the number of the gaps at P < 4}.

By Theorem 25, [3], P is a Weierstrass point of V. Since the Weierstrass

gap sequence at a Weierstrass point is 1, 3,5, -+, 29 — 1, we have
(1) dim H(V, 0f)*TP)=4+1—2= 3.
Note that
(2) dim H°(P', TP') = dim Aut (P') = 3,
(3) dim H(V, TV) = dim Aut (V) =0.

We putAfA = bf. In order to prove that f is stable, it suffices to
prove that f is stable. By (1), (2), (3) and by Theorem 1, it then suffices
to prove that

f#: H(P', TP')— H'(V, f*TP")
is injective.
Note that an element of H°(P', TP') is written as
X = (p& + q¢ + r)0fo¢ on P'— =,

where & = z,/2, is the inhomogeneous coordinate on P! — co, o = (0, 1),
and p, ¢ and r are constants.

The universal covering space of V is the unit disc D= {ze€C||z| <
1}. Let #: D—V be the covering map. We put fzfn. Then f is a
meromorphic function on D.

Now, assume that f *X = 0. Then
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0= a*f*X = f*X = pf(e) + ¢f(2) + 7,

on D — f“(oo). This implies that p = ¢ = » = 0. Hence, f* is injective.

Case 2: g = 1. In this case, V is a complex 1-torus. Let f be an
elliptic function of order 2 on V. By Lemma 3, dim H(V, f*TP!) = 4.
Note that

dim H(V, TV) =dim Aut(V)=1.
Hence, in order to prove Theorem 2 in this case, using Theorem 1, it
suffices to prove that
[*+ fe: H(P, TPY) x H(V, TV)— H(V, f*TP")

is injective.

The universal covering space of V is C. Let w: C—V be the covering

map. We denote by z a coordinate on V induced by . Then an element
of H(V, TV) is written as

Y = sd/oz ,

where s is a constant.
Now, for X = (p& + q& + r)d/o¢ e H(P, TP'), assume that f*X +
f«Y =0. Then

pf(2)} + qf(2) +r+sf'(x) =0,
on V — f%(e). This implies that p = ¢ =7 =5=0. Hence f* + f, is
injective.

REMARK. We can show that, for any elliptic function f of order 2
on V, there are bec Aut (P') and ac Aut (V) with f = bpa, where p is
Weierstrassian p-function on V. (See [7].)

Case 3: g = 0. In this case, V= P'. Let f be a rational function
of order 2. Then f is a two sheeted ramified covering of P' onto P!
with two branch points P and Q. Let a be an automorphism of P!
mapping 0 = (1, 0) to P and « = (0, 1) to Q. Let b, be an automorphism
of P' mapping f(P) to 0 and f(Q) to . Then

b.fa(f) = pg, for &=z/2,eP' —  ,

where p is a non-zero constant. Let b, be the automorphism of P* defined
by by(&) = (1/p)E, for & = 2z,/z0€ P* — 0. Put b= bb,. Then

bfa(¢) =&, for &=z/z,e P — o,

This shows that f is stable.
This completes the proof of Theorem 2.
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