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In this note all Riemannian manifolds which we deal are connected
and complete. For a point pe M, TP(M) be the tangent space of M at
p and expp: TP(M)—+M be the exponential mapping of M. d denotes
the metric distance of M induced from the Riemannian metric of M.
All geodesies are parametrized by the arclength. As is well known, the
function i: M—*R\J{°°} defined by i(p): = d(p, C(p)) is continuous where
C(p) denotes the cut locus of p in M. i(p) is called the injective radius
of expp. With respect to the estimation of the injective radius many
results are known when M is compact. Let M be a non-compact Rieman-
nian manifold. Then in [5], Toponogov asserted the following:

FACT. 1) if the sectional curvature Kσ satisfies 0 < Kσ <; λ for all
tangent plane σ, then i(q) ;> TΓ/T/T for all qe M. 2) if 0 ^ Kσ ^ λ,
then there exists a positive constant L such that ί(q) ^ L for all
qeM.

In [4], the author gave an anothor proof of assertion 1) and showed
that the estimation of 1) is still true for a 2-dimensional simply connected
Riemannian manifold M which satisfies 0 ^ K ^ λ, where K is the Gaus-
sian curvature of M. In this note, we show that the estimation 1) is
still true for a 3-dimensional simply connected non-compact Riemannian
manifold which satisfies 0 S Kσ <£ λ. To prove this fact, we use the
following facts which are proved by Cheeger and Gromoll in [2]. For
a Riemannian manifold M, a subset A of M will be called totally convex
if for any points p,qeA and any geodesic c: [0, /9] —>M from p to q,
we have c([0, β]) c A. Let A c M be a closed totally convex set, then
A is an imbedded Λ-dimensional topological submanif old of M with totally
geodesic interior and possibly non-smooth boundary which might be empty,
see [2, Th. 1.6 pp 418]. Now, we assume that M is non-compact and
its sectional curvature satisfies 0 ^ Kσ. Then, for a point peM, there
exists a family of compact totally convex subsets {Ct}t>0 such that

(1) t2 ^ tx implies CH z> Ch and Ch = {q e Ch: d(q, dCh) ^ t2 - ί j in
particular, 3Ch = {qe Ch: d(q, dCt2) = ί2 - ί j ,

( 2 ) \JmCt = M,
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( 3) p 6 Co and if dC0 Φ 0, then p e dC0,
see [2; Prop. 1.3 pp 416]. Let C be a closed totally convex set. We set

Ca: = {qeC: d{q, dC) ^ a}

C m a x : = Π Ca .

Then, for any a ^ 0, Ca is totally convex and there exists α0 ^ 0 such
that C m a x = Cα°. Furthermore dim C m a x < dim C, see [2; Th. 1.9 pp 420].
For a family of totally convex sets {Ct}t^0 as is mensioned above, if
dCQ Φ 0, we set C(l): = Co and C(2): = C(l) m a x . Inductively, if dC(i) Φ 0 ,
we set C(i + 1): = C(i)m a x for i = 1, 2, . As is easily seen, we get
the integer k > 0 such that dC(k) = 0 . We call C(k) a soul of M and
denote it by S. In the case dim Co = dim Λf, instead of {Ct}t±of w e use
a following family of totally convex sets {Cf}^0. Let Co

α° — Co

max. We
set Co: = Co

α° and

fCt-.α if t > aQCt: = J ° ~
(C?0"* if α o ^ ί ^ O .

Then, thus obtained family {Ct}w also satisfies the property (1) and (2)
for {Ct}w. We do not use the property (3), so without confusion, we
may denote again {CJ^0 by {CJ^o Under this new index, dim Ct = dim M
for t > 0 and dim Co < dim M. And we also obtain a decreasing sequence
of totally convex sets such that Co = C(l), , C(k) = S. Our assertion is:

THEOREM. Let M be a simply connected Z-dimensional non-compact
Riemannian manifold which satisfies 0 ^ Kσ ^ λ, then

i(q) ^ _JL= /or αίϊ geM.
v X

For the moment, we assume that M is homeomorphic to Ez and have
the sectional curvature 0 ^ Kσ ^ λ, where JS'3 is a 3-dimentional Euclidean
space. Let S be a soul of M. Then by [2; Th. 2.2 pp 423], S is a point
set {s}, seJIί.

LEMMA 1. For any soul S - {s} of M, i(s) ^ π\V~X.

PROOF. If i(s) < πjVx, then by the Theorem of Morse-Schoenberg
and Lemma 2 [3; pp 226], there exists a geodesic loop 7: [0, 2ί(s)] —> M
such that 7(0) = 7(2i(s)) = s. Then 7([0, 2i(s)]) c {s}, because {s} is totally
convex. This is a contradiction. q.e.d.

Let p e I f be any point and {CJ^0 be the family of the totally convex
sets constructed from p. Under this situation, we have:
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LEMMA 2. For any point q e Co, i(q) ^ πjV~x.

PROOF. Assume that there exists a point q£ e Co such that i(qt) <
πjVx. Then by Lemma 1, 3C0 Φ 0 . Let qoeCo be a point such that
i(q0) = min{ i(q): q e Co}. Then i(q0) ^ i(g0*) < π/i/λΓ Set A: = {# e Co: ί(g) ='
i(#0)}. Then by the compactness of A, there exists a point qt e A such
that d(ql9 dCQ) = max {d(g, 3C0): ? e A}. Set t,\ = d(qlf dC0). Then qι e dCfr
and i((h) 5g i(<70*) < τr/v/~λ. Then by the Theorem of Morse-Schoenberg
and Lemma 2 [3], there exists a geodesic loop 7X: [0, 2i{q$\ —*M such that
î(O) = 71(2i(g1)) = qλ. Since Cί1 is totally convex, we see 71([0> 2i(q1)])<z

C\ι. Hence, by the choice of the point qu ΐ(71(i(g1))) = i(q.^. And again
by Lemma 2 [3], 7X must be a closed geodesic. We also see 7i([0, 2i{q$\) c
A. And by the choice of the point qί9 we get ^([0, 2i(qJ\) c 3C51. So
7i([0, 2^(^01) = 3CJ1, because dim Co ^ 2 and hence dim 3CJ1 = 1. By the
choice of ίλ and continuity of the function i, we can choose ί2* such that
ίx < tt and ττ/v/λΓ> min {ΐ(g): g e CJ2*} > i ί ^ ) . Let qf e CJ2* be a point
such that ί(g2*) = τnm{i(q): qe C$} and q2eCl* be a point such that
d(q2,dCQ) = max {rf(g, dC0): q e Ctf and ί(q) = i(q*)}. Then i(gx) < ί(q2) <
ττ/l/λ. By the same reason for qlf there exists a closed geodesic 72: [0,
2i(g2)] —> Λf such that 72(0) = 72(2i(ga)) = q2. Set ί2: = d(ga, 3 Q . Then we
also have 72([0, 2i(q2)]) = 3Co2. Since Co1 and C$2 are homeomorphic to a
2-dimensional disk, by applying the Theorem of Gauss-Bonnet, we get

(( Kdv = \[ Kdv = 2π ,

where K (resp. eZi;) is the Gaussian curvature (resp. the area element) of
the totally geodesic surface Co1 of M and its totally geodesic surface Co2

having the boundary 3C\\ 5 Co2. This equation means K = 0 on C\ι — C\K
That is L{Ύλ) = L(72), where L denotes the length of a curve. Namely
2i(ίi) = 2i(gr

2). This is a contradiction. q.e.d.

PROOF OF THE THEOREM. By the classification in [2; Th. 8.1 pp 438], M
must be isometric to Mx Eι or M is homeomorphic to E3 where E1 is a 1-
dimensional Euclidean space and M is homeomorphic to 2-dimensional sphere
S2. If Mis isometric to Mx Eι, by using a result of [4], it is easily seen
that our assertion is true. So we may assume that M is homeomorphic to
E3. We assume that there exists a point q* 6 M such that i{q%) < π/l/x
and derive a contradiction. Let p be a point of Λf. And {Ct}t^0 be the
familly of totally convex sets constructed from a point p. By Lemma
2, g0* $ Co. Choose a number ί0 > 0 such that qί e Cίo. Let q0 e CtQ be a
point such that ί(#0) = min {i(g): (? 6 CtQ\. Then i(g0) ^ i(g?) < πjV \. We
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set A,: = {qe CtQ: i(q) = i(q0)}. Then by Lemma 2, A1 Π Co = 0 . Since
A,, is compact, there exists a point q1 e Aγ such that d(ql9 dCh) = max {d(q,
dCtQ): q e AJ. Set ίx: = d(ql9 dCtQ). Then ίx < t0 by Lemma 2. As is in
the proof of Lemma 2, there exists a closed geodesic 7X: [0, 2ί(gi)] —• Λf
such that 7x(0) = 71(2ΐ(g1)) = ffi and 71([0, 2i(? 1)])c3C t o_ ί l. By the choice
of ίx and the continuity of i, we can choose ί2* such that £x < ί2* < t0

and ττ/i/λ > min {i(?): # e C*«-**} > i ^ ) . </* G Ctn-t* be a point such that
ΐ(g2*) = min {i(g): g 6 Cfo_f*}. Set A2: = {<? e C ίo_t*: i(g) = i(g*)}. Let g2 G
A2 be a point such that d(?2, dCtQ) = max {d(g, 3Cίo): g G A2}. Set ί2: = d(q2,
dCtQ). Then ί2 < ί0 by Lemma 2. And by the same reason for qlf there
exists a closed geodesic 72: [0, 2i(q2)] —> Λf such that 72(0) = 72(2i(g2)) = q2

and 72([0, 2i(q2)] c3C ί o_ ί 2 . Continuing this operation, we obtain sequences
iff*}, {*n} and a family of closed geodesies Ύn: [0, 2ί(gn)] —»Λf which satisfy
the following conditions:

( 1 ) i(qt) < i{q2) < < %{qn) < i(qn+1) < . < TΓ/I/ λΓ,

( 2 ) ίn: = d(^w, dCtQ), ίi < ί2 < < ίn < tn+1 < < ίo>

( 3 ) 7n(0) = yn(2i(qn)) = qn, 7π([0, 2i(qn)]) c dCtQ_tn.

For the sake of convenience, we extend the domain of Ύn as 7n: (— oo,
oo) -^ Λf. We fix w and t > ί0. Then by [2; Th. 1.10 pp 420], the function
ψ: (—oo, ooj-^ij defined by ψ(u): = d(Ύn(u), dC?) is concave, i.e. for a ^
0, /3 ̂  0, a + /9 = 1, it holds fiau, + βu2) ^ αα/r^i) + βψ(u2). Since α/r is
bounded, -f = constant, say, I > 0. Let c?: [0, i] —>Λf be a minimal
geodesic from 7n(0) to dCr, then < (7n(0), cτ(0)) = τr/2 where < (v, ^ )
denotes the angle between the vectors v and w. For if <£ (7Λ(0), cτ(0)) <
π/2, we can find u > 0 such that d(7Λ(«), 3Cτ) < d(7Λ(0), 3Cτ) That is
ϊ = f (β) ^ d(Ύn(u), dθτ) < d(7n(0), dCr) = I. This is a contradiction. Let
X be the vector field along c? obtained by the parallel translation of
7^(0). We define a differentiable mapping V: [0, I] x [0, ε] —• Λf by V(s,
u): = expc-(S)uX(s) where ε is a positive number. Set Vu(s): = V(s,u). Then,
by the convexity of C?, F t t ( i)$intCτ for u e [ 0 , ε], see [1: Lemma 1.7
pp 419]. On the other hand, by the comparison theorem of Berger, if we
put ε0: = min {τr/(2τ/T), ε}, then L( Vu) ^ L{ Vo) = I for all u e [0, εo] and
equality holding for some u 0 e(0, ε0] if and only if F|[0, I] x [0, u<] is a
flat totally geodesic surface of Λf, see [1, Th. 1 pp 701]. Since we have
seen ψ = I and Vu(l) $ int C?, we get I ^ L( Vu) ^ L{ Vo) = I for all u e
[0, ε0]. So F|[0,1] x [0, ε0] defines a flat totally geodesic surface of Λf.
Without confusion, V: [0, I] x [0, ε0] —>Λf denotes the restriction F |[0, I] x
[0, ε0]. We extend the surface F: [0, I] x [0, ε0] -^ Λf as F: [0,1] x [0, 2ε0] -+
Λf defining F(s, u): = expFβo(β)wF*(3/3%)|β|βo for ^G [ε0, 2ε0], Then we can
also see that F: [0,1] x [0, 2ε0] — ΛΓ is a flat totally geodesic surface of
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M because V\ [0, I] x [ε0, 2ε0] satisfies the same condition for V: [0,1] x
[0, ε0] -+M. We extend V: [0, I] x [0, 2ε0] —> ikΓ as V: [0, i] x [0, 3ε0] ~+ikf
defining V(s, u): = exvV2εoi8)uV*(d/du)Ϊ8>2εo for ue [2ε0, 3ε0]. F : [0, I] x [0,

3ε0] —> Λf is also a flat totally geodesic surface of M. Continuing this
method, finally we get an immersed flat totally geodesic surface V: [0,1] x
(— oo, co)—»M which is given by V(s, u): = ex^{8)uX(s). Set Y(u): —
V*(d/ds)l0>u. Then Y is a parallel vector field along Ύn.

ASSERTION 1. Γ(0) = Y(2i(qn)).

PROOF. We assume Y(0) Φ Y(2i(qn)) and derive a contradiction. Set
CQn: = {v e TQn(M): exp g % φ/\\ v\\)e Ct^tn for some u > 0} U {0}, TQn: =

{veTqn(M):(v,yM) = 0 and |MI = 1} and C .: = Γ f . n C f.. C,w is
called the tangent cone of Cίo_ίw at gn, see [2]. Since dim Cίo_ίw = 3, TQn

is isometric to the unit circle S1 = [0, 2π] and C*% is the minor subarc
of length ae (0, π] by the convexity of CtQ_tn. Let ̂ : [0, 2π]( = S1)-> TQn

be the isometry such that <p([0, a\) — C*n where closure is taken in Tqn.
Since V2mί{q%) is a minimal geodesic from qn to 9Cτ, we can easily see
that Y(2mi(qn)) e φ([a + τr/2, 2ττ - ττ/2]) f or m = 0, 1, 2, . . . Let Γ(0) =
φ(β) for /SG [α + ττ/2, 27Γ — 7r/2]. Then, by the assumption, without loss
of generality, we can assume that Y(2i(qn)) = φ(β + ω), where β + ω
(2π — π/2 and ω > 0. And it follows from the linearlity of the parallel
displacement that Y(2mi(qn)) = φ(β + mω) and β + mω < 2π — π/2, be-
cause ω <π and ̂ (27^^^^)) is the parallel translation of Y(2(m — ϊ)i(qn))
along Ύn for m = 1, 2, 3, . But this is impossible. q.e.d.

From this assertion, we see the image of surface V is isometric to
[0, I] x S^iiqJ/π) where S^r) denotes a circle of radius r. Let {tk} be
a sequence such that th \ oo and t1 > ί0. For each ?A, let cr^: [0, i j —>M
be a minimal geodesic from 7w(0) to 3Cτfc where lk = ώ(TΛ(0), 3CTfc). Since
t > ί0 is any number, we can apply the above argument for each tk and
we have a flat totally geodesic surface of M whose image is isometric
to [0, lk] x S^iiq^/π). We can choose subsequence {tk.} of {tk} such that
ό7k{0) -+ cn(0), cΛ(0) G ΓgJΛf). Let Pn be the vector field along Ύn obtained
by the parallel translation of cn(0). Then by the construction, we can
easily see that the surface given by the map F%:[0, oo) x (—oo, oo)—>M
defined by Vn(s, u): = exj)rn(u)sPn(u) is an immersed flat totally surface
of M and its image is isometric to [0, oo) x Sι{i{qn)lπ). We denote the
image of this surface by Fn. Now by the compactness of CtQf we can
choose a subsequence {%} of {n} such that 7Λi(0) —• 7oo(0) and cn.{0) —>cjfi)
where 7^(0) and cJG) e Tqoo(M), q^: = lim^^ qn. e M. Then the vector field
P^ along the closed geodesic 7 ^ ) : = exp £7^(0) obtained by the parallel
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translation of 6^(0) satisfies P^O) = Poo(2i(^oo)) from the construction. And
the surface given by the map V^: [0, oo) x (-co, oo)—>Msuch that VJ^,
u): = exproo(tt) sPoo(u) is an immersed flat totally geodesic surface of M
whose image is isometric to [0, oo) x S^iiq^/π). We also denote the
image of this surface by F^. Hereafter, for the convenience, the sequence
{m} denotes the sequence {nά}.

ASSERTION 2. Fmf] Foo= 0 for all m.

PROOF. We assume that there exists m0 such that F^ΠF^ Φ 0 and
derive a contradiction. Let dFm and dF^ denote the image of the closed
geodesic 7W and 7TO respectively. And let int Fm: — Fm — dFm, int F^: —
F^ — dF^. We can consider two cases intFmo Π intF^Φζd or BFm Π i n t F O O Φ 0
because 3Fo oc3C ί 0_ t o o and FmQΠ Cίo_foo = 0 where t^: = d(qoo, dCto). Suppose
there exists a point q e int Fmo Π int F^. Since dim M = 3 and dim Fmo —
dim F^ = 2, there exists a vector v e Tg(FmQ) Π Γ^F^) such that 11 v \ \ = 1. Let
c: (— oo,oo)—>ikf be the geodesic defined by c(ί): —expίv. Then there exists
a subarc of the geodesic c which is a geodesic in Fmo and F^ because Fmo

and i ^ are totally geodesic surface of M. We assert that c((— oo, oo)) n
3jPmo =7̂  0 . For, if c((—oo, oo)) η dFmQ = 0 , then as is easily seen, c is
a closed geodesic in jPmo and F^, since .Pmo and F^ are isometric to the
half cylinder [0, oo) x S^iiq^/π) and [0, oo) x S^iiq^/π) respectively.
The fundamental period of a closed geodesic in Fmo and F^ are 2i(qmo)
and 2 ^ ( 0 respectively. So above fact means 2i(qmo) = 2^^). This is
a contradiction. So the assumption int FmQ Π int F^ Φ 0 derives d i 5 ^ Π
int Foo Φ 0 . Next we suppose 3FmQ ΠintF^Φ 0 . For each u e [0, 2i(<ymo)],
let cu: [0, oo)—>M be the geodesic defined by cu(s): = exprmo(w)( —s)Pmo(i6).
Then for each u e [0,2i(qmQ)]> we will show cw([0, oo)) n int C<o_^o = 0 . For,
if some u0 e [0, 2i(qmQ)] and so6(O, oo), cUo(sQ)e int Cto_tmo, then by the total
convexity of Cίo_ίmo, cM0((0, s0]) c i n t Cίo_ίmQ. We define a differentiate
mapping V: [0, 2i(tfm[)] x [0, β] ->M by F ( i β): = c.(β). We put 7,(%): =
V(u, s). Then by the comparison theorem of Berger, there exists an
ε0 > 0 depending on λ such that for all 0 ^ s ^ ε0, L(V8) ^ L(F 0), see
[1: Th. 1 pp 701]. By the assumption V8Q(u0)( = cUQ(s0)) e int Cίo_fmo and by
the choice of ίWo, for all s, 0 < s ^ so> we get i(V8(u0)) > ί(V0(u0)). Namely,
for all 0<s^min{ε 0 , s0}, i(V8(u0))>i(V0(u0)) ^ (l/2)L(V0)^(l/2)L(Va). Then
by using the same technique which is used by W. Klingenberg to get
the estimation of the injective radius of a certain compact Riemannian
manifold, see [3: Th. pp 227], we can easily get a contradiction. For
a point 7mo(w*) e dFmo Π int F^ there exists uniquely ue[0f 2i(qoo(0))] and
s such that 7mo(u*) = exVr^^P^u). From the construction of F^, the
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geodesic a: [0, oo)—• j|f defined by a(s): = exproo{i)8P(u) is a shortest con-
nection from Ίju) to dCt for each t ^ ί0. And above fact shows that
ά ( s ) ^ P m o ( ^ * ) because <v([0, oo)) n int Cto.tnlQ = 0 and Ίjμ) e int Cίo_ίWQ.
The geodesic /3: [0, oo)—>Λf defined by β(s): = expΓm(ω*)SPm(^*) is also a
minimal geodesic from 7m(u*) to 3Cf for each t ^ ί0. In particular a\[0,
s + £m](resp. /3|[0, £m]) is a minimal connection from Ύ^u) (resp. 7m(w*))
to dCto where tm = d(qm, dCtQ). So, from the triangle inequality of dis-
tance, we can easily see ά(s) = β(0) = Pm(u*) and we get a contradiction.

q.e.d.

Now, since Fm~* F^ as m —> c>o, we can easily find numbers m* and
s* such that, for each minimal geodesic from a point of the set {s*} x
S^iiq^/π) c 2^ to Fm*, its end point lies in int Fm*. We consider that
{s*} x S^iiqJϊ/π) is the image of the closed geodesic 7^: (— oo, co)—»j|f.
jPm* can be considered locally as a boundary of some convex set because
Fm* is a totally geodesic surface of M. And by the proof of Th. 1.10
[2: pp 420], the function φ: (-oo, oo)—• R defined by φ(s): = ώ(7TO(s), Fm*)
is concave. So φ must be constant a > 0, because <£> is bounded. Let
c: [0, α] —> M be a minimal geodesic from 7TO(0) to Fm*. Then c(0) 1 Fm*
and c(0) 1 7TO(0). Let Z be the vector field along 7^ obtained by the
parallel translation of c(0). Then, by the same argument just we have
used to prove the fact F(0) = Y(2ί(qn)), we can easily see Z(0) = Z(2i(qoo))
and the differentiable mapping τ: [0, a] x [0, 2i(q^\ defined by τ(u, s): =
exτprooi8)uZ(s) gives a flat totally geodesic surface of M which is isometric
to [0, a] x S^iiq^/π). Therefore we get L(τQ) = L(τa) where τu(s): =
τ(u, s). On the other hand τQ and τa are closed geodesies in F^ and Fm*
respectively. So L(τ0) > L(τa). This is a contradiction. q.e.d.

REMARK. For dim M = n ^ 4, this Theorem is not valid. Because
M. Berger gave an example that on Ss, there exists a Riemannian metric
g0 such that 0 < Kσ ^ λ satisfying i(q0) < π/V"x for some point g0 e S3.
Hence, for a simply connected non-compact Riemannian manifold M: =
(S3, ô) x E1 which satisfies 0 ^ Kσ ^ λ, there exists a point # e ikf such
that i(q) < π\V λ. So it might be significant to assume that M is homeo-
morphic to En for the proof of our assertion in the case n ;> 4.
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