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In this note all Riemannian manifolds which we deal are connected
and complete. For a point pe M, T,(M) be the tangent space of M at
p and exp,: T,(M)— M be the exponential mapping of M. d denotes
the metric distance of M induced from the Riemannian metric of M.
All geodesics are parametrized by the arclength. As is well known, the
function 7: M — RU{} defined by #(p): = d(p, C(p)) is continuous where
C(p) denotes the cut locus of p» in M. 1i(p) is called the injective radius
of exp,. With respect to the estimation of the injective radius many
results are known when M is compact. Let M be a non-compact Rieman-
nian manifold. Then in [5], Toponogov asserted the following:

Fact. 1) if the sectional curvature K, satisfies 0 < K, < A for all
tangent plane o, then i(q) = n/v/ A for all qe M. 2) if 0 < K, <\,
then there exists a positive constant L such that 4(¢) = L for all
qe M.

In [4], the author gave an anothor proof of assertion 1) and showed
that the estimation of 1) is still true for a 2-dimensional simply connected
Riemannian manifold M which satisfies 0 < K < )\, where K is the Gaus-
sian curvature of M. In this note, we show that the estimation 1) is
still true for a 3-dimensional simply connected non-compact Riemannian
manifold which satisfies 0 < K, < ». To prove this fact, we use the
following facts which are proved by Cheeger and Gromoll in [2]. For
a Riemannian manifold M, a subset A of M will be called totally convex
if for any points p, g€ A and any geodesic ¢: [0, 8] — M from p to ¢,
we have ¢([0, B]) c A. Let AC M be a closed totally convex set, then
A is an imbedded k-dimensional topological submanifold of M with totally
geodesic interior and possibly non-smooth boundary which might be empty,
see [2, Th. 1.6 pp 418]. Now, we assume that M is non-compact and
its sectional curvature satisfies 0 < K,. Then, for a point pe M, there
exists a family of compact totally convex subsets {C,};», such that

(1) t,=t, implies C,DC, and C, = {geC,:d(qg, 9C,) = t, — ¢} in
particular, 0C, = {ge€ C,:d(q, 9C,) = t, — t.},

(2) Ut;oCz: M,
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(3) »e(C, and if 0C, +# @, then pedC,

see [2; Prop. 1.3 pp 416]. Let C be a closed totally convex set. We set

C*: ={qe C:d(q, 0C) = a}

C= =NC".

(L%

Then, for any a = 0, C* is totally convex and there exists a,= 0 such
that C=** = C%, Furthermore dim C™** < dim C, see [2; Th. 1.9 pp 420].
For a family of totally convex sets {C.},., as is mensioned above, if
aC, # @, we set C(1): = G, and C(2): = C(1)*=. Inductively, if 0C(7) # @,
we set C(1 + 1): = C(@)™= for 1 =1,2, ---. As is easily seen, we get
the integer k& > 0 such that dC(k) = @. We call C(k) a soul of M and
denote it by S. In the case dim C, = dim M, instead of {C.}s,, We use

a folNIowing family of totally convex sets {C.is,. Let Co = C==. We
set Cy: = Cg° and

B Cieo, if t=a,
"TlCwt if ay=t=0.

Then, thus obtained family {C}:.., also satisfies the property (1) and (2)
for {C.};zo- We do not use the property (8), so without confusion, we
may denote again {C.}:so by {Ci};zs- Under this new index, dim C, = dim M
for ¢t > 0 and dim C, < dim M. And we also obtain a decreasing sequence

of totally convex sets such that C, = C(Q1), ---, C(k) = S. Our assertion is:

THEOREM. Let M be a simply connected 3-dimensional non-compact
Riemannian manifold which satisfies 0 < K, < \, then

. T
(q) = —— for all eM.
(@) = e S q
For the moment, we assume that M is homeomorphic to E® and have
the sectional curvature 0 < K, < \, where E® is a 3-dimentional Euclidean

space. Let S be a soul of M. Then by [2; Th. 2.2 pp 423], S is a point
set {s}, se M.

LEMMA 1. For any soul S = {s} of M, i(s) = n/V \.

PROOF. If i(s) < m/V/ N\, then by the Theorem of Morse-Schoenberg
and Lemma 2 [3; pp 226], there exists a geodesic loop 7: [0, 2i(s)] — M
such that 7(0) = 7(2i(s)) = s. Then ([0, 2i(s)]) < {s}, because {s} is totally
convex. This is a contradiction. q.e.d.

Let pe€ M be any point and {C,},., be the family of the totally convex
sets constructed from p. Under this situation, we have:
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LEMMA 2. For any point qe C, i(q) = w/V .

Proor. Assume that there exists a point ¢ € C, such that i(¢f) <
7/V''n. Then by Lemma 1, 0C, # @. Let ¢,€C, be a point such that
i(q,) = min{i(qg): ¢ € C;}. Then i(q,) < i(q¥) < w/V'N. Set A: = {qe Cy:i(q) =
1(¢,)}. Then by the compactness of A, there exists a point ¢, A such
that d(q,, 0C,) = max {d(q, 0C,): g € A}. Set t,: = d(q,, 3C,). Then ¢,coCt
and i(q,) < i(¢¥) < 7/V'A. Then by the Theorem of Morse-Schoenberg
and Lemma 2 [3], there exists a geodesic loop 7,: [0, 2¢(q,)] — M such that
7.(0) = 7,(2i(q,)) = q,. Since Cp is totally convex, we see 7,([0, 2i(q,)]) C

‘. Hence, by the choice of the point g, #(7.(i(g.))) = i(¢,). And again
by Lemma 2 [3], 7, must be a closed geodesic. We also see 7,([0, 2i(q,)])
A. And by the choice of the point g, we get 7,(]0, 2i(q)]) cdC:. So
7.([0, 2i(q,)]) = dC%, because dim C, £ 2 and hence dimdCi = 1. By the
choice of t, and continuity of the function %, we can choose ¢ such that
t, < tr and 7/VA > min{i(Q):ge Ci¥} > i(g,). Let ¢feCi be a point
such that i(¢F) = min {i(q): ¢e C%'} and g, Ci¥ be a point such that
d(q,, 9C,) = max {d(q, 9C,): g€ Ci¥ and 1i(q) = i(¢¥)}. Then i(q) < i(q,) <
7/V'~. By the same reason for q,, there exists a closed geodesic 7,: [0,
2i(q;)] — M such that 7,0) = 7,(2i(q.)) = q.. Set t,: = d(q,, 0C,). Then we
also have 7,([0, 2i(g,)]) = dCi. Since Ci and Ci are homeomorphic to a
2-dimensional disk, by applying the Theorem of Gauss-Bonnet, we get

“ thv = SS Kdv = 2r ,
cit ol

where K (resp. dv) is the Gaussian curvature (resp. the area element) of
the totally geodesic surface Cit of M and its totally geodesic surface C::
having the boundary oCi, 0Ci. This equation means K = 0 on Cit — Ct.
That is L(7,) = L(7,), where L denotes the length of a curve. Namely
2i(q)) = 2i(q,). This is a contradiction. g.e.d.

Proor oF THE THEOREM. By the classification in [2; Th. 8.1 pp 438], M
must be isometric to Mx E' or M is homeomorphic to E* where E' is a 1-
dimensional Euclidean space and M is homeomorphic to 2-dimensional sphere
S If M is isometric to M x E', by using a result of [4], it is easily seen
that our assertion is true. So we may assume that M is homeomorphic to
E°. We assume that there exists a point ¢* € M such that i(¢¥) < 7/1/' N
and derive a contradiction. Let p be a point of M. And {C.}.s, be the
familly of totally convex sets constructed from a point ». By Lemma
2, qF ¢ C,. Choose a number %, > 0 such that ¢f e C,. Let g,€C,, be a
point such that i(g,) = min {i(g): g€ C,)}. Then i(g,) < i(g¥) < ©/V/ . We
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set A;: = {geC,:i(q) = i(q)}. Then by Lemma 2, 4, NC,= @. Since
A, is compact, there exists a point ¢, € A, such that d(q,, 0C;) = max {d(q,
0Cy):qe A}. Set t:=d(q, dC,). Then t, <t, by Lemma 2. As is in
the proof of Lemma 2, there exists a closed geodesic 7.: [0, 2i(q)] — M
such that 7,(0) = 7,(2i(¢))) = ¢, and 7,([0, 2i(g,)]) ©9C,,_.,. By the choice
of ¢, and the continuity of ¢, we can choose tf such that ¢, < tf < ¢,
and 7/ N > min {i(g): g € Cip-ex} > i(q,). @F€C,_,* be a point such that
1(g?) = min{i(9): ¢ € C,-ix}.  Set A;: = {ge C,_.»:1(g) = i(g7)}. Let g¢.¢
A; be a point such that d(qg,, C,) = max {d(q, 3C,): g € 4;}. Set t,: = d(q,,
0C,). Then t, <%, by Lemma 2. And by the same reason for ¢,, there
exists a closed geodesic 7,: [0, 2i(g,)] — M such that 7,(0) = 7x(2i(q.)) = ¢.
and 7,([0, 2i(q;)] ©9C,_,,. Continuing this operation, we obtain sequences
{q.}, {t.} and a family of closed geodesics 7,: [0, 2i(q,)] — M which satisfy
the following conditions:

(1) 4(q) <ig) < -+ <i(ga) < ignss) < -++ < TV,

(2) t:=0(gs 0C,), 6, <ty < vvv <ty < lpyy < oov < Ly,

(3) 7.(0) = 7.(2i(q.)) = ¢a, V([0 2i(g,)]) € 0C, .
For the sake of convenience, we extend the domain of 7, as 7,:(—o,
w)— M. Wefix nand ¥ >t,. Then by [2; Th. 1.10 pp 420], the function
i (— oo, o) — R defined by y(u): = d(7,(u), dC7) is concave, i.e. for a =
0,8=0,a+ B =1, it holds y(au, + Bu,) = ay(u,) + By(u,). Since yr is
bounded, + = constant, say, I > 0. Let ¢;:[0, ]] = M be a minimal
geodesic from 7,(0) to 0C;, then < (7.(0), ¢3(0)) = w/2 where < (v, w)
denotes the angle between the vectors v and w. For if T (7.(0), ¢:(0)) <
/2, we can find % > 0 such that d(7,(%), 0C3) < d(7,(0), 9C3). That is
l = (@) < d(7,(&), 0C7) < d(7,(0), 0C3) = I. This is a contradiction. Let
X be the vector field along c¢; obtained by the parallel translation of
7.(0). We define a differentiable mapping V: [0, I] x [0, ] — M by Vs,
u): = expc;(s)uX(s) where ¢ is a positive number. Set V,(s): = V(s,u). Then,
by the convexity of C3, V,()¢int C; for ue€|[0, €], see [1: Lemma 1.7
pp 419]. On the other hand, by the comparison theorem of Berger, if we
put &: = min {7/(2V'7), €}, then L(V,) < L(V,) =1 for all w€[0,¢] and
equality holding for some u,€ (0, &] if and only if V|[0, ] x [0, u)] is a
flat totally geodesic surface of M, see [1, Th. 1 pp 701]. Since we have
seen 4 =1 and V,(I)¢int C3, we get | < I(V,) < L(V,) =1 for all ue
[0, &]. So V|[0,1] x [0, ¢] defines a flat totally geodesic surface of M.
Without confusion, V: [0, 1] x [0, &] — M denotes the restriction V'|[0, I] x
[0, &]. We extend the surface V: [0, ] x [0, &] — M as V: [0, 1] x [0, 2¢,] —
M defining V(s, w): = expy, , u Vi(9/0u),,., for ue [e, 26]. Then we can
also see that V: [0, 1] x [0, 2¢] — M is a flat totally geodesic surface of
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M because V[[0,!] x [&, 2¢,] satisfies the same condition for V: [0, I] x
[0, ] — M. We extend V:[0,1] x [0,2¢] — M as V:[0,1] x [0, 3e)] — M
defining V{(s, u): = eXDy,, (0% Vi(0/0u),,,, for ue[2¢e,3¢e]. V:10,1] x [0,
3e] — M is also a flat totally geodesic surface of M. Continuing this
method, finally we get an immersed flat totally geodesic surface V: [0, I] x
(—oco, o) — M which is given by V(s, u): = exp.;,» uX(s). Set Y(u): =
V«(0/0s),,.. Then Y is a parallel vector field along 7,.

ASSERTION 1. Y(0) = Y(2i(q,)).

Proor. We assume Y(0) = Y(2¢(q,)) and derive a contradiction. Set
C,,: = {ve T (M): exp,, u(v/||v]])€ C,-.,, for some u >O0}U{0}, T, : =
{ve T,,(M): (v, 7,(0)) =0 and |[[v|[=1} and C;:=T,NC,. C,, is
called the tangent cone of C,_, at q,, see [2]. Since dimC,_,, = 3, T,
is isometric to the unit circle S' = [0, 2z] and C; is the minor subarc
of length a € (0, 7] by the convexity of C,_,,. Let ¢:[0,2z](=8")— T,,
be the isometry such that ®([0, a]) = C¥ where closure is taken in T,,.
Since Vimiw, is a minimal geodesic from g, to 0C;, we can easily see
that Y(2mi(q,)) € p(Ja + ©/2, 2r — =/2]) for m = 0,1,2, ---. Let Y(0) =
@(B) for ge|a + n/2, 2r — n/2]. Then, by the assumption, without loss
of generality, we can assume that Y(2i(q,)) = (B + w), where B + w
27 — /2 and @ > 0. And it follows from the linearlity of the parallel
displacement that Y(2mi(q,)) = #(8 + mw) and B + mw < 2w — 7/2, be-
cause w < 7w and Y(2mi(g,)) is the parallel translation of Y(2(m — 1)i(q,))
along 7, for m = 1,2, 3, ---. But this is impossible. q.e.d.

From this assertion, we see the image of surface V is isometric to
[0, 1] x S'(i(q,)/m) where S'(r) denotes a circle of radius ». Let {Z,} be
a sequence such that %, « and %, > ¢, For each %, let ¢7,:[0, l,] — M
be a minimal geodesic from 7,(0) to C3, where I, = d(7,(0), 9C3,). Since
t > t, is any number, we can apply the above argument for each %, and
we have a flat totally geodesic surface of M whose image is isometric
to [0, 1] x S'(i(g.)/w). We can choose subsequence {f,} of {#,} such that
¢7,.(0) — ¢,(0), ¢,(0) € T, (M). Let P, be the vector field along 7, obtained
byjthe parallel translation of ¢,(0). Then by the construction, we can
easily see that the surface given by the map V,: [0, ) X (—o0, o) —> M
defined by V,(s, u): = exp,, wsP,(w) is an immersed flat totally surface
of M and its image is isometric to [0, «) x S'(i(g.,)/7). We denote the
image of this surface by F,. Now by the compactness of C,, we can
choose a subsequence {n;} of {n} such that 7,,(0) — 7.(0) and ¢, (0) — ¢..(0)
where 7.(0) and ¢..(0) € T, (M), ¢..: = lim;_...q,,€ M. Then the vector field
P_ along the closed geodesic 7.(t): = exp t7.(0) obtained by the parallel
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translation of ¢.(0) satisfies P.(0) = P.(2¢(¢..)) from the construction. And
the surface given by the map V.: [0, ) X (— o, o) — M such that V_(s,
u): = eXP;_ ) SP.(u) is an immersed flat totally geodesic surface of M
whose image is isometric to [0, ) x S'(i(¢.)/w). We also denote the
image of this surface by F,.. Hereafter, for the convenience, the sequence
{m} denotes the sequence {n;}.

ASSERTION 2. F,NF.,= O for all m.

PROOF. We assume that there exists m, such that F, NF. # @ and
derive a contradiction. Let 0F, and 0F., denote the image of the closed
geodesic 7, and 7. respectively. And let int F,: = F,, — 0F,, int F,.: =
F,.—0F,.. Wecan consider two cases int F,, Nint F.# @ or oF,Nint F.+ @
because 0F,.CdC, _,, and F, NC,_,., =@ where t.: =d(q., 9C,)). Suppose
there exists a point ¢ €int F, Nint F.. Since dim M = 3 and dim F,,, =
dim F',,=2, there exists a vector v € To(F, )N To(F,) such that |[v|[=1. Let
¢:(—o0,0)— M be the geodesic defined by c(t): =exptv. Then there exists
a subarc of the geodesic ¢ which is a geodesic in F,, and F. because F,,
and F. are totally geodesic surface of M. We assert that ¢((—co, «))N
0F,, # @. For, if ¢((—o0, «)) N IF, = &, then as is easily seen, ¢ is
a closed geodesic in F,, and F.,, since F, and F, are isometric to the
half cylinder [0, o) X S'(i(gn,)/7) and [0, ) x S'(i(¢.)/7) respectively.
The fundamental period of a closed geodesic in F,,, and F, are 2i(q,,)
and 2i(q.) respectively. So above fact means 2i(q,,) = 2i(q..). This is
a contradiction. So the assumption int F, Nint F, # @ derives 0F, N
int F, # @. Next we suppose 0F, Nint F, # @. Foreach u ¢ [0, 2i(q,,)],
let ¢,: [0, ) — M be the geodesic defined by c,(s): = eXDy,, (w(—8)Pn,(%).
Then for each u € [0, 2i(qn,)], we will show ¢,([0, «))Nint C,,,, = @. For,
if some w,€ [0, 24(¢.,)] and s,€ (0, =), ¢, (o) € int Ciy-tmy then by the total
convexity of Cto—tmo’ €., ((0, s]) Cint Cip-tm,» We define a differentiable
mapping V: [0, 2i(q.,)] X [0, B] — M by V(u, s): = c.(s). We put V,(u): =
V(u, s). Then by the comparison theorem of Berger, there exists an
& > 0 depending on )\ such that for all 0 < s <6, L(V,) £ L(V,), see
[1: Th. 1 pp 701]. By the assumption V, (u,)(=c,,(s))€int C,_,, and by
the choice of ¢,,, for all 5, 0 < s < s, we get ©(V,(u,)) > ©(Vi(u,)). Namely,
for all 0<s < min {&,, 8o}, ©( V,(u0)) > 1 Vy(u,)) = 1/2)L(V)=(1/2)L(V,). Then
by using the same technique which is used by W. Klingenberg to get
the estimation of the injective radius of a certain compact Riemannian
manifold, see [3: Th. pp 227], we can easily get a contradiction. For
a point 7, (u*)€dF,, Nint F,, there exists uniquely #% € [0, 2i(q..(0))] and
§ such that 7, (u*) = exp, 8P (%). From the construction of F.,, the
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geodesic a: [0, o) — M defined by a(s): = exp, ;)sP(%) is a shortest con-
nection from 7,(#) to dC, for each t = ¢, And above fact shows that
a(3) # P, (u*) because c,.([0, «)) N int Cip-tm, = @ and 7.(@)eint C,_,, .
The geodesic B: [0, o) — M defined by B(s): = exp; msP.(u*) is also a
minimal geodesic from 7,(u*) to dC, for each t = ¢,. In particular «|[0,
§ + t,)(resp. B|[0, t,]) is a minimal connection from 7.(%) (resp. 7.(u*))
to dC,, where t,, = d(q., 9C,). So, from the triangle inequality of dis-
tance, we can easily see &(3) = B(0) = P,(u*) and we get a contradiction.

q.e.d.

Now, since F,,— F, as m — -, we can easily find numbers m* and
s* such that, for each minimal geodesic from a point of the set {s*} x
S'(i(q.)/r)C F., to F,., its end point lies in int F,.. We consider that
{s*} x S'(i(q.)/7) is the image of the closed geodesic 7.:(— oo, c0)— M.
F,. can be considered locally as a boundary of some convex set because
F.. is a totally geodesic surface of M. And by the proof of Th. 1.10
[2: pp 420], the function @:(— o, ) — R defined by #(s): = d(7.(s), Fns)
is concave. So @ must be constant a > 0, because @ is bounded. Let
¢: [0, a] — M be a minimal geodesic from 7,(0) to F,.. Then é0) L F,.
and ¢(0) L 7.(0). Let Z be the vector field along 7. obtained by the
parallel translation of ¢(0). Then, by the same argument just we have
used to prove the fact Y(0) = Y(2i(q,)), we can easily see Z(0) = Z(2i(q..))
and the differentiable mapping 7: [0, ] X [0, 2¢(q..)] defined by z(u, s): =
exp,. % Z(s) gives a flat totally geodesic surface of M which is isometric
to [0, a] X S'(4(¢.)/7). Therefore we get L(z,) = L(z,) where 7,(s): =
(%, s). On the other hand 7z, and 7, are closed geodesics in F, and F.,.
respectively. So L(z,) > L(z,). This is a contradiction. q.e.d.

REMARK. For dim M = » = 4, this Theorem is not valid. Because
M. Berger gave an example that on S? there exists a Riemannian metric
g, such that 0 < K, < \ satisfying i(q;) < 7/ N for some point g,e S
Hence, for a simply connected non-compact Riemannian manifold M: =
(S, g,) X E' which satisfies 0 < K, < )\, there exists a point g€ M such
that i(q) < /1 ». So it might be significant to assume that M is homeo-

morphic to E™ for the proof of our assertion in the case n» = 4.

REFERENCES

[1] M. BERGER, An extention of Rauch’s metric comparison theorem and some applica-
tions, Ill. J. of Math. 6 (1962), 700-712.

[2] J. CHEEGER AND D. GROMOLL, On the structure of complete manifolds of nonnegative
curvature, Ann, of Math. 96 (1970), 413-443.

[3] D. GromoLL, W. KLINGENBERG AND W. MEYER, Riemannshe Geometrie im Grossen,



412 M. MAEDA

Springer-Verlag, 1968.

[4] M. MAEDA, On the injective radius of noncompact Riemannian manifolds, Proc. Japan
Acad. 50 (1974), 148-151.

[5] V. ToronoGov, Theorems on shortest arcs in noncompact Riemannian spaces of positive
curvature, Soviet Math. Dokl. 11 (1970), 412-414.

DEPARTMENT OF MATHEMATICS
Toxyo INSTITUTE OF TECHNOLOGY





