# ON MARCINKIEWICZ INTEGRAL 

Shigeki Yano

(Received April 25, 1974)

1. Introduction. Let $P$ be a closed set in $R^{n}$ and $\delta(x)=\delta_{P}(x)$ denote the distance of the point $x$ from $P$. Let $\lambda$ be a positive number and $f \in L^{p}\left(R^{n}\right), 1 \leqq p \leqq \infty$. We shall call the integral

$$
\begin{equation*}
J_{\lambda}(x)=J_{\lambda}(x ; f)=\int_{R^{n}} \frac{\delta^{\lambda}(y) f(y)}{|x-y|^{n+\lambda}} d y \tag{1.1}
\end{equation*}
$$

to be the Marcinkiewicz "distance function" integral of $f$.
Concerning this integral, following results are known:
If $f \in L^{1}\left(R^{n}\right)$, then the integral (1.1) converges almost everywhere in $P$. In particular, if $P$ is bounded and is contained in a finite cube $Q$, then

$$
\begin{equation*}
\int_{Q} \frac{\delta^{2}(y)}{|x-y|^{n+\lambda}} d y \tag{1.2}
\end{equation*}
$$

is finite almost everywhere in $P$.
On the other hand, if $|C P|<\infty^{1)}$, then

$$
\begin{equation*}
\int_{R^{n}} \frac{\delta^{\lambda}(y)}{|x-y|^{n+\lambda}} d y \tag{1.3}
\end{equation*}
$$

is almost everywhere finite in $P$. For these results we refer the reader to Zygmund [7] and Stein [6; Chapter I].

The integral of the form (1.1) diverges in general outside $P$, so some variants are introduced, namely

$$
\begin{equation*}
H_{\lambda}(x)=\int_{R^{n}} \frac{\delta^{\lambda}(y) f(y)}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(x)} d y \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\lambda}^{\prime}(x)=\int_{R^{n}} \frac{\delta^{\lambda}(y) f(y)}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)} d y . \tag{1.5}
\end{equation*}
$$

In view of the relation $|\delta(x)-\delta(y)| \leqq|x-y|$ we have by Jensen's inequality

$$
|x-y|^{n+\lambda}+\delta^{n+\lambda}(x) \approx|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)
$$

[^0]hence $H_{\lambda}(x) \approx H_{\lambda}^{\prime}(x)$, so that inequalities for $H_{\lambda}^{\prime}$ immediately lead to inequalities for $H_{\lambda}$. Also, if $x \in P$ then $\delta(x)=0$, so that
\[

$$
\begin{equation*}
H_{\lambda}(x)=J_{\lambda}(x) \quad(x \in P) \tag{1.6}
\end{equation*}
$$

\]

and informations for $H_{\lambda}^{\prime}(x)$ on $P$ give informations for $J_{\lambda}(x)$ on $P$.
For $H_{\lambda}$ and $H_{\lambda}^{\prime}$, following results are known (see above cited references):

$$
\begin{equation*}
\left\|H_{\lambda}\right\|_{p} \leqq A_{p}\|f\|_{p} ; \tag{1.7}
\end{equation*}
$$

if $f \in L^{\infty}\left(R^{n}\right)$ and $f$ is supported in a (finite) cube $Q \supset P$, then

$$
\begin{equation*}
\int_{Q} e^{e_{\left|H_{\lambda}(x)\right| /\|f\|_{\infty}}} d x \leqq A|Q| . \tag{1.8}
\end{equation*}
$$

If $|\subset P|<\infty$, then for any (finite) cube $Q$,

$$
\begin{equation*}
\int_{Q} e^{e\left|H_{\lambda}(x)\right|\| \| f \|_{\infty}} d x<\infty \tag{1.9}
\end{equation*}
$$

On the other hand, John and Nirenberg [5] introduced the notion of functions of bounded mean oscillation (BMO). A function $\Phi$ locally integrable on $R^{n}$ is said to be of bounded mean oscillation if

$$
\|\Phi\|_{*}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|\Phi(x)-\Phi_{Q}\right| d x<\infty,
$$

where the supremum ranges over all (finite) cubes in $R^{n}$ and $\Phi_{Q}$ denotes the mean value of $\Phi$ on $Q, \Phi_{Q}=(1 /|Q|) \int_{Q} \Phi(x) d x$.

They proved that if $\Phi$ is of BMO, then

$$
\begin{equation*}
\int_{Q} e^{\varepsilon| |(x)-\Phi_{Q}|\||\|| | *} d x \leqq A|Q| \tag{1.10}
\end{equation*}
$$

from this we obtain immediately the integrability of $e^{c|\Phi| /\|\varnothing\| *}$ over any cube. This observation and the inequalities (1.8) and (1.9) suggest that the Marcinkiewicz integral of a bounded function would be of BMO. In Section 2 we shall prove that this is true for the Marcinkiewicz integral of the type (1.5), and in Section 3 show an application of this result for an estimate of singular integral of Calderon-Zygmund type, which is an extension of a result due to Hunt [4] for the conjugate function.
2. Marcinkiewicz integrals of bounded functions. In this section

[^1]we shall prove that the Marcinkiewicz integral of a bounded function of the type (1.5) is of BMO. Here we slightly change the notations.

Theorem 1. Let $P$ be a closed set in $R^{n}, \delta(x)$ denote the distance of $x$ from $P$, and $\lambda$ be any positive number.
$1^{\circ}$. If $|\subset P|<\infty$, then for any $\varphi \in L^{\infty}\left(R^{n}\right)$,
$2^{\circ}$. If $P$ is arbitrary, then for $\varphi \in L^{\infty}\left(R^{n}\right)$ supported in a finite cube, we define the Marcinkiewicz integral of $\varphi$ by

$$
\begin{equation*}
\Phi(x)=\int_{R^{n}} \frac{\delta^{\lambda}(y) \varphi(y)}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)} d y \tag{2.1}
\end{equation*}
$$

Then $\Phi$ is integrable and of $B M O$ on $R^{n}$, and

$$
\begin{equation*}
\|\Phi\|_{*} \leqq A\|\varphi\|_{\infty} \tag{2.2}
\end{equation*}
$$

REMARK. If neither the conditions $1^{\circ}$ nor $2^{\circ}$ are satisfied, then the integral (2.1) may diverges on a set of positive measure, so that the conditions $1^{\circ}$ or $2^{\circ}$ is necessary for the validity of the theorem.

Proof. We begin with the following observation. For any cube $Q$

$$
\begin{aligned}
\int_{Q}|\Phi(x)| d x & \leqq \int_{R^{n}}|\Phi(x)| d x=\int_{R^{n}}\left|\int_{R^{n}} \frac{\delta^{\lambda}(y) \varphi(y)}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)} d y\right| d x \\
& \leqq \int_{S_{\varphi} \cap \subset P}|\varphi(y)| \delta^{\lambda}(y)\left\{\int_{R^{n}} \frac{d x}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)}\right\} d y
\end{aligned}
$$

where $S_{\varphi}=\left\{x \in R^{n}: \varphi(x) \neq 0\right\}$. Since the inner integral of the last expression is equal to

$$
\int_{R^{n}} \frac{d x}{|x|^{n+\lambda}+\delta^{n+\lambda}(y)}=\delta^{-\lambda}(y) \int_{R^{n}} \frac{d x}{|x|^{n+\lambda}+1}=A \delta^{-\lambda}(y)
$$

we obtain

$$
\begin{equation*}
\int_{Q}|\Phi(x)| d x \leqq A \int_{S_{\varphi} \cap C P}|\varphi(y)| d y ; \tag{2.3}
\end{equation*}
$$

this shows that under the condition $1^{\circ}$ or $2^{\circ}, \Phi$ is integrable on $R^{n}$.
Next, to prove that $\Phi$ is of BMO, we follow the idea of Fefferman and Stein [3, p. 152]. Let $Q=Q_{h}$ be a cube with side length $h$ and center $x^{\circ}$, and $Q_{2 h}$ be the cube with the same center as $Q$ whose sides have length $2 h$. We shall estimate $\Phi$ in $Q$ writing $\Phi=\Phi_{1}+\Phi_{2}$, where $\Phi_{j}$ arises from $\varphi_{j}, \varphi=\varphi_{1}+\varphi_{2}, \varphi_{1}=\varphi \chi_{Q_{2 h}}, \varphi_{2}=\varphi \cdot\left(1-\chi_{Q_{2 h}}\right)$ and $\chi_{Q_{2 h}}$ is the characteristic function of $Q_{2 h}$. Then in view of (2.3)

$$
\begin{equation*}
\int_{Q}\left|\Phi_{1}(x)\right| d x \leqq A \int_{Q_{2 k}}|\varphi(x)| d x \leqq A\|\varphi\|_{\infty}|Q| \tag{2.4}
\end{equation*}
$$

To estimate $\Phi_{2}$, write

$$
a_{Q}=\int_{\mathbb{Q}_{2 h} \mid} \frac{\varphi(y) \delta^{\lambda}(y)}{x^{\circ}-\left.y\right|^{n+\lambda}+\delta^{n+\lambda}(y)} d y .
$$

Then

$$
\begin{aligned}
& \Phi_{2}(x)-a_{Q} \\
& \quad=\int_{\mathbb{C}_{2 h}} \varphi(y) \delta^{\lambda}(y)\left[\frac{1}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)}-\frac{1}{\left|x^{\circ}-y\right|^{n+\lambda}+\delta^{n+\lambda}(y)}\right] d y .
\end{aligned}
$$

The modulus of the quantity in the brackets of the right side of the last expression does not exceed

$$
\frac{A\left|x-x^{\circ}\right||\bar{x}-y|^{n+\lambda-1}}{\left[|\bar{x}-y|^{n+\lambda}+\delta^{n+\lambda}(y)\right]\left[\left|x^{\circ}-y\right|^{n+\lambda}+\delta^{n+\lambda}(y)\right]},
$$

where $\bar{x}$ is a point on the segment joining the points $x^{\circ}$ and $x$. Now, if $x \in Q$ and $y \in \complement Q_{2 h}$, then

$$
\begin{align*}
& \left|x-x^{\circ}\right| \leqq A h, \quad\left|x^{\circ}-y\right| \geqq c h  \tag{2.5}\\
& |\bar{x}-y| \approx\left|x^{\circ}-y\right| \approx|x-y|,
\end{align*}
$$

so that it follows that for $x \in Q$

$$
\begin{equation*}
\left|\Phi_{2}(x)-a_{Q}\right| \leqq A h \int_{\mathcal{C}_{2 k}} \frac{|\varphi(y)| \delta^{\lambda}(y)\left|x^{\circ}-y\right|^{n+\lambda-1}}{\left[\left|x^{\circ}-y\right|^{n+\lambda}+\delta^{n+\lambda}(y)\right]^{2}} d y . \tag{2.6}
\end{equation*}
$$

To estimate the last integral, we split the range $\subset Q_{2 h}$ into the union of $E_{1}$ and $E_{2}$, where

$$
E_{1}=\complement Q_{2 h} \cap\left\{y \in R^{n}: \delta(y) \leqq\left|y-x^{\circ}\right|\right\}
$$

and

$$
E_{2}=\complement Q_{2 h} \cap\left\{y \in R^{n}: \delta(y)>\left|y-x^{\circ}\right|\right\} .
$$

Since $E_{1} \subset\left\{y \in R^{n}:\left|y-x^{\circ}\right| \geqq c h\right\}$ in view of (2.5), we obtain

$$
\begin{equation*}
\int_{E_{1}} \leqq\|\varphi\|_{\infty} \int_{\left|y-x^{\circ}\right| \geqq c h} \frac{d y}{\left|x^{\circ}-y\right|^{n+1}} \leqq A\|\varphi\|_{\infty} h^{-1} \tag{2.7}
\end{equation*}
$$

Quite similarly

$$
\begin{align*}
\int_{E_{2}} & \leqq\|\varphi\|_{\infty} \int_{c h \leqq\left|y-x^{0}\right|<\delta(y)} \frac{d y}{\delta^{n+1}(y)}  \tag{2.8}\\
& \leqq\|\varphi\|_{\infty} \int_{\left|y-x^{\circ}\right| \geqq c h} \frac{d y}{\left|x^{\circ}-y\right|^{n+1}} \leqq A\|\varphi\|_{\infty} h^{-1}
\end{align*}
$$

From (2.4) and (2.9), the relation (2.2) follows immediately, and the proof of Theorem 1 is completed.

John and Nirenberg [5] proved that if $\Phi$ is of BMO and integrable and $\|\Phi\|_{*} \leqq \kappa$, then

$$
\begin{equation*}
\int_{R^{n}}\left(e^{c|\varphi(x)| / \kappa}-1\right) d x \leqq \frac{A}{\kappa} \int_{R^{n}}|\Phi(x)| d x \tag{2.9}
\end{equation*}
$$

Combining this inequality and Theorem 1, we get the following corollary.

Corollary. Under the notations and assumptions of Theorem 1, we have for any $\alpha>0$
$1^{\circ}$ if $|\complement P|<\infty$, then

$$
\left|\left\{x \in R^{n}:|\Phi(x)|>\alpha\right\}\right| \leqq A\left(e^{c \alpha\| \| \varphi \|_{\infty}}-1\right)^{-1}|C P|
$$

$2^{\circ}$ if $\left|S_{\varphi}\right|<\infty$ where $S_{\varphi}=\left\{x \in R^{n} ; \varphi(x) \neq 0\right\}$, then

$$
\left|\left\{x \in R^{n}:|\Phi(x)|>\alpha\right\}\right| \leqq A\left(e^{c \alpha\| \| \varphi \|_{\infty}}-1\right)^{-1}\left|S_{\varphi}\right|
$$

As the proof shows, it is not necessary to assume in Theorem 1 that $\delta$ is the "distance function", and we can extend Theorem 1 as follows:

Theorem 1'. Let $\delta$ be any non negative (finite valued) measurable function in $R^{n}$, and $\lambda$ be any positive number.
$1^{\circ}$. If $\delta$ is supported in a set of finite measure, then for any $\varphi \in L^{\infty}\left(R^{n}\right)$,
$2^{\circ}$. If $\delta$ is arbitrary, then for $\varphi \in L^{\infty}\left(R^{n}\right)$ supported in a set of finite measure,
$3^{\circ}$. If $\delta$ is bounded, then for any $\varphi \in L^{\infty}\left(R^{n}\right)$, the "generalised" Marcinkiewicz integral

$$
\Phi(x)=\int_{R^{n}} \frac{\delta^{\lambda}(y) \varphi(y)}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)} d y
$$

is of $B M O$ on $R^{n}$, and $\|\Phi\|_{*} \leqq A\|\odot\|_{\infty}$. In case of $1^{\circ}$ or $2^{\circ}, \Phi$ is integrable in $R^{n}$.
3. An application. R. Hunt obtained an interesting estimate of the conjugate function: Let $f \in L^{1}(-\pi, \pi)$ and define its conjugate function $f$ by

$$
\begin{equation*}
\tilde{f}(x)=-\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(t)}{2 \tan \frac{1}{2}(t-x)} d t \tag{3.1}
\end{equation*}
$$

then for any $\alpha$ and $\beta>0$, we have

$$
\begin{equation*}
|\{x \in(-\pi, \pi): M f(x) \leqq \alpha,|\widetilde{f}(x)|>\alpha \beta\}| \leqq A e^{-c \beta} \tag{3.2}
\end{equation*}
$$

where $M f$ is the Hardy-Littlewood maximal function of $f$.
To prove this result, Hunt used a lemma of Carleson [1] on an estimate of a function of the form

$$
\sum_{j} \int_{I_{j}} \frac{\left|I_{j}\right|}{|x-y|^{2}+\left|I_{j}\right|^{2}} d y ;
$$

this lemma, however, can be derived from a result concerning the Marcinkiewicz integral, as pointed out by Zygmund [7]. Moreover, Hunt's result can be extended to $n$-dimensional case.

Theorem 2. Let $K$ be a kernel of Calderón-Zygmund type on $R^{n}$; specifically suppose

$$
\begin{equation*}
K(x)=\Omega(x) /|x|^{n} \tag{3.3}
\end{equation*}
$$

$\Omega$ is homogeneous of degree zero, and

$$
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d x^{\prime}=0
$$

and

$$
\begin{equation*}
\Omega \in \operatorname{Lip} \lambda, \quad \lambda>0 \tag{3.4}
\end{equation*}
$$

For $f \in L^{1}\left(R^{n}\right)$, define

$$
\begin{equation*}
\tilde{f}(x)=\lim _{\varepsilon \rightarrow 0} \int_{|y|>\varepsilon} f(x-y) K(y) d y \tag{3.5}
\end{equation*}
$$

Then for any number $\alpha, \beta>0$ and for any cube $Q$ which satisfies

$$
\begin{equation*}
|Q| \geqq \frac{A}{\alpha}\|f\|_{1} \tag{3.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
|\{x \in Q:|\widetilde{f}(x)|>\alpha \beta, M f(x) \leqq \alpha\}| \leqq A e^{-c \beta}|Q| \tag{3.7}
\end{equation*}
$$

where $M f$ is the Hardy-Littlewood maximal function, and $A, c$ are constants depending only on $K$ (more precisely on the bound of $\Omega$, and the exponent $\lambda$ and the bound of Lipschitz condition for $\Omega$ ) and the dimension $n$.

Proof. Let $P=\left\{x \in R^{n}: M f(x) \leqq \alpha\right\}$, then $P$ is closed. Combining the Calderón-Zygmund decomposition for the pair $f, \alpha$, and the Whiteney decomposition of open set into the union of cubes, we obtain the following decompositions of $C P$ and $f$ (for a proof see Stein [6, p. 32] or Fefferman [2]):

There exists a sequence of non-overlapping cubes $\left\{Q_{j}\right\}$ such that
$\complement P=\bigcup_{j} Q_{j}$

$$
\begin{align*}
& |G P|=\sum_{j}\left|Q_{j}\right| \leqq \frac{A}{\alpha}\|f\|_{1}  \tag{3.8}\\
& \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f(y)| d y \leqq A \alpha  \tag{3.9}\\
& |f(x)| \leqq \alpha \quad \text { a.e. in } P \tag{3.10}
\end{align*}
$$

(3.11) $c \operatorname{diam} Q_{j} \leqq \operatorname{distance}\left(P, Q_{j}\right) \leqq A \operatorname{diam} Q_{j} \quad$ where $1<c<A$.

Now define $g$ by

$$
g(x)= \begin{cases}f(x) & (x \in P) \\ \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f(y) d y \quad\left(x \in Q_{j} ; j=1,2, \cdots\right)\end{cases}
$$

and write $f=g+b$. Then

$$
\begin{equation*}
|g(x)| \leqq A \alpha \quad \text { a.e., } \quad\|g\|_{1}=\|f\|_{1} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
b(x)=0 \text { in } P, \quad \int_{Q_{j}} b(y) d y=0,\|b\|_{1} \leqq A\|f\|_{1} \tag{3.13}
\end{equation*}
$$

Since $\tilde{f}=\widetilde{g}+\widetilde{b}$, we have by definition of $P \mid\{x \in Q:|\widetilde{f}(x)|>\alpha \beta, M f(x) \leqq$ $\alpha\}|\leqq|\{x \in Q:|\widetilde{g}(x)|>\alpha \beta / 2\} \cap P|+|\{x \in Q:|\widetilde{b}(x)|>\alpha \beta / 2\} \cap P|$. Thus it suffices to prove

$$
\begin{equation*}
|\{x \in Q:|\widetilde{g}(x)|>\alpha \beta\}| \leqq A e^{-c \beta}|Q| \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
|\{x \in Q:|\widetilde{b}(x)|>\alpha \beta\} \cap P| \leqq A e^{-c \beta}|Q| \tag{3.15}
\end{equation*}
$$

for any cube $Q$ with (3.6).
Since $g$ is bounded and integrable by (3.12), a result of Fefferman and Stein [2; p. 144] shows that $g$ is of BMO and

$$
\begin{equation*}
\|\widetilde{g}\|_{*} \leqq A\|g\|_{\infty} \leqq A \alpha \tag{3.16}
\end{equation*}
$$

Therefore by (3.12) and Schwarz inequality we obtain

$$
\left|(\widetilde{g})_{Q}\right| \leqq \frac{1}{Q} \int_{Q}|\widetilde{g}(y)| d y \leqq \frac{1}{|Q|^{1 / 2}}\|\widetilde{g}\|_{2}^{\prime} \leqq \frac{A}{|Q|^{1 / 2}}\|g\|_{2}=A\left(\frac{\|f\|_{1} \alpha}{|Q|}\right)^{1 / 2}
$$

From this and (1.10), we get

$$
\begin{equation*}
|\{x \in Q:|\tilde{g}(x)|>\alpha \beta\}| \leqq A e^{A\left(\|f\|_{1} / \alpha|Q|^{1 / 2}\right.} e^{-\varepsilon \beta}|Q| \tag{3.17}
\end{equation*}
$$

and this reduces to (3.14) for cube $Q$ with $|Q| \geqq(A / \alpha)\|f\|_{1}$.
Next, let $\delta$ be the distance function with respect to $P$, then Theorem

1, part $1^{\circ}$ can be applied to the Marcinkiewicz integral involving this $\delta$. Now it is known (see e.g. Zygmund [8] and Stein [6; Chapter II]) that for $x \in P$

$$
\begin{equation*}
|\tilde{b}(x)| \leqq A \alpha \int_{R^{n}} \frac{\delta^{\lambda}(y)}{|x-y|^{n+\lambda}} d y \tag{3.18}
\end{equation*}
$$

and as is mentioned in Section 1, the integral on the right hand side of (3.18) is of the same size as the integral

$$
\Phi(x)=\int_{R^{n}} \frac{\delta^{\lambda}(y)}{|x-y|^{n+\lambda}+\delta^{n+\lambda}(y)} d y
$$

for $x \in P$. Thus remembering (3.8) we obtain by Corollary $1,1^{\circ}$

$$
\begin{aligned}
& |\{x \in Q:|\tilde{b}(x)|>\alpha \beta\} \cap P| \\
& \quad \leqq|\{x \in Q: \Phi(x)>A \beta\}| \leqq A e^{-c \beta}|Q|
\end{aligned}
$$

for $Q$ with $|Q| \geqq A \alpha^{-1}\|f\|_{1}$, and this proves (3.15). The proof is completed.

## References

[1] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.
[2] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 9-36.
[3] C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math., 129 (1972), 137-193.
[4] R. Hunt, An estimate of the conjugate function, Studia Math., 44 (1972), 371-377.
[5] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure and Appl. Math., 14 (1961), 415-426.
[6] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, 1970.
[7] A. Zygmund, On certain lemmas of Marcinkiewicz and Carleson, J. Approximation Theory, 2 (1969), 249-257.
[8] A. Zygmund, On singular integrals, Rend. di Mat., 16 (1957), 468-505.
Tokyo Metropolitan University
Tokyo


[^0]:    ${ }^{1)} \mathrm{c} E$ is the complement of the set $E$ and $|E|$ denotes the Lebesgue measure of $E$.

[^1]:    ${ }^{2}$ ) Here and below, $A, c$ may vary from inequalities to inequalities. $A$ and $c$ are always independent of the function $f$, the set $P$, the cube, etc., but may depend on the dimension $n$, the exponent $p$ and the parameter $\lambda$ or other explicitly indicated parameters.

