ON THE MEAN CURVATURE FOR ANTI-HOLOMORPHIC *p*-PLANE IN KÄHLERIAN SPACES

Keiko Iwasaki and Noriko Ogitsu

(Received February 19, 1974)

Introduction. Let M^n be an *n* dimensional Riemannian spaces, and denote by $\rho(X, Y)$ the sectional curvature of a 2-plane spanned by vectors X and Y. For a q-plane π at a point P, we take an orthonormal base $\{e_{\lambda}\}$ of tangent space $T_p(M)$ such that e_1, \dots, e_q span π . Such a base is called an adapted base for π . S. Tachibana $[1]^{1}$ has defined the mean curvature $\rho(\pi)$ for π by

$$ho(\pi) = rac{1}{q(n-q)} \sum_{a=q+1}^n \sum_{i=1}^q
ho(e_i, e_a)$$
 ,

which is well-defined, i.e., independent of the choice of adapted bases for π . He has obtained the following.

THEOREM I. (S. Tachibana [1]). In an n(>2) dimensional Riemannian space M^n , if the mean curvature for q-plane is independent of the qplane at each point, then

- (i) M^n is an Einstein space, for q = 1 or n 1,
- (ii) M^n is of constant curvature, for n-1 > q > 1 and $2q \neq n$,
- (iii) M^n is conformally flat, for n-1 > q > 1 and 2q = n.

The converse is also true.

Taking holomorphic 2p-planes instead of q-planes, an analogous result in Kählerian spaces is also known.

THEOREM II. (S. Tachibana [2], S. Tanno [3]). In a Kählerian space $K^{2m}(m \ge 2)$, if the mean curvature for 2p-plane is independent of the holomorphic 2p-plane at each point, then

(i) K^{2m} is of constant holomorphic curvature, for 1 $and <math>2p \neq m$,

(ii) the Bochner curvature tensor of K^{2m} vanishes identically, for 1 and <math>2p = m.

The converse is also true.

The purpose of this paper is to prove an analogous theorem in

¹⁾ The number in brackets refers to Bibliography at the end of the paper.

Kählerian space taking anti-holomorphic p-plane in place of holomorphic 2p-plane in the above theorem.

1. Preliminaries. Consider a Kählerian space K^{2m} of complex dimension $m(\geq 2)$. Let \langle , \rangle and J be the inner product and the almost complex structure, then it holds that

(1.1)
$$\langle X, Y \rangle = \langle JX, JY \rangle$$
, $JJX = -X$, $\nabla J = 0$,

where X and Y denote vector fields on K^{2m} (or tangent vectors at a point) and V Levi-Civita connection. By R, R_1 , and S we denote the Riemannian curvature tensor, the Ricci tensor and the scalar curvature respectively. Then they satisfy for any vectors X, Y and Z,

$$(1.2) R(X, Y)Z = R(JX, JY)Z$$

(1.3)
$$R_1(X, Y) = R_1(JX, JY)$$
.

For a J-base $\{e_{\lambda}, Je_{\lambda} = e_{\lambda^*}\}^{2_1}$ and the sectional curvature $\rho(e_{\lambda}, e_{\mu}) = -\langle R(e_{\lambda}, e_{\mu})e_{\lambda}, e_{\mu} \rangle$, we have

(1.4)
$$\rho(e_{\lambda}, e_{\mu}) = \rho(e_{\lambda^{*}}, e_{\mu^{*}}), \quad \rho(e_{\lambda^{*}}, e_{\mu}) = \rho(e_{\lambda}, e_{\mu^{*}}).$$

If an orthonormal pair $\{X, Y\}$ at P satisfies

$$\langle X, JY
angle = 0$$
 ,

then such a pair will be called an anti-holomorphic orthonormal pair. In [5] and [6], the following lemma has been proved.

LEMMA 1.1. In a Kählerian space, the following three Propositions $A \sim C$ are equivalent to one another.

A.
$$\rho(X, Y) = \rho(X, JY)$$

holds good for any anti-holomorphic orthonormal pair $\{X, Y\}$.

B.
$$\rho(X, Y) = \frac{1}{8} \{H(X) + H(Y)\}$$

holds good for any anti-holomorphic orthonormal pair $\{X, Y\}$, where $H(X) = \rho(X, JX)$, viz. the holomorphic sectional curvature for X.

C. The Bochner curvature tensor of K^{2m} vanishes.

2. The mean curvature for anti-holomorphic *p*-plane. Consider a *p*-plane π at a point *P* of a Kählerian space K^{2m} . If we find *p* vectors X_1, \dots, X_p such that X_1, \dots, X_p span π and JX_1, \dots, JX_p are perpendicular to π , then π is called anti-holomorphic. If π is an anti-holomorphic *p*-plane, then there exists a *J*-base $\{e_{\lambda}, e_{\lambda}\}$ of $T_p(K^{2m})$ such that e_1, \dots, e_p

314

²⁾ As the notations we follow S. Tachibana [2]. $\lambda, \mu = 1, 2, \dots, m$.

span π . Such a *J*-base will be called an adapted *J*-base for π . Hereafter π will always mean an anti-holomorphic *p*-plane.

The mean curvature $\rho(\pi)$ for π is

(2.1)
$$\rho(\pi) = \frac{1}{p(2m-p)} \sum_{i=1}^{p} \left[\sum_{j=1}^{p} \rho(e_i, e_{j*}) + \sum_{a=p+1}^{m} \{ \rho(e_i, e_a) + \rho(e_i, e_{a*}) \} \right].$$

LEMMA 2.1. If $m \ge p \ge 2$ and if the mean curvature for p-plane is independent of the anti-holomorphic p-plane at P, then Proposition A in Lemma 1.1 holds good.

PROOF. Consider an anti-holomorphic *p*-plane π at *P* and adapted *J*-base $\{e_{\lambda}, e_{\lambda^*}\}$ for π . Let π' be the anti-holomorphic *p*-plane spanned by e_{1^*}, e_2, \dots, e_p . Then the mean curvature $\rho(\pi')$ is given by

(2.2)
$$\rho(\pi') = \frac{1}{p(2m-p)} \left[\sum_{j=2}^{p} \rho(e_{1^*}, e_{j^*}) + \rho(e_{1^*}, e_1) + \sum_{i=2}^{p} \rho(e_i, e_1) \right. \\ \left. + \sum_{i=2}^{p} \sum_{j=2}^{p} \rho(e_i, e_{j^*}) + \sum_{a=p+1}^{m} \sum_{i=1}^{p} \left\{ \rho(e_i, e_a) + \rho(e_i, e_{a^*}) \right\} \right].$$

By the assumption we have $\rho(\pi) = \rho(\pi')$, and hence

(2.3)
$$\sum_{j=2}^{p} \rho(e_{1}, e_{j*}) = \sum_{j=2}^{p} \rho(e_{1}, e_{j}) ,$$

taking account of (1.4). Similarly we have

(2.4)
$$\rho(e_2, e_{1^*}) + \sum_{j=3}^p \rho(e_2, e_{j^*}) = \rho(e_2, e_1) + \sum_{j=3}^p \rho(e_2, e_j)$$
.

In the case p = 2, by (2.3) we have

(2.5)
$$\rho(e_1, e_{2^*}) = \rho(e_1, e_2)$$
.

When $p \ge 3$, we consider *p*-plane π'' which is spanned by $e_{1^*}, e_{2^*}, e_3, \cdots$, e_p . The similar process for π'' instead of π' leads us to

(2.6)
$$\sum_{j=3}^{p} \rho(e_1, e_{j*}) + \sum_{j=3}^{p} \rho(e_2, e_{j*}) = \sum_{j=3}^{p} \rho(e_1, e_j) + \sum_{j=3}^{p} \rho(e_2, e_j) .$$

Taking account of (2.3), (2.4) and (2.6), we see that

(2.7)
$$\rho(e_1, e_{2^*}) = \rho(e_1, e_2)$$
.

Then (2.5) and (2.7) show that Proposition A holds good. q.e.d.

LEMMA 2.2. If $m > p \ge 2$, and if the mean curvature for p-plane is independent of the anti-holomorphic p-plane at each point, then K^{2m} is of constant holomorphic curvature.

PROOF. By virtue of Lemma 2.1 and Lemma 1.1, it follows that

K. IWASAKI AND N. OGITSU

(2.8)
$$\rho(e_{\lambda}, e_{\mu}) = \rho(e_{\lambda}, e_{\mu^{*}}) = \frac{1}{8} \{H(e_{\lambda}) + H(e_{\mu})\}, \quad \lambda \neq \mu.$$

Hence

(2.9)
$$\sum_{j=1}^{p} \sum_{i=1}^{p} \rho(e_i, e_{j^*}) = \frac{p+3}{4} \sum_{i=1}^{p} H(e_i) ,$$

$$(2.10) \quad \sum_{i=1}^{p} \sum_{a=p+1}^{m} \left\{ \rho(e_i, e_a) + \rho(e_i, e_{a^*}) \right\} = \frac{m-2p}{4} \sum_{i=1}^{p} H(e_i) + \frac{p}{4} \sum_{\lambda=1}^{m} H(e_\lambda)$$

By assumption $\rho(\pi)$ being independent of π , we put $\rho = \rho(\pi)$. Then substituting (2.9) and (2.10) into (2.1), we get

(2.11)
$$p(2m-p)\rho = \frac{m-p+3}{4}\sum_{i=1}^{p}H(e_i) + \frac{p}{4}\sum_{\lambda=1}^{m}H(e_{\lambda})$$

Taking account of m > p, we consider p-plane π' which is spanned by e_2, e_3, \dots, e_{p+1} . The similar process for π' instead of π leads us to

(2.12)
$$p(2m-p)\rho = \frac{m-p+3}{4}\sum_{i=2}^{p+1}H(e_i) + \frac{p}{4}\sum_{\lambda=1}^{m}H(e_{\lambda})$$

By (2.11) and (2.12) we obtain,

$$H(e_1) = H(e_{p+1})$$
.

Similarly it follows that

(2.13)
$$H(e_1) = H(e_2) = \cdots = H(e_m)$$
.

For any unit vector X at a point P, there exists a J-base $\{e_{\lambda}, e_{\lambda^*}\}$ such that $X = e_1$. Then we get from (2.12) and (2.13)

$$H\!(X) = rac{4(2m-p)}{2m+3-p}
ho$$
 ,

which means that H(X) is independent of X.

3. A theorem analogous to Theorem I and II. By virtue of Lemma 1.1, Lemma 2.1 and Lemma 2.2, we get the following theorem including the trivial case where p = 1. Its converse part is obtained by straightforward calculation.

THEOREM. In a Kählerian space K^{2m} $(m \ge 2)$, if the mean curvature for p-plane is independent of the anti-holomorphic p-plane at each point, then

(i) K^{2m} is an Einstein space, for p = 1,

(ii) K^{2m} is of constant holomorphic curvature, for $m > p \ge 2$,

316

q.e.d.

(iii) The Bochner curvature tensor of K^{2m} vanishes identically, for $m = p \ge 2$.

The converse is also true.

REMARK. In the case (iii), we obtain by straight-forward calculation

$$ho(\pi) = -rac{m+3}{4m(m+1)}S$$
 .

Thus $\rho(\pi)$ is independent of the point P if and only if the scalar curvature S is constant.

BIBLIOGRAPHY

- [1] S. TACHIBANA, On the mean curvature for p-plane, J. Diff. Geometry, vol. 8, No. 1.
- [2] S. TACHIBANA, On the mean curvature for holomorphic 2p-plane in Kählerian spaces, Tôhoku Math. J., vol. 25,No. 2 (1973), 157-165.
- [3] S. TANNO, Mean curvature for holomorphic 2p-plane in Kählerian spaces, to appear.
- [4] R. L. BISHOP AND S. I. GOLDBERG, Some implication of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc., 112 (1964), 508-535.
- [5] N. OGITSU AND K. IWASAKI, On a characterization of the Bochner curvature tensor \equiv 0, to appear.
- [6] T. KASHIWADA, Some characterizations of vanishing Bochner curvature tensor, to appear.

Department of Mathematics, Ochanomizu University, Tokyo, Japan.