ON THE MEAN CURVATURE FOR ANTI-HOLOMORPHIC p-PLANE IN KÄHLERIAN SPACES

Keiko Iwasaki and Noriko Ogitsu

(Received February 19, 1974)

Introduction. Let M^{n} be an n dimensional Riemannian spaces, and denote by $\rho(X, Y)$ the sectional curvature of a 2 -plane spanned by vectors X and Y. For a q-plane π at a point P, we take an orthonormal base $\left\{e_{\lambda}\right\}$ of tangent space $T_{p}(M)$ such that $e_{1}, \cdots, e_{q} \operatorname{span} \pi$. Such a base is called an adapted base for π. S. Tachibana [1] ${ }^{1 /}$ has defined the mean curvature $\rho(\pi)$ for π by

$$
\rho(\pi)=\frac{1}{q(n-q)} \sum_{a=q+1}^{n} \sum_{i=1}^{q} \rho\left(e_{i}, e_{a}\right),
$$

which is well-defined, i.e., independent of the choice of adapted bases for π. He has obtained the following.

Theorem I. (S. Tachibana [1]). In an $n(>2)$ dimensional Riemannian space M^{n}, if the mean curvature for q-plane is independent of the q plane at each point, then
(i) M^{n} is an Einstein space, for $q=1$ or $n-1$,
(ii) M^{n} is of constant curvature, for $n-1>q>1$ and $2 q \neq n$,
(iii) M^{n} is conformally flat, for $n-1>q>1$ and $2 q=n$.

The converse is also true.
Taking holomorphic $2 p$-planes instead of q-planes, an analogous result in Kählerian spaces is also known.

Theorem II. (S. Tachibana [2], S. Tanno [3]). In a Kählerian space $K^{2 m}(m \geqq 2)$, if the mean curvature for $2 p$-plane is independent of the holomorphic 2p-plane at each point, then
(i) $K^{2 m}$ is of constant holomorphic curvature, for $1<p<m-1$ and $2 p \neq m$,
(ii) the Bochner curvature tensor of $K^{2 m}$ vanishes identically, for $1<p<m-1$ and $2 p=m$.

The converse is also true.
The purpose of this paper is to prove an analogous theorem in

[^0]Kählerian space taking anti-holomorphic p-plane in place of holomorphic $2 p$-plane in the above theorem.

1. Preliminaries. Consider a Kählerian space $K^{2 m}$ of complex dimension $m(\geqq 2)$. Let \langle,$\rangle and J$ be the inner product and the almost complex structure, then it holds that

$$
\begin{equation*}
\langle X, Y\rangle=\langle J X, J Y\rangle, \quad J J X=-X, \quad \nabla J=0 \tag{1.1}
\end{equation*}
$$

where X and Y denote vector fields on $K^{2 m}$ (or tangent vectors at a point) and ∇ Levi-Civita connection. By R, R_{1}, and S we denote the Riemannian curvature tensor, the Ricci tensor and the scalar curvature respectively. Then they satisfy for any vectors X, Y and Z,

$$
\begin{align*}
& R(X, Y) Z=R(J X, J Y) Z \tag{1.2}\\
& R_{1}(X, Y)=R_{1}(J X, J Y) \tag{1.3}
\end{align*}
$$

For a J-base $\left\{e_{\lambda}, J e_{\lambda}=e_{\lambda^{*}}\right\}^{2)}$ and the sectional curvature $\rho\left(e_{\lambda}, e_{\mu}\right)=-$ $\left\langle R\left(e_{\lambda}, e_{\mu}\right) e_{\lambda}, e_{\mu}\right\rangle$, we have

$$
\begin{equation*}
\rho\left(e_{\lambda}, e_{\mu}\right)=\rho\left(e_{\lambda^{*}}, e_{\mu^{*}}\right), \quad \rho\left(e_{\lambda^{*}}, e_{\mu}\right)=\rho\left(e_{\lambda}, e_{\mu^{*}}\right) . \tag{1.4}
\end{equation*}
$$

If an orthonormal pair $\{X, Y\}$ at P satisfies

$$
\langle X, J Y\rangle=0
$$

then such a pair will be called an anti-holomorphic orthonormal pair. In [5] and [6], the following lemma has been proved.

Lemma 1.1. In a Kählerian space, the following three Propositions $A \sim C$ are equivalent to one another.
A.

$$
\rho(X, Y)=\rho(X, J Y)
$$

holds good for any anti-holomorphic orthonormal pair $\{X, Y\}$.
B.

$$
\rho(X, Y)=\frac{1}{8}\{H(X)+H(Y)\}
$$

holds good for any anti-holomorphic orthonormal pair $\{X, Y\}$, where $H(X)=\rho(X, J X)$, viz. the holomorphic sectional curvature for X.
C. The Bochner curvature tensor of $K^{2 m}$ vanishes.
2. The mean curvature for anti-holomorphic p-plane. Consider a p-plane π at a point P of a Kählerian space $K^{2 m}$. If we find p vectors X_{1}, \cdots, X_{p} such that X_{1}, \cdots, X_{p} span π and $J X_{1}, \cdots, J X_{p}$ are perpendicular to π, then π is called anti-holomorphic. If π is an anti-holomorphic p plane, then there exists a J-base $\left\{e_{\lambda}, e_{\lambda^{*}}\right\}$ of $T_{p}\left(K^{2 m}\right)$ such that e_{1}, \cdots, e_{p}

[^1]span π. Such a J-base will be called an adapted J-base for π. Hereafter π will always mean an anti-holomorphic p-plane.

The mean curvature $\rho(\pi)$ for π is

$$
\begin{equation*}
\rho(\pi)=\frac{1}{p(2 m-p)} \sum_{i=1}^{p}\left[\sum_{j=1}^{p} \rho\left(e_{i}, e_{j^{*}}\right)+\sum_{a=p_{+1}}^{m}\left\{\rho\left(e_{i}, e_{a}\right)+\rho\left(e_{i}, e_{a_{*}}\right)\right\}\right] \tag{2.1}
\end{equation*}
$$

Lemma 2.1. If $m \geqq p \geqq 2$ and if the mean curvature for p-plane is independent of the anti-holomorphic p-plane at P, then Proposition A in Lemma 1.1 holds good.

Proof. Consider an anti-holomorphic p-plane π at P and adapted J-base $\left\{e_{\lambda}, e_{\lambda^{*}}\right\}$ for π. Let π^{\prime} be the anti-holomorphic p-plane spanned by $e_{1}, e_{2}, \cdots, e_{p}$. Then the mean curvature $\rho\left(\pi^{\prime}\right)$ is given by

$$
\begin{align*}
\rho\left(\pi^{\prime}\right)= & \frac{1}{p(2 m-p)}\left[\sum_{j=2}^{p} \rho\left(e_{1^{*}}, e_{j^{*}}\right)+\rho\left(e_{1^{*}}, e_{1}\right)+\sum_{i=2}^{p} \rho\left(e_{i}, e_{1}\right)\right. \tag{2.2}\\
& \left.+\sum_{i=2}^{p} \sum_{j=2}^{p} \rho\left(e_{i}, e_{j^{*}}\right)+\sum_{a=p+1}^{m} \sum_{i=1}^{p}\left\{\rho\left(e_{i}, e_{a}\right)+\rho\left(e_{i}, e_{a^{*}}\right)\right\}\right] .
\end{align*}
$$

By the assumption we have $\rho(\pi)=\rho\left(\pi^{\prime}\right)$, and hence

$$
\begin{equation*}
\sum_{j=2}^{p} \rho\left(e_{1}, e_{j^{*}}\right)=\sum_{j=2}^{p} \rho\left(e_{1}, e_{j}\right) \tag{2.3}
\end{equation*}
$$

taking account of (1.4). Similarly we have

$$
\begin{equation*}
\rho\left(e_{2}, e_{1^{*}}\right)+\sum_{j=3}^{p} \rho\left(e_{2}, e_{j^{*}}\right)=\rho\left(e_{2}, e_{1}\right)+\sum_{j=3}^{p} \rho\left(e_{2}, e_{j}\right) \tag{2.4}
\end{equation*}
$$

In the case $p=2$, by (2.3) we have

$$
\begin{equation*}
\rho\left(e_{1}, e_{2^{*}}\right)=\rho\left(e_{1}, e_{2}\right) \tag{2.5}
\end{equation*}
$$

When $p \geqq 3$, we consider p-plane $\pi^{\prime \prime}$ which is spanned by $e_{1^{*}}, e_{2^{*}}, e_{3}, \cdots$, e_{p}. The similar process for $\pi^{\prime \prime}$ instead of π^{\prime} leads us to

$$
\begin{equation*}
\sum_{j=3}^{p} \rho\left(e_{1}, e_{j^{*}}\right)+\sum_{j=3}^{p} \rho\left(e_{2}, e_{j^{*}}\right)=\sum_{j=3}^{p} \rho\left(e_{1}, e_{j}\right)+\sum_{j=3}^{p} \rho\left(e_{2}, e_{j}\right) . \tag{2.6}
\end{equation*}
$$

Taking account of (2.3), (2.4) and (2.6), we see that

$$
\begin{equation*}
\rho\left(e_{1}, e_{2^{*}}\right)=\rho\left(e_{1}, e_{2}\right) \tag{2.7}
\end{equation*}
$$

Then (2.5) and (2.7) show that Proposition A holds good. q.e.d.

Lemma 2.2. If $m>p \geqq 2$, and if the mean curvature for p-plane is independent of the anti-holomorphic p-plane at each point, then $K^{2 m}$ is of constant holomorphic curvature.

Proof. By virtue of Lemma 2.1 and Lemma 1.1, it follows that

$$
\begin{equation*}
\rho\left(e_{\lambda}, e_{\mu}\right)=\rho\left(e_{\lambda}, e_{\mu^{*}}\right)=\frac{1}{8}\left\{H\left(e_{\lambda}\right)+H\left(e_{\mu}\right)\right\}, \quad \lambda \neq \mu . \tag{2.8}
\end{equation*}
$$

Hence

$$
\begin{align*}
\sum_{j=1}^{p} \sum_{i=1}^{p} \rho\left(e_{i}, e_{j^{*}}\right) & =\frac{p+3}{4} \sum_{i=1}^{p} H\left(e_{i}\right) \tag{2.9}\\
\sum_{i=1}^{p} \sum_{a=p+1}^{m}\left\{\rho\left(e_{i}, e_{a}\right)+\rho\left(e_{i}, e_{a^{*}}\right)\right\} & =\frac{m-2 p}{4} \sum_{i=1}^{p} H\left(e_{i}\right)+\frac{p}{4} \sum_{i=1}^{m} H\left(e_{\lambda}\right) . \tag{2.10}
\end{align*}
$$

By assumption $\rho(\pi)$ being independent of π, we put $\rho=\rho(\pi)$. Then substituting (2.9) and (2.10) into (2.1), we get

$$
\begin{equation*}
p(2 m-p) \rho=\frac{m-p+3}{4} \sum_{i=1}^{p} H\left(e_{i}\right)+\frac{p}{4} \sum_{\lambda=1}^{m} H\left(e_{\lambda}\right) . \tag{2.11}
\end{equation*}
$$

Taking account of $m>p$, we consider p-plane π^{\prime} which is spanned by $e_{2}, e_{3}, \cdots, e_{p+1}$. The similar process for π^{\prime} instead of π leads us to

$$
\begin{equation*}
p(2 m-p) \rho=\frac{m-p+3}{4} \sum_{i=2}^{p+1} H\left(e_{i}\right)+\frac{p}{4} \sum_{\lambda=1}^{m} H\left(e_{\lambda}\right) . \tag{2.12}
\end{equation*}
$$

By (2.11) and (2.12) we obtain,

$$
H\left(e_{1}\right)=H\left(e_{p_{+1}}\right) .
$$

Similarly it follows that

$$
\begin{equation*}
H\left(e_{1}\right)=H\left(e_{2}\right)=\cdots=H\left(e_{m}\right) \tag{2.13}
\end{equation*}
$$

For any unit vector X at a point P, there exists a J-base $\left\{e_{\lambda}, e_{\lambda^{*}}\right\}$ such that $X=e_{1}$. Then we get from (2.12) and (2.13)

$$
H(X)=\frac{4(2 m-p)}{2 m+3-p} \rho,
$$

which means that $H(X)$ is independent of X. q.e.d.
3. A theorem analogous to Theorem I and II. By virtue of Lemma 1.1, Lemma 2.1 and Lemma 2.2, we get the following theorem including the trivial case where $p=1$. Its converse part is obtained by straightforward calculation.

Theorem. In a Kählerian space $K^{2 m}(m \geqq 2)$, if the mean curvature for p-plane is independent of the anti-holomorphic p-plane at each point, then
(i) $K^{2 m}$ is an Einstein space, for $p=1$,
(ii) $K^{2 m}$ is of constant holomorphic curvature, for $m>p \geqq 2$,
(iii) The Bochner curvature tensor of $K^{2 m}$ vanishes identically, for $m=p \geqq 2$.

The converse is also true.
Remark. In the case (iii), we obtain by straight-forward calculation

$$
\rho(\pi)=-\frac{m+3}{4 m(m+1)} S
$$

Thus $\rho(\pi)$ is independent of the point P if and only if the scalar curvature S is constant.

Bibliography

[1] S. Tachibana, On the mean curvature for p-plane, J. Diff. Geometry, vol. 8, No. 1.
[2] S. Tachibana, On the mean curvature for holomorphic $2 p$-plane in Kählerian spaces, Tôhoku Math. J., vol. 25,No. 2 (1973), 157-165.
[3] S. Tanno, Mean curvature for holomorphic $2 p$-plane in Kählerian spaces, to appear.
[4] R. L. Bishop and S. I. Goldberg, Some implication of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc., 112 (1964), 508-535.
[5] N. Ogitsu and K. Iwasaki, On a characterization of the Bochner curvature tensor \equiv 0 , to appear.
[6] T. Kashiwada, Some characterizations of vanishing Bochner curvature tensor, to appear.
Department of Mathematics,
Ochanomizu University, Tokyo, Japan.

[^0]: ${ }^{1)}$ The number in brackets refers to Bibliography at the end of the paper.

[^1]: ${ }^{2)}$ As the notations we follow S . Tachibana [2]. $\lambda, \mu=1,2, \cdots, m$.

