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5. N{b) and Ω{h) of compact flat surface. As an application of the
formulae obtained in the §4, we shall study N[b) and Ω{h) of a compact
flat surface. Let M be a space of constant curvature, c Φ 0. By the
Gauss equation, we have K{2) — c and so K{2) is a positive constant and
c > 0. Since / ( 2 ) is a globally defined non-negative smooth function on
M, by (4.26)2, we have f{2) = constant and Aω = 0 on M. By 4N(2) =
Kfi) — /(2), N{t) is also constant on M. By K{2) > 0 on M and (3.11), we
have 1 t=ί p^x) ̂ 2 at any point of M. Since N{2) is constant, p^x) is
constant on Λf. Then the third fundamental forms are defined on a
neighborhood of any point of M, i.e., we have M— Ωω. If N{2) = 0,
equivalently, p^{x) = 1 on M, by Lemma 2, there is a 3-dimensional
totally geodesic submanifold of M such that Λf is contained in the sub-
manifold as a minimal surface. If N{2) Φ 0, then Ni2) is a positive constant
on M and ^(β) = 2 on ikΓ. As / ( 3 ) is globally defined on M, by (4.26)3,
we have / ( 3 ) = constant and Am = 0. Then we can prove K{z) — constant
by virtue of the following Lemma 4 and (4.27).

LEMMA 4. Let M be a minimal surface in M. Suppose that

(5.1) pa(x) = 2, O ^ α ' ^ 6 — 2 and p^x) = constant on Ω{b)

(5.2) Alh) = 0 on β(δ_1}

(5.3) jf(6) = constant on Ω(h^) .

(5.4) ΛΓ(Mff#.lfl - 0 o^ fl(l) .

PROOF. By (5.1), we have H£b) = 0 for a ^ 26 + 1. Then from (4.18)
and (5.2), we obtain

V° °; •"(26-1)-" (26-1),1 "Γ /l(26)ii(2δ),l ~ ^

Since iΓ(δ) = constant and (4.24), we get
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/K a\ £τ(6) TT(b) I fj(b) JJ{b) Λ
\ D ' Ό ) -Π-^b-Dll (26-1), 1 "I" -"(26) "(2&),1 ~ U

It follows from (5.5) and (5.6) that we have

V^'l) t " (26-1)-" (26) ~ iΊ(26-l) "(26)/-";5_1,l ~ U

By (4.21) and (5.7), we get (5.4). q.e.d.

From Lemma 4 and N{2) > 0 on M, we have

(5.8) ^ , 1 = 0 on M( = ΩW).

By (4.27)2 and (5.8), we can see

(5.9) JBΓ(3) = ——N{2) = positive constant .
Nω

It follows from the / { 3 ) 's constancy that Nw is also constant on M = Ω{2).
Continuing in this way, we can show the following lemma.

LEMMA 5. Let M be a compact oriented flat minimal surface in M.
If M = J2(8_D and K{h), N{b) are constant on M with N{h) > 0, for 2 ^ b ̂  s,
then we have M = Ω{8) and Ki8+ί), N(s+1) are also constant on M with
K{s+1) > 0.

PROOF. Since M = Ω{s.ι)f by (4.26)6, for 2 ̂  6 ̂  s, we have

(5.10) f{b) = c o n s t a n t a n d A { b ) = 0onM, 2<^b<^s.

The Nis) being a (positive) constant on ikf, we have M = Ω{8). It follows
that / ( 8 + 1 ) = constant and A{s+1) = 0 on M by (4.26)8+1. Then by (4.27).,
(5.10) and Lemma 4, we get

(5.11) Kla+1) = -f^!LJNΓ(8)(>0 on M) .

Since iΓ(8+1) and / ( 8 + D are constant, iSΓ(8+1) is also constant on M. q.e.d.

Since dim. T{

x

h) ^ N, the Lemma 5 says that there exist some integer
q such that K{q) > 0 o n l but N{q) = 0 on M. Thus by the Lemma 2
we have

THEOREM 2. Let M be an N-dimensional Riemannian manifold
of constant curvature c Φ 0 and x: M —> M be an isometric minimal
immersion of a compact connected oriented Riemannian 2-manifold into
M and x(M) is not contained in any totally geodesic submanifold of
M. If the Gaussian curvature of M is identically zero, then M = Ω{h),
6 = 1 , - —, q — 1, c > 0 and N is an odd integer ( = 2q — 1).

6. Frenet-Borύvka's formula of a flat minimal surface. In this
section we study the rigidity problem for a class of flat minimal surfaces.
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From a result of §5, we have f{b) = constant for 2 <L b ^ q and f{q) > 0

on M. Let m be a first integer such that / ( m + 1 ) > 0 on M and f{b) = 0

for b ^ m (^g — 1). In general it is probably iV(m+1) ¥=0, but we have

interested in surfaces with i\Γ(m+1) = 0 on M. Since f{b) = 0 on ikf, for

2 5Ξ b ^ m, we have

(6.1) Σ * ^ i . ! = Σ« Λϊ1...i»( = -|ίΓ(6)) > 0 and Σ« *αi..Λi...u - 0 .

Let

- 1 "
(6.2) ~ _ Σ fci-ue. .

26 "
Eb = e26_! + ie2b, 2 ^ b ^ m .

Then for the above vector fields we have

It follows from (3.15)δ that we have (cf. [7])

(6.4) DEb = -Jc^φE^ - iw2b_h2bEb + khφEb+1, 1 ^ b ^ m - 1 ,

where

(6.5) &A kb_t = i / Σ ASi^i and £Ό = 0, Eι = e, + ίβ2 .

By v i r tue of the Gauss equation, iΓ(2) = c, and (6.3), we have k\ = c/2.

Since ίΓ(

2

δ) = 4JV(6), 2 ^ δ ^ m, are positive constant on M, by (6.3) and

(5.11), we have K{b)K{b_2) = Kfb-1)f and so k\ = k\ — = A4-i = c/2. As

kb > 0, we get

(6.6) fc, = • = &m_x f

Since we supposed N{m+1) = 0 on M, we may assume N = 2m + 1, where

iV is the dimension of the ambiant space. Then we can put

(6.7) DEm - -km_γφEm.x - iw2m_U2mEm + Φim) ,

where wim-Uaf cc ^ 2m, are the differential forms for frames constructed

in (6.2) and Φ{m) = (w2m_1>2m+1 + iw2m,2m+1)e2m+1. By (3.15)m + 1, (6.3) and (6.5),

we can set

where kjc2 ••• km-Jcm = JffjSίίί)- Note t h a t ^ , •••, fcm_! are real constant
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but km is a complex valued function. From these results, Lemma 4 and
(4.27)m, we obtain

(6.8) kjem = 2A4-i = c .

The vector Eι = eι + ie2 is defined up to the transformation Ei— -El —
eiτElf where τ is real. Under such a change, we have, by (6.2) and
(3.17),

(6.9) φ° = eiτφ ,

I7T0 βbiτJP

and klf •••, fcm_! are invariants,

(6.10) kl = e{m+1)iτkm .

Therefore we may assume km = V~c . By (4.11)6, we have wib-ltih = bw12,
2 ^ 6 ^ m, and, by (4.11)w+1,

(6.11) w12 = 0 .

Thus the Frenet-Borύvka's formula for the surface is as follows:

DEb = -xJ^φE^

(6.12)

DEm = -<J±φEm^ + V c φEm+1 ,
Li

DEm+1 - -^-φEm - ^φEm ,

where Em+ί = e2m+ι. It follows that the minimal surface in consideration
is locally uniquely determined up to isometries of M, if M is connected
and simply connected, M connected. On the other hand, by (4.27)m+1,
N{m+ι) = 0 on M is equivalent to H^ι) = 0 on M. We summarize our
results in the following theorem.

THEOREM 3. Under the same assumption as in Theorem 2, if K =
0, there is a first integer m such that fib) = 0 on M, for b ^ m and /(W + 1 ) >
0 on M. If H{™kl) = 0 on M, then the Frenet-Boruvka's formula is
given by (6.12). Furthermore, if M is connected and simply connected
then such a surface is uniquely determined up to isometries of M.

7. Generalized Clifford surface on S2m+1. Let us consider the special
case of an isometric minimal immersion x:M—>SN(1) of the flat surface
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with f{b) = 0 on M, for 6 <̂  m and Nim+1) = 0. Theorem 2 and Theorem
3 have the consequence that the surface must lie on an odd dimensional
great sphere S2m+1(l) c SN(ΐ). Thus we may assume N = 2m + 1. If eA

is an orthonormal frame of tangent vectors to S2m+1(l) such that et is
tangent to M at xeM, then {x, eA} is an orthonormal frame in R2m+2,
satisfying (x, x) = 1, (x, eA) = 0 and (eA, eB) = δAB, where the scalar product
is defined for vectors in R2m+2. From these formulae, we have dEγ =
DE, - φx and dEb = DEb, b > 1. By (6.12) we have

dx = λφE, + ±-φE, ,
Δ Δ

dEλ = -φx + -^L φE2,

(7.1) dEa - -

dEm - - - ^ ^ ^ ^ + φEm+1 ,

We put

(7.2) X = (Xa, Xa*) e C2m+\ x = (xa, xa*) e R2m+2 ,

where Xa — xa + ixa*, Xa* = %a — i%a*, a = 1, , m + 1, α* = a + m + 1.
Since the (local) vector field eA will be considered as a i22m+2-valued func-
tion, i£α is the C2m+2-valued function. We can put

(7.3) Ea - {Eaω, , Ea{m+ί), EaW, , S.((lll+1,.,) e C 2 w + 2 .

Using (7.3), we define a complex vector FAeC2m+2 as follows:

(7.4) FA — (FΛ(1), , î cm+D, FA{1*)f , i^i((m+i)*)) e C2m+2 ,

where 1 ̂  A ^ 2m + 2,

. _. -^0(6) = •E'αίδ) + iEalb*), Fa(b*) = ^ α ( 5 ) — iEa{b*) ,

v ' # O / 777 cϊ 7J7 ΓJ
•F a*{b) — r ( m + 2 - α ) ( δ * ) , •? a*(b*) — ^ ( m + 2 - α ) ( δ ) >

and .P(W+2-α)(δ*) is the δ*-th component of the vector Fm+2_a.
Note that Fa{b) Φ Fa{b*)f l<,a<,m, since Ea{b) Φ Ealb*)f but F m + 1 ( 6 ) = Fm+ίlb*)
and F w + 1 = Fm+2.

By (6.11) we may take local coordinates z = x + iy such that ds2 =
dec2 + ώ?/2 = ώzeβ. Then the system of differential equations (7.1) turns
as follows:
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dX = ±φFx +

dFa = -Λ=φFa^ + -^φFa+ι, a = 2, . ., m - 1 ,

= - - ^ F ^ + φFm+1 ,

(7.6)

H = — — ^ F m — —φFm+3,

dFm+3 = -J=

dFm+P = ~—^φFm+P+ι + -^φFm+p_u p = 4, . , m + 1 ,

dF2m+2 = — 0-X" + /-FΓφF2mjrl .

Since ^ = dz, we see immediately that

dX = ± F dX _
dz 2

ψ- = —h-F.-* ' ψ- = 4 ^ α = 2, ..., m - 1 ,
3« V2 3z 1/2

dFm+ι _

dz 2

dz

Fm,

Fm+P^

t

(

(

. V =

dz

dz

2

V-2

V~2

• ,m -\

2 '

1
T/2

- 2 ,

Let e6, 6 = 1, 2, , m + 1, be roots of an equation εm+1 = V — 1, if m is
an even integer and let ε be a non trivial root of an equation e2m+2 = 1
and we set ε6 = εδ if m is an odd integer. The solution of (7.7) is given
by
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X = 1 exp —{εbz - e l } 6 = 1 m + 1

, . FM) = ( - iyV~2(ϊhyXh, a = 1, ., m ,

^ / E7 = F = ί l ) m + 1 ί ε )m+1JSΓ

_ J(-l) m + 1 (ε" 6 ) m i^ α ( 6 ) , if α is e v e n ;
aHh) " ((-l)m(έ δ)mFα ( 6 ) , if α(^2) is odd .

Note that F2m+2{b) = V~2ebXb. We call the above surface on S2m+1(l) the
generalized Clifford surface of index m which is the image of a minimal
immersion of the Euclidean plane into S2m+1(l). We give the explicit
representation of (7.8).

THEOREM 4. The generalized Clifford surface of index m on S2m+1(l)
is given by (Xl9 X2, , Xm+1) e Cm+1, where

(7.9) Xγ = -JL-e» , X, =
Vm + 1 Vm + 1

1 Λ ί ( ( α δ / α 2 ) r — ( α δ — l/α2)0) h Q A n™ i 1

V m + 1

sin ^ ~—̂ -7Γ , if m is even ,
m + 1 6 - 1 , 2 , . . . , m + 1 ,

vsin -i—^— -̂7Γ , if m is odd .
m + 1

PROOF. (1) If m is even, we have

f π + isin2(m + 1) 2(m + 1)

Then we get

(7.10) VWTΊXb - exp \iVT(x sin ( 4 6 ~ 3 ) π + y cos ( 4 6 ~ 3)
i \ 2(m + 1) 2(m + 1)

(II) When m is odd, we set ε = cos π/(m + 1) + i sin π/(m + 1). Then we
have

(7.11) VΈT~ΪXb = exp \iV^(x sin bπ + y cos hπ )\ .
i \ m + 1 m + l / i

(7.9) follows from (7.10), (7.11) and

(VΊϊίxsm π + y cos rt/ ^ ^ ) , if m is even ,
_ j V 2(ra + 1) 2(ra + 1) /

\l/2(xsin—^—-+?/cos—^—) , if m is odd ,
V m + 1 m + 1 /
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VY(xsin 5 7 Γ ^x + y cos t

 5π } , if m is even ,
V 2(m + 1 ) 2(m + 1) /

r =

m + 1 m + 1

Let m — 1. Then we have

+ 2/ c o s — ^ - T ) , if m is odd. q.e.d.
m + 1 /

This is the classical Clifford minimal surface on S3 which is also the
minimal immersion of a flat torus.

Let m — 2. Then we have

(Xlf X2, X3) = ^ ( β " , β<% β-'^>) e C 3 .

This is the generalized Clifford surface on S5(l). Although the above
two mappings induce minimal immersions of a flat torus into the sphere,
we can not expect the same results for m ̂  3. For instance, the gen-
eralized Clifford surface with index 3:

(Xlf , X,) = i-(β", eiτ, ei{VTr~β), e^-'τθ)) e C4

does not induce a minimal immersion of a flat torus. (We shall remark
that a statement of §7 in the Introduction of this paper is incomplete.)

T. Otsuki ([15], p. 119) gives a different representation of the solution
of (7.6).

8. /(δ) and Ω(h) of compact surfaces with K ^ 0 and K ^ 0. In
this section, we assume that M is compact, oriented, connected minimal
surface on SN(Ϊ) c RN+1 with

(8.1) ί ^ O and ί ΐ O .

Then we claim that

(8.2)6 f{b) = A[h) = 0 on β(6_,, , for each possible b .

The (8.2)6 follows from a Chern's discussion in [7], but there is a gap
in his paper, especially p. 36 in [7]. Therefore we shall give a proof of
(8.2)δ. We need the following results.

LEMMA 6. ([13]). Let x: M-+SN(l)aRN+1 be an isometric minimal
immersion and (u, v) are local isothermal coordinates for M, then x(u, v)
is real analytic.
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LEMMA 7. ([7], [18]). Let wa(z) be complex-valued functions which
satisfy the differential system

(8.3) 2p. = Σ>
z

in a neighborhood of z = o, where aaβ are complex valued C'-functions.
Suppose the wa do not all vanish identically in a neighborhood of z = 0:
(1) Let wa — oQzl1"1) at z = 0, r ^ 1. Then Iim2_+O wa{z)z~r exists.
( 2 ) Suppose wa = o{\z\r~ι), all r. Then wa = 0 in a neighborhood of z = 0.

Since / ( 2 ) is a globally defined non-negative smooth function on M,
by (4.26)2 and (8.1), we have (8.2)2. If K{2) Φ 0 on M, then we have
JV(2) = l/4ϋΓ(

2

2) is not identically zero on M and

(8.4) Ω{2) = {xeM: Nω Φθ at x} .

Let yeM — Ωi2). Since yeΩω, we have iΓ(

2

2) = 4iV<2) at T/. AS yέΩ{2),
by (8.4), we have J5Γ(2) = 0 at y. By (2.13) and Lemma 7, we can show
that the set M — Ω{2) must be at most finite (cf. [7], [8]). Let z be an
isothermal coordinate on a neighborhood U of y in M such that z = 0
corresponds to 7/ and ^ = Xdz on ί7. We define a complex valued function
-4(8) on an open set VaU as follows:

( Σ W ) 2 on F - { 0 } ,
(8.5) Λw = ^

( 0 on {0},

where N{2) Φ 0 on V — {o}. We prove that Λ(3) is a holomorphic function
on F, and thus / ( 3 ) = λ~12yί(3)y4(3) is a smooth function on V, since λ ^ O on
F: By (2.15) with φ = Xdz and (4.17), λ Σ ^ ί f l f ) ' is holomorphic on
F—{0}, (cf. [7], p. 36). If we can show that Λ{z)(z) is a continuous

function on V, then, by the Rado's theorem ([14], p. 53), Λ[9)(z) is holo-
morphic on V.

The continuity of Λ{9)(z): Let {zn} c F — {0} be a sequence such that
zn-+0 (n—*°o). Since x(u, v) is real analytic by Lemma 6, we can see
that hλίhi2's are also real analytic. In Lemma 7, if wa(z), 1 ^ a £ p, are
real analytic, we can write wa(z) = 2ww«(2), where î ά(̂ ) are also real
analytic and for some a, w'a(Q) Φ 0. It follows that the function defined by

is meaningful at z = 0 and smooth at z = 0. Therefore by the above
observation and (4.11)2, the (local) vector field E2 is smooth on a neigh-
borhood of z = 0. At the neighborhood of z = 0, we have obtained a
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smooth decomposition {eh, eh, eλ2}. By virtue of these vector fields, whχ2

and wH defined on 42(2) tend to bounded forms at z = 0. Therefore by
(3.6), we have Λ{z)(z) —*0 (n—>oo). That is, Λ{3)(z) is a continuous function
on V. Since λ E£ 0, / ( 3 ) is smooth on M. As M is compact, / ( 3 ) attains
a maximum at p0 e Λf. If /(3)(Po) = 0, then / ( 3 ) is identically zero and
thus we have (8.2)3. If f{3)(p0) > 0, we have j)0efl(2) and / ( 3 ) attains the
maximum at p0. Since / ( 3 ) is subharmonic on 42(2), by the maximum
principle, / ( 3 ) = constant, f{i)K = 0 and A<8) = 0 on β (2), and so / ( 3 ) = 0 on
fl(2) by (8.1). Continuing in this way, we can define a smooth decomposition
{eλo, eXl, , β;6_J of a (local) frame field eA at any point of M. Therefore,
for the possible b, if we define / ( 6 ) as follows:

7 i / ( δ ) o n Ω{b~1)

/(ft) = i

(0 on Λ f - β ^ , ,
then /(6) is a smooth function on M and we have (8.2)6. Summarizing
up these results, we get

PROPOSITION. Let x: M~* SN(Ϊ) a RN+1 be an isometric minimal im-
mersion of a compact oriented 2-Riemannian manifold with K ^ 0 and
K & 0. Then we have
(1) f{b) = 0 on flu-!,;
(2) Λί — β(6_D are at most finite, for the possible b.

Appendix

9. An extrinsic rigidity theorem. Let x: M—>Sn+p(ΐ) be an isometric
minimal immersion of a compact oriented Riemannian %-manifold Mn into
Sn+P(l). As an extrinsic rigidity theorem of x, the following DeGiorgi-
Simons-Reilly's Theorem is known: Let N be the smooth field of oriented
unit normal p-planes of Mn in Sn+P(ϊ) and let An+1, An+2, •••, An+P be an
orthonormal set of vectors in Rn+p+ί. We put A = An+1 Λ An+2 Λ Λ
An+P and U = (N, A), where (iV, A) means the standard inner product of
N and A in exterior algebra. If U > V(2p - 2)/(3p - 2), a is totally
geodesic. In particular if U > τ/2/3, x is so.

S. S. Chern conjectured [6] that if there exists a constant decom-
posable p-vector A = An+1 A An+2 Λ Λ An+P such that (N, A) > 0, M
is totally geodesic.

In the case when n = 2 and p > 2, we can answer affirmatively to
the conjecture of a little generalized form as follows:

THEOREM 5. Let x be an isometric minimal immersion of a compact
oriented Riemannian 2-manifold into SN(Ϊ). If U > i/l/2, x is totally
geodesic.
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PROOF. Reilly's integral formula [16] is, in this case,

ί {-K(2)U+Q}dM=0 ,

where

Q — Σ Σ Σ (hccikhβjk — hajkhβik)haβij
i<j,a<β,k

and

haβts = (β»+i Λ Λ βα_i Λ e, Λ ea+1 Λ Λ β ^

Λ e, Λ eβ+1 Λ Λ ew+P, A) .

The Cauchy-Schwartz inequality implies that

Q2 ^ I Σ Σ ( Σ (Kikhβjk - hajkhβik))2\jΣ Σ A

^ 4iSΓ(2)(l - U2) ,

because of (3.23) and [16, p . 493], i.e.,

Q £ 2 VNω(l - U>) £ KωV(l - U>) ,

because of / ( 2 ) ̂  0. Thus if U > Vϊβ we have

- JBΓ(1, C7 + Q ̂  -

This implies that K{2) = 0 on Λf, i.e., a? is totally geodesic.

ADDED IN PROOF (May, 1973): (1) The inequality /(a, ̂  0 was used
firstly in [11], but the local version of the main theorem in [11] has been
proved by Y. C. Wong ([17], Th. 4.9).

(2) We wish to acknowledge that a closely related treatment was
announced by T. Itoh in Tokyo, April, 1973, based on the work of T.
Otsuki.
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