ON COMPACT MINIMAL SURFACES WITH NON-NEGATIVE GAUSSIAN CURVATURE IN A SPACE OF CONSTANT CURVATURE: II

KATSUEI KENMOTSU

(Received June 30, 1973)

(Part 1 appeared in the preceding issue of this Journal, Vol. 25)

5. $N_{(b)}$ and $\Omega_{(b)}$ of compact flat surface. As an application of the formulae obtained in the §4, we shall study $N_{(b)}$ and $\Omega_{(b)}$ of a compact flat surface. Let \overline{M} be a space of constant curvature, $c \neq 0$. By the Gauss equation, we have $K_{(2)} = c$ and so $K_{(2)}$ is a positive constant and c > 0. Since $f_{(2)}$ is a globally defined non-negative smooth function on M, by (4.26)₂, we have $f_{(2)} = \text{constant}$ and $A_{(2)} = 0$ on M. By $4N_{(2)} =$ $K_{(2)}^2 - f_{(2)}, N_{(2)}$ is also constant on *M*. By $K_{(2)} > 0$ on *M* and (3.11), we have $1 \leq p_1(x) \leq 2$ at any point of *M*. Since $N_{(2)}$ is constant, $p_1(x)$ is constant on M. Then the third fundamental forms are defined on a neighborhood of any point of M, i.e., we have $M = \Omega_{(2)}$. If $N_{(2)} = 0$, equivalently, $p_1(x) = 1$ on *M*, by Lemma 2, there is a 3-dimensional totally geodesic submanifold of \overline{M} such that M is contained in the submanifold as a minimal surface. If $N_{(2)} \neq 0$, then $N_{(2)}$ is a positive constant on M and $p_1(x) = 2$ on M. As $f_{(3)}$ is globally defined on M, by $(4.26)_3$, we have $f_{(3)} = \text{constant}$ and $A_{(3)} = 0$. Then we can prove $K_{(3)} = \text{constant}$ by virtue of the following Lemma 4 and (4.27).

LEMMA 4. Let M be a minimal surface in \overline{M} . Suppose that

(5.1)
$$p_a(x) = 2, \ 0 \leq a \leq b - 2 \ and \ p_{b-1}(x) = constant \ on \ \Omega_{(b)}$$
;

(5.2)
$$\overline{A}_{(b)} = 0 \ on \ \Omega_{(b-1)};$$

(5.3)
$$K_{(b)} = constant \ on \ \mathcal{Q}_{(b-1)} \ .$$

Then we have

(5.4)
$$N_{(b)}H_{\lambda_{b-1},1}^{(b)} = 0 \ on \ \Omega_{(b)}$$
.

PROOF. By (5.1), we have $H_{\alpha}^{(b)} = 0$ for $\alpha \ge 2b + 1$. Then from (4.18) and (5.2), we obtain

Since $K_{(b)} = \text{constant}$ and (4.24), we get

q.e.d.

(5.6)
$$\bar{H}_{(2b-1)}^{(b)}H_{(2b-1),1}^{(b)} + \bar{H}_{(2b)}^{(b)}H_{(2b),1}^{(b)} = 0$$
.

It follows from (5.5) and (5.6) that we have

$$(5.7) \qquad \qquad \{H^{(b)}_{(2b-1)}\bar{H}^{(b)}_{(2b)} - \bar{H}^{(b)}_{(2b-1)}H^{(b)}_{(2b)}\}H^{(b)}_{\lambda_{b-1},1} = 0$$

By (4.21) and (5.7), we get (5.4).

From Lemma 4 and $N_{\scriptscriptstyle(2)}>0$ on M, we have

(5.8) $H_{\lambda_1,1}^{(2)} = 0$ on $M(=\Omega_{(2)})$.

By $(4.27)_2$ and (5.8), we can see

(5.9)
$$K_{\scriptscriptstyle (3)} = \frac{K_{\scriptscriptstyle (1)}}{N_{\scriptscriptstyle (1)}} N_{\scriptscriptstyle (2)} = \text{positive constant} \; .$$

It follows from the $f_{\scriptscriptstyle (3)}$'s constancy that $N_{\scriptscriptstyle (3)}$ is also constant on $M = \Omega_{\scriptscriptstyle (2)}$. Continuing in this way, we can show the following lemma.

LEMMA 5. Let M be a compact oriented flat minimal surface in M. If $M = \Omega_{(s-1)}$ and $K_{(b)}$, $N_{(b)}$ are constant on M with $N_{(b)} > 0$, for $2 \leq b \leq s$, then we have $M = \Omega_{(s)}$ and $K_{(s+1)}$, $N_{(s+1)}$ are also constant on M with $K_{(s+1)} > 0$.

PROOF. Since $M = \Omega_{(s-1)}$, by (4.26), for $2 \leq b \leq s$, we have

(5.10)
$$f_{(b)} = \text{constant and } A_{(b)} = 0 \text{ on } M, 2 \leq b \leq s.$$

The $N_{(s)}$ being a (positive) constant on M, we have $M = \Omega_{(s)}$. It follows that $f_{(s+1)} = \text{constant}$ and $A_{(s+1)} = 0$ on M by $(4.26)_{s+1}$. Then by $(4.27)_s$, (5.10) and Lemma 4, we get

(5.11)
$$K_{(s+1)} = \frac{K_{(s-1)}}{N_{(s-1)}} N_{(s)} (>0 \text{ on } M) .$$

Since $K_{(s+1)}$ and $f_{(s+1)}$ are constant, $N_{(s+1)}$ is also constant on M. q.e.d. Since dim. $T_x^{(b)} \leq N$, the Lemma 5 says that there exist some integer q such that $K_{(q)} > 0$ on M but $N_{(q)} = 0$ on M. Thus by the Lemma 2 we have

THEOREM 2. Let \overline{M} be an N-dimensional Riemannian manifold of constant curvature $c \neq 0$ and $x: M \to \overline{M}$ be an isometric minimal immersion of a compact connected oriented Riemannian 2-manifold into \overline{M} and x(M) is not contained in any totally geodesic submanifold of \overline{M} . If the Gaussian curvature of M is identically zero, then $M = \Omega_{(b)}$, $b = 1, \dots, q - 1, c > 0$ and N is an odd integer (=2q - 1).

6. Frenet-Borůvka's formula of a flat minimal surface. In this section we study the rigidity problem for a class of flat minimal surfaces.

From a result of §5, we have $f_{(b)} = \text{constant}$ for $2 \leq b \leq q$ and $f_{(q)} > 0$ on M. Let m be a first integer such that $f_{(m+1)} > 0$ on M and $f_{(b)} = 0$ for $b \leq m$ ($\leq q - 1$). In general it is probably $N_{(m+1)} \neq 0$, but we have interested in surfaces with $N_{(m+1)} = 0$ on M. Since $f_{(b)} = 0$ on M, for $2 \leq b \leq m$, we have

(6.1)
$$\sum_{\alpha} h_{\alpha_1 \dots 1}^2 = \sum_{\alpha} h_{\alpha_1 \dots 12}^2 \left(= \frac{1}{2} K_{(b)} \right) > 0 \text{ and } \sum_{\alpha} h_{\alpha_1 \dots 1} h_{\alpha_1 \dots 12} = 0.$$

Let

(6.2)

$$\widetilde{e}_{2b-1} = \frac{\sum h_{\alpha 1...1} e_{\alpha}}{\sqrt{\sum h_{\alpha 1...1}^2}};$$
 $\widetilde{e}_{2b} = \frac{\sum h_{\alpha 1...12} e_{\alpha}}{\sqrt{\sum h_{\alpha 1...12}^2}};$
 $E_b = \widetilde{e}_{2b-1} + i \widetilde{e}_{2b}, 2 \leq b \leq m.$

Then for the above vector fields we have

(6.3)
$$H_{(2b-1)}^{(b)} = -iH_{(2b)}^{(b)} = \sqrt{\sum h_{\alpha_1\cdots_1}^2}.$$

It follows from $(3.15)_b$ that we have (cf. [7])

$$(6.4) \qquad DE_b=-k_{b-1}\phi E_{b-1}-iw_{2b-1,2b}E_b+k_b\bar{\phi}E_{b+1},\, 1\leq b\leq m-1\;,$$
 where

(6.5)
$$k_1 k_2 \cdots k_{b-1} = \sqrt{\sum h_{\alpha_1 \cdots 1}^2}$$
 and $E_0 = 0, E_1 = e_1 + ie_2$.

By virtue of the Gauss equation, $K_{(2)} = c$, and (6.3), we have $k_1^2 = c/2$. Since $K_{(b)}^2 = 4N_{(b)}$, $2 \leq b \leq m$, are positive constant on M, by (6.3) and (5.11), we have $K_{(b)}K_{(b-2)} = K_{(b-1)}^2$, and so $k_1^2 = k_2^2 = \cdots = k_{m-1}^2 = c/2$. As $k_b > 0$, we get

(6.6)
$$k_1 = \cdots = k_{m-1} = \sqrt{\frac{c}{2}}$$
.

Since we supposed $N_{(m+1)} = 0$ on M, we may assume N = 2m + 1, where N is the dimension of the ambiant space. Then we can put

$$(6.7) DE_m = -k_{m-1}\phi E_{m-1} - iw_{2m-1,2m}E_m + \Phi_{(m)},$$

where $w_{2m-1,\alpha}$, $\alpha \ge 2m$, are the differential forms for frames constructed in (6.2) and $\Phi_{(m)} = (w_{2m-1,2m+1} + iw_{2m,2m+1})e_{2m+1}$. By $(3.15)_{m+1}$, (6.3) and (6.5), we can set

$$w_{{}_{2m-1}\!\!\!\!,\;\;2m+1}+iw_{{}_{2m,2m+1}}=k_{{}_{m}}ar{\phi}$$
 ,

where $k_1k_2 \cdots k_{m-1}k_m = H^{(m+1)}_{(2m+1)}$. Note that k_1, \cdots, k_{m-1} are real constant

but k_m is a complex valued function. From these results, Lemma 4 and $(4.27)_m$, we obtain

$$(6.8) k_m \overline{k}_m = 2k_{m-1}^2 = c .$$

The vector $E_1 = e_1 + ie_2$ is defined up to the transformation $E_1 \rightarrow E_1^0 = e^{i\tau}E_1$, where τ is real. Under such a change, we have, by (6.2) and (3.17),

$$(6.9) \qquad \qquad \phi^{\scriptscriptstyle 0} = e^{i\tau}\phi \,\,, \\ E^{\scriptscriptstyle 0}_{\,\,b} = e^{b\,i\tau}E_{\,b} \,\,,$$

and k_1, \dots, k_{m-1} are invariants,

$$(6.10) k_m^0 = e^{(m+1)i\tau} k_m .$$

Therefore we may assume $k_m = \sqrt{c}$. By $(4.11)_b$, we have $w_{2b-1,2b} = bw_{12}$, $2 \leq b \leq m$, and, by $(4.11)_{m+1}$,

$$(6.11) w_{12} = 0.$$

Thus the Frenet-Borůvka's formula for the surface is as follows:

$$DE_{1} = \sqrt{\frac{c}{2}} \bar{\phi} E_{2} ,$$
(6.12)

$$DE_{b} = -\sqrt{\frac{c}{2}} \phi E_{b-1} + \sqrt{\frac{c}{2}} \bar{\phi} E_{b+1}, b = 2, \dots, m-1 ,$$

$$DE_{m} = -\sqrt{\frac{c}{2}} \phi E_{m-1} + \sqrt{\frac{c}{2}} \bar{\phi} E_{m+1} ,$$

$$DE_{m+1} = -\frac{\sqrt{\frac{c}{2}}}{2} \phi E_{m} - \frac{\sqrt{\frac{c}{2}}}{2} \bar{\phi} E_{m} ,$$

where $E_{m+1} = e_{2m+1}$. It follows that the minimal surface in consideration is locally uniquely determined up to isometries of \overline{M} , if \overline{M} is connected and simply connected, M connected. On the other hand, by $(4.27)_{m+1}$, $N_{(m+1)} = 0$ on M is equivalent to $H_{\alpha,k}^{(m+1)} = 0$ on M. We summarize our results in the following theorem.

THEOREM 3. Under the same assumption as in Theorem 2, if $K \equiv 0$, there is a first integer m such that $f_{(b)} = 0$ on M, for $b \leq m$ and $f_{(m+1)} > 0$ on M. If $H_{\alpha,k}^{(m+1)} = 0$ on M, then the Frenet-Borůvka's formula is given by (6.12). Furthermore, if \overline{M} is connected and simply connected then such a surface is uniquely determined up to isometries of \overline{M} .

7. Generalized Clifford surface on S^{2m+1} . Let us consider the special case of an isometric minimal immersion $x: M \to S^{N}(1)$ of the flat surface

with $f_{(b)} = 0$ on M, for $b \leq m$ and $N_{(m+1)} = 0$. Theorem 2 and Theorem 3 have the consequence that the surface must lie on an odd dimensional great sphere $S^{2m+1}(1) \subset S^N(1)$. Thus we may assume N = 2m + 1. If e_A is an orthonormal frame of tangent vectors to $S^{2m+1}(1)$ such that e_i is tangent to M at $x \in M$, then $\{x, e_A\}$ is an orthonormal frame in R^{2m+2} , satisfying (x, x) = 1, $(x, e_A) = 0$ and $(e_A, e_B) = \delta_{AB}$, where the scalar product is defined for vectors in R^{2m+2} . From these formulae, we have $dE_1 = DE_1 - \phi x$ and $dE_b = DE_b$, b > 1. By (6.12) we have

$$dx = \frac{1}{2}\bar{\phi}E_{1} + \frac{1}{2}\phi\bar{E}_{1},$$

$$dE_{1} = -\phi x + \frac{1}{\sqrt{2}}\bar{\phi}E_{2},$$
(7.1)
$$dE_{a} = -\frac{1}{\sqrt{2}}\phi E_{a-1} + \frac{1}{\sqrt{2}}\bar{\phi}E_{a+1}, a = 2, \dots, m-1,$$

$$dE_{m} = -\frac{1}{\sqrt{2}}\phi E_{m-1} + \bar{\phi}E_{m+1},$$

$$dE_{m+1} = -\frac{1}{2}\phi E_{m} - \frac{1}{2}\overline{\phi}\overline{E}_{m}.$$

We put

$$(7.2) X = (X_a, X_{a^*}) \in C^{2m+2}, x = (x_a, x_{a^*}) \in R^{2m+2},$$

where $X_a = x_a + ix_{a^*}$, $X_{a^*} = x_a - ix_{a^*}$, $a = 1, \dots, m+1$, $a^* = a + m + 1$. Since the (local) vector field e_A will be considered as a R^{2m+2} -valued function, E_a is the C^{2m+2} -valued function. We can put

$$(7.3) E_a = (E_{a(1)}, \cdots, E_{a(m+1)}, E_{a(1^*)}, \cdots, E_{a((m+1)^*)}) \in C^{2m+2}.$$

Using (7.3), we define a complex vector $F_A \in C^{2m+2}$ as follows:

$$(7.4) F_{A} = (F_{A(1)}, \cdots, F_{A(m+1)}, F_{A(1^{*})}, \cdots, F_{A((m+1)^{*})}) \in C^{2m+2},$$

where $1 \leq A \leq 2m + 2$,

(7.5)
$$\begin{aligned} F_{a(b)} &= E_{a(b)} + iE_{a(b^*)}, \ F_{a(b^*)} &= E_{a(b)} - iE_{a(b^*)}, \\ F_{a^*(b)} &= \bar{F}_{(m+2-a)(b^*)}, \ F_{a^*(b^*)} &= \bar{F}_{(m+2-a)(b)}, \end{aligned}$$

and $\overline{F}_{(m+2-a)(b^*)}$ is the b^* -th component of the vector \overline{F}_{m+2-a} . Note that $\overline{F}_{a(b)} \neq F_{a(b^*)}$, $1 \leq a \leq m$, since $\overline{E}_{a(b)} \neq E_{a(b^*)}$, but $\overline{F}_{m+1(b)} = F_{m+1(b^*)}$ and $F_{m+1} = F_{m+2}$.

By (6.11) we may take local coordinates z = x + iy such that $ds^2 = dx^2 + dy^2 = dzd\bar{z}$. Then the system of differential equations (7.1) turns as follows:

$$dX = \frac{1}{2}\bar{\phi}F_{1} + \frac{1}{2}\phi F_{2m+2},$$

$$dF_{1} = -\phi X + \frac{1}{\sqrt{2}}\bar{\phi}F_{2},$$

$$dF_{a} = -\frac{1}{\sqrt{2}}\phi F_{a-1} + \frac{1}{\sqrt{2}}\bar{\phi}F_{a+1}, a = 2, \dots, m-1,$$

$$dF_{m} = -\frac{1}{\sqrt{2}}\phi F_{m-1} + \bar{\phi}F_{m+1},$$
(7.6)
$$dF_{m+1} = -\frac{1}{2}\phi F_{m} - \frac{1}{2}\bar{\phi}F_{m+3},$$

$$dF_{m+3} = -\frac{1}{\sqrt{2}}\bar{\phi}F_{m+4} + \phi F_{m+2},$$

$$dF_{m+p} = -\frac{1}{\sqrt{2}}\bar{\phi}F_{m+p+1} + \frac{1}{\sqrt{2}}\phi F_{m+p-1}, p = 4, \dots, m+1,$$

$$dF_{2m+2} = -\bar{\phi}X + \frac{1}{\sqrt{2}}\phi F_{2m+1}.$$

Since $\phi = dz$, we see immediately that

$$\begin{aligned} \frac{\partial X}{\partial z} &= \frac{1}{2} F_{2m+2} , \qquad \frac{\partial X}{\partial \overline{z}} = \frac{1}{2} F_1 , \\ \frac{\partial F_1}{\partial z} &= -X , \qquad \frac{\partial F_1}{\partial \overline{z}} = \frac{1}{\sqrt{2}} F_2 , \\ \frac{\partial F_a}{\partial z} &= -\frac{1}{\sqrt{2}} F_{a-1} , \qquad \frac{\partial F_a}{\partial \overline{z}} = \frac{1}{\sqrt{2}} F_{a+1} , a = 2, \dots, m-1 , \end{aligned}$$

$$(7.7) \quad \frac{\partial F_m}{\partial z} &= -\frac{1}{\sqrt{2}} F_{m-1} , \qquad \frac{\partial F_m}{\partial \overline{z}} = F_{m+1} , \\ \frac{\partial F_{m+1}}{\partial z} &= -\frac{1}{2} F_m , \qquad \frac{\partial F_{m+1}}{\partial \overline{z}} = -\frac{1}{2} F_{m+3} , \\ \frac{\partial F_{m+3}}{\partial z} &= F_{m+2} = F_{m+1} , \quad \frac{\partial F_{m+2}}{\partial \overline{z}} = -\frac{1}{\sqrt{2}} F_{m+2+1} , p = 3, \dots, m+1 , \\ \frac{\partial F_{m+2}}{\partial z} &= \frac{1}{\sqrt{2}} F_{m+2-1} , p = 4, \dots, m+2 , \qquad \frac{\partial F_{2m+2}}{\partial \overline{z}} = -X . \end{aligned}$$

Let ε_b , $b = 1, 2, \dots, m + 1$, be roots of an equation $\varepsilon^{m+1} = \sqrt{-1}$, if m is an even integer and let ε be a non trivial root of an equation $\varepsilon^{2m+2} = 1$ and we set $\varepsilon_b = \varepsilon^b$ if m is an odd integer. The solution of (7.7) is given by

COMPACT MINIMAL SURFACES

(7.8)
$$\begin{aligned} X_{b} &= \frac{1}{\sqrt{m+1}} \exp \frac{1}{\sqrt{2}} \{ \varepsilon_{b} z - \overline{\varepsilon_{b} z} \}, \, b = 1, \, \cdots, \, m+1 , \\ F_{a(b)} &= (-1)^{a} \sqrt{2} (\bar{\varepsilon}_{b})^{a} X_{b}, \, a = 1, \, \cdots, \, m , \\ F_{m+1(b)} &= F_{m+2(b)} = (-1)^{m+1} (\bar{\varepsilon}_{b})^{m+1} X_{b} , \\ F_{a^{*}(b)} &= \begin{cases} (-1)^{m+1} (\bar{\varepsilon}_{b})^{m} F_{a(b)} , & \text{if } a \text{ is even }; \\ (-1)^{m} (\bar{\varepsilon}_{b})^{m} F_{a(b)} , & \text{if } a(\geq 2) \text{ is odd }. \end{cases} \end{aligned}$$

Note that $F_{2m+2(b)} = \sqrt{2} \varepsilon_b X_b$. We call the above surface on $S^{2m+1}(1)$ the generalized Clifford surface of index m which is the image of a minimal immersion of the Euclidean plane into $S^{2m+1}(1)$. We give the explicit representation of (7.8).

THEOREM 4. The generalized Clifford surface of index m on $S^{2m+1}(1)$ is given by $(X_1, X_2, \dots, X_{m+1}) \in C^{m+1}$, where

$$(7.9) X_{1} = \frac{1}{\sqrt{m+1}} e^{i\theta} , X_{2} = \frac{1}{\sqrt{m+1}} e^{i\tau} , X_{b} = \frac{1}{\sqrt{m+1}} e^{i((a_{b}/a_{2})\tau - (a_{b-1}/a_{2})\theta)} , b = 3, 4, \dots, m+1 , a_{b} = \begin{cases} \sin \frac{2(b-1)}{m+1} \pi , & \text{if } m \text{ is even }, \\ \sin \frac{(b-1)}{m+1} \pi , & \text{if } m \text{ is odd }. \end{cases} b = 1, 2, \dots, m+1 , \end{cases}$$

PROOF. (1) If m is even, we have

$$arepsilon_{b} = \cos rac{(4b-3)}{2(m+1)} \pi + i \sin rac{(4b-3)}{2(m+1)} \pi \; .$$

Then we get

$$(7.10) \quad \sqrt{m+1} X_b = \exp\left\{i\sqrt{2}\left(x\sin\frac{(4b-3)}{2(m+1)}\pi + y\cos\frac{(4b-3)}{2(m+1)}\pi\right)\right\} \,.$$

(II) When m is odd, we set $\varepsilon = \cos \pi/(m+1) + i \sin \pi/(m+1)$. Then we have

(7.11)
$$\sqrt{m+1}X_b = \exp\left\{i\sqrt{2}\left(x\sin\frac{b\pi}{m+1} + y\cos\frac{b\pi}{m+1}\right)\right\}$$
.

(7.9) follows from (7.10), (7.11) and

$$heta = egin{cases} \sqrt{2} \left(x \sin rac{\pi}{2(m+1)} + y \cos rac{\pi}{2(m+1)}
ight), & ext{if} \quad m \quad ext{is even}, \ \sqrt{2} \left(x \sin rac{\pi}{m+1} + y \cos rac{\pi}{m+1}
ight), & ext{if} \quad m \quad ext{is odd}, \end{cases}$$

$$au = egin{cases} \sqrt{2} \left(x \sin rac{5\pi}{2(m+1)} + y \cos rac{5\pi}{2(m+1)}
ight), & ext{if} \quad m \quad ext{is even}, \ \sqrt{2} \left(x \sin rac{2\pi}{m+1} + y \cos rac{2\pi}{m+1}
ight), & ext{if} \quad m \quad ext{is odd.} \quad ext{q.e.d.} \end{cases}$$

Let m = 1. Then we have

$$(X_{\scriptscriptstyle 1},\ X_{\scriptscriptstyle 2}) = rac{1}{\sqrt{\ 2}} (e^{i heta},\ e^{i au}) \in C^2 \; .$$

This is the classical Clifford minimal surface on S^3 which is also the minimal immersion of a flat torus.

Let m = 2. Then we have

$$(X_1, X_2, X_3) = rac{1}{\sqrt{3}} (e^{i heta}, e^{i au}, e^{-i(heta+ au)}) \in C^3 \; .$$

This is the generalized Clifford surface on $S^{5}(1)$. Although the above two mappings induce minimal immersions of a flat torus into the sphere, we can not expect the same results for $m \ge 3$. For instance, the generalized Clifford surface with index 3:

$$(X_1, \cdots, X_4) = rac{1}{2} (e^{i heta}, e^{i au}, e^{i(\sqrt{2}\tau- heta)}, e^{i(\tau-\sqrt{2} heta)}) \in C^4$$

does not induce a minimal immersion of a flat torus. (We shall remark that a statement of §7 in the Introduction of this paper is incomplete.)

T. \overline{O} tsuki ([15], p. 119) gives a different representation of the solution of (7.6).

8. $f_{(b)}$ and $\Omega_{(b)}$ of compact surfaces with $K \ge 0$ and $K \ne 0$. In this section, we assume that M is compact, oriented, connected minimal surface on $S^{N}(1) \subset \mathbb{R}^{N+1}$ with

$$(8.1) K \ge 0 \quad \text{and} \quad K \not\equiv 0$$

Then we claim that

(8.2), $f_{(b)} = A_{(b)} = 0$ on $\Omega_{(b-1)}$, for each possible b.

The $(8.2)_b$ follows from a Chern's discussion in [7], but there is a gap in his paper, especially p. 36 in [7]. Therefore we shall give a proof of $(8.2)_b$. We need the following results.

LEMMA 6. ([13]). Let $x: M \to S^{N}(1) \subset \mathbb{R}^{N+1}$ be an isometric minimal immersion and (u, v) are local isothermal coordinates for M, then x(u, v) is real analytic.

LEMMA 7. ([7], [18]). Let $w_{\alpha}(z)$ be complex-valued functions which satisfy the differential system

(8.3)
$$\frac{\partial w_{\alpha}}{\partial \overline{z}} = \sum a_{\alpha\beta} w_{\beta} , \quad 1 \leq \alpha, \, \beta \leq p ,$$

in a neighborhood of z = o, where $a_{\alpha\beta}$ are complex valued C^1 -functions. Suppose the w_{α} do not all vanish identically in a neighborhood of z = 0: (1) Let $w_{\alpha} = o(|z|^{r-1})$ at z = 0, $r \ge 1$. Then $\lim_{z\to 0} w_{\alpha}(z)z^{-r}$ exists. (2) Suppose $w_{\alpha} = o(|z|^{r-1})$, all r. Then $w_{\alpha} \equiv 0$ in a neighborhood of z = 0.

Since $f_{(2)}$ is a globally defined non-negative smooth function on M, by (4.26)₂ and (8.1), we have $(8.2)_2$. If $K_{(2)} \neq 0$ on M, then we have $N_{(2)} = 1/4K_{(2)}^2$ is not identically zero on M and

(8.4)
$$\Omega_{(2)} = \{x \in M: N_{(2)} \neq 0 \text{ at } x\}.$$

Let $y \in M - \Omega_{(2)}$. Since $y \in \Omega_{(1)}$, we have $K_{(2)}^2 = 4N_{(2)}$ at y. As $y\bar{\varepsilon}\Omega_{(2)}$, by (8.4), we have $K_{(2)} = 0$ at y. By (2.13) and Lemma 7, we can show that the set $M - \Omega_{(2)}$ must be at most finite (cf. [7], [8]). Let z be an isothermal coordinate on a neighborhood U of y in M such that z = 0corresponds to y and $\phi = \lambda dz$ on U. We define a complex valued function $\Lambda_{(3)}$ on an open set $V \subset U$ as follows:

(8.5)
$$\Lambda_{(3)} = \begin{cases} \lambda^6 \sum_{\mu \ge 5} (\overline{H}_{\mu}^{(3)})^2 & \text{on} \quad V - \{0\}, \\ 0 & \text{on} \quad \{0\}, \end{cases}$$

where $N_{(2)} \neq 0$ on $V - \{o\}$. We prove that $\Lambda_{(3)}$ is a holomorphic function on V, and thus $\tilde{f}_{(3)} = \lambda^{-12} \Lambda_{(3)} \bar{\Lambda}_{(3)}$ is a smooth function on V, since $\lambda \neq 0$ on V: By (2.15) with $\phi = \lambda dz$ and (4.17), $\lambda^{e} \sum_{\mu \geq 5} (\overline{H_{\mu}^{(3)}})^{2}$ is holomorphic on $V - \{0\}$, (cf. [7], p. 36). If we can show that $\Lambda_{(3)}(z)$ is a continuous function on V, then, by the Rado's theorem ([14], p. 53), $\Lambda_{(3)}(z)$ is holomorphic on V.

The continuity of $\Lambda_{(3)}(z)$: Let $\{z_n\} \subset V - \{0\}$ be a sequence such that $z_n \to 0$ $(n \to \infty)$. Since x(u, v) is real analytic by Lemma 6, we can see that $h_{\lambda_1 i_1 i_2}$'s are also real analytic. In Lemma 7, if $w_{\alpha}(z)$, $1 \leq \alpha \leq p$, are real analytic, we can write $w_{\alpha}(z) = z^m w'_{\alpha}(z)$, where $w'_{\alpha}(z)$ are also real analytic and for some α , $w'_{\alpha}(0) \neq 0$. It follows that the function defined by

$$rac{w_{lpha}}{\sqrt{\sum w_{eta} ar w_{eta}}}$$

is meaningful at z = 0 and smooth at z = 0. Therefore by the above observation and $(4.11)_z$, the (local) vector field E_z is smooth on a neighborhood of z = 0. At the neighborhood of z = 0, we have obtained a

smooth decomposition $\{e_{\lambda_0}, e_{\lambda_1}, e_{\lambda_2}\}$. By virtue of these vector fields, $w_{\lambda_1\lambda_2}$ and w_{i_3} defined on $\Omega_{(2)}$ tend to bounded forms at z = 0. Therefore by (3.6), we have $\Lambda_{(3)}(z) \to 0$ $(n \to \infty)$. That is, $\Lambda_{(3)}(z)$ is a continuous function on V. Since $\lambda \neq 0$, $\tilde{f}_{(3)}$ is smooth on M. As M is compact, $\tilde{f}_{(3)}$ attains a maximum at $p_0 \in M$. If $\tilde{f}_{(3)}(p_0) = 0$, then $f_{(3)}$ is identically zero and thus we have (8.2)₃. If $\tilde{f}_{(3)}(p_0) > 0$, we have $p_0 \in \Omega_{(2)}$ and $f_{(3)}$ attains the maximum at p_0 . Since $f_{(3)}$ is subharmonic on $\Omega_{(2)}$, by the maximum principle, $f_{(3)} = \text{constant}$, $f_{(3)}K = 0$ and $A_{(3)} = 0$ on $\Omega_{(2)}$, and so $f_{(3)} = 0$ on $\Omega_{(2)}$ by (8.1). Continuing in this way, we can define a smooth decomposition $\{e_{\lambda_0}, e_{\lambda_1}, \dots, e_{\lambda_{b-1}}\}$ of a (local) frame field e_A at any point of M. Therefore, for the possible b, if we define $\tilde{f}_{(b)}$ as follows:

(8.6)
$$\widetilde{f}_{(b)} = \begin{cases} f_{(b)} & \text{on } \Omega_{(b-1)} \\ 0 & \text{on } M - \Omega_{(b-1)} \end{cases},$$

then $\tilde{f}_{(b)}$ is a smooth function on M and we have $(8.2)_b$. Summarizing up these results, we get

PROPOSITION. Let $x: M \to S^{N}(1) \subset \mathbb{R}^{N+1}$ be an isometric minimal immersion of a compact oriented 2-Riemannian manifold with $K \ge 0$ and $K \not\equiv 0$. Then we have (1) $f_{(b)} = 0$ on $\Omega_{(b-1)}$;

(2) $M - \Omega_{(b-1)}$ are at most finite, for the possible b.

Appendix

9. An extrinsic rigidity theorem. Let $x: M \to S^{n+p}(1)$ be an isometric minimal immersion of a compact oriented Riemannian *n*-manifold M^n into $S^{n+p}(1)$. As an extrinsic rigidity theorem of x, the following DeGiorgi-Simons-Reilly's Theorem is known: Let N be the smooth field of oriented unit normal p-planes of M^n in $S^{n+p}(1)$ and let $A_{n+1}, A_{n+2}, \dots, A_{n+p}$ be an orthonormal set of vectors in R^{n+p+1} . We put $A = A_{n+1} \wedge A_{n+2} \wedge \dots \wedge A_{n+p}$ and U = (N, A), where (N, A) means the standard inner product of N and A in exterior algebra. If $U > \sqrt{(2p-2)}/((3p-2))$, x is totally geodesic. In particular if $U > \sqrt{2/3}$, x is so.

S. S. Chern conjectured [6] that if there exists a constant decomposable *p*-vector $A = A_{n+1} \wedge A_{n+2} \wedge \cdots \wedge A_{n+p}$ such that (N, A) > 0, M is totally geodesic.

In the case when n = 2 and p > 2, we can answer affirmatively to the conjecture of a little generalized form as follows:

THEOREM 5. Let x be an isometric minimal immersion of a compact oriented Riemannian 2-manifold into $S^{N}(1)$. If $U > \sqrt{1/2}$, x is totally geodesic.

COMPACT MINIMAL SURFACES

PROOF. Reilly's integral formula [16] is, in this case,

$$\int_{_M} \{-K_{_{(2)}}U+\ Q\} dM=0$$
 ,

where

$$Q = \sum\limits_{i < j, lpha < eta, k} \sum\limits_{(h_{lpha i k} h_{eta j k} - h_{lpha j k} h_{eta i k}) h_{lpha eta i j}$$

and

$$h_{lphaeta ij} = (e_{n+1} \wedge \cdots \wedge e_{lpha-1} \wedge e_i \wedge e_{lpha+1} \wedge \cdots \wedge e_{eta-1} \ \wedge e_j \wedge e_{eta+1} \wedge \cdots \wedge e_{n+p}, A) \;.$$

The Cauchy-Schwartz inequality implies that

$$egin{aligned} Q^2 &\leq \Big\{ \sum\limits_{lpha < eta, \, i < j} \Big(\sum\limits_k \left(h_{lpha i k} h_{eta j k} - h_{lpha j k} h_{eta i k}
ight) \Big)^2 \Big\} \Big\{ \sum\limits_{lpha < eta, \, i < k} h_{lpha eta i k}^2 \Big\} \ &\leq 4N_{(2)} (1 - U^2) ext{ ,} \end{aligned}$$

because of (3.23) and [16, p. 493], i.e.,

$$Q \leq 2\, \sqrt{N_{\scriptscriptstyle (2)}(1-U^2)} \leq K_{\scriptscriptstyle (2)} \sqrt{(1-U^2)}$$
 ,

because of $f_{\scriptscriptstyle (2)} \ge 0$. Thus if $U > \sqrt{1/2}$ we have

$$-K_{\scriptscriptstyle (2)}U+Q \leq -K_{\scriptscriptstyle (2)}U+K_{\scriptscriptstyle (2)}\sqrt{1-U^2}=K_{\scriptscriptstyle (2)} \{\sqrt{1-U^2}-U\} \leq 0 \; .$$

This implies that $K_{(2)} = 0$ on M, i.e., x is totally geodesic.

ADDED IN PROOF (May, 1973): (1) The inequality $f_{(2)} \ge 0$ was used firstly in [11], but the local version of the main theorem in [11] has been proved by Y. C. Wong ([17], Th. 4.9).

(2) We wish to acknowledge that a closely related treatment was announced by T. Itoh in Tokyo, April, 1973, based on the work of T. \overline{O} tsuki.

REFERENCE (continued)

[18] P. HARTMAN AND A. WINTNER, On the local behavior of solutions of non parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Kawauchi, Sendai, Japan q.e.d.