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5. N, and 2, of compact flat surface. As an application of the
formulae obtained in the §4, we shall study N, and 2, of a compact
flat surface. Let M be a space of constant curvature, ¢ # 0. By the
Gauss equation, we have K, = ¢ and so K, is a positive constant and
¢ > 0. Since f, is a globally defined non-negative smooth function on
M, by (4.26),, we have f, = constant and A, =0 on M. By 4N, =
K% — fu, N is also constant on M. By K,; >0 on M and (3.11), we
have 1 < p,(x) <2 at any point of M. Since N, is constant, p,(x) is
constant on M. Then the third fundamental forms are defined on a
neighborhood of any point of M, i.e., we have M = Q,. If N, =0,
equivalently, p, () =1 on M, by Lemma 2, there is a 3-dimensional
totally geodesic submanifold of M such that M is contained in the sub-
manifold as a minimal surface. If N, ## 0, then N, is a positive constant
on M and p(x) =2 on M. As f is globally defined on M, by (4.26),,
we have f; = constant and A ; = 0. Then we can prove K; = constant
by virtue of the following Lemma 4 and (4.27).

LEMMA 4. Let M be a minimal surface in M. Suppose that
(5.1) 2.8) =2 0=Za=<b— 2 and p,_(x) = constant on 2, ;

(5.2) Ap=0o0n 24y ;
(5.3) K, = constant on 24—, .
Then we have

(5.4) NpH) =0 on 24 .

Proor. By (5.1), we have H{" = 0 for « = 2b + 1. Then from (4.18)
and (5.2), we obtain

(5.5) H HE .+ HOHS,,=0.
Since K;, = constant and (4.24), we get
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(5.6) HQ W HG .+ HYLHS = 0.

It follows from (5.5) and (5.6) that we have

(5.7) (HH_wHE, — HY_ HRYHY ,=0.

By (4.21) and (5.7), we get (5.4). g.e.d.
From Lemma 4 and N, > 0 on M, we have

(5.8) H? =0 on M(=2y).

By (4.27), and (5.8), we can see

(5.9) K, = ﬁN(z) = positive constant .

N
It follows from the f’s constancy that N, is also constant on M = 2.
Continuing in this way, we can show the following lemma.

LEMMA 5. Let M be a compact oriented flat minimal surface in M.
If M= Q,_, and K, Ny are constant on M with Ng > 0, for 2 b <s,
then we have M = 2, and K,.,, Ni.n are also constant on M with
K,., >0.

Proor. Since M = 2,_,, by (4.26),, for 2 < b < s, we have
(5.10) fw& = constant and A, =0on M,2<b<s.

The N, being a (positive) constant on M, we have M = 2. It follows
that f,,, = constant and A, = 0 on M by (4.26),,,. Then by (4.27),,
(5.10) and Lemma 4, we get

(5.11) Ky = Kb N (>0 on M) .

(s—1)

Since K., and f,, are constant, N,,, is also constant on M. q.e.d.

Since dim. T < N, the Lemma 5 says that there exist some integer
q such that K, >0 on M but N, =0 on M. Thus by the Lemma 2
we have

THEOREM 2. Let M be an N-dimensional Riemannian manifold
of constant curvature ¢ #0 and x: M — M be an isometric minimal
immersion of a compact connected oriented Riemannian 2-manifold into
M and (M) is not contained in any totally geodesic submanifold of
M. If the Gaussian curvature of M is identically zero, them M = Q,,
b=1---,9—1,¢>0 and N is an odd integer (=2q — 1).

6. Frenet-Boruvka’s formula of a flat minimal surface. In this
section we study the rigidity problem for a class of flat minimal surfaces.
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From a result of §5, we have f; = constant for 2<b=<q and f, >0
on M. Let m be a first integer such that f.,, >0 on M and f, =0
for b <m (£q — 1). In general it is probably N.,, # 0, but we have
interested in surfaces with N, =0 on M. Since f, =0 on M, for
2<b<m, we have

(6.1) zmuwzzw@4=%xg>0mdzmwwwﬂ=m

Let
e"' — Zhal---lea .
-1 — T
VS A
(62) 5 Zhal---mea .

Ty = ;
VI A

Ey,=¢€y ,+ 163, 2=b=m.
Then for the above vector fields we have
(6.3) oy = —iHY =V Rl
It follows from (3.15), that we have (cf. [7])
(6.4) DE, = —ky,_¢E,_, — iwy_, B, + k,pE,.,,1<b=m—1,
where
(6.5) kk, -k, = 1/2752,;—1 and E,=0,FE =e + e, .

y

By virtue of the Gauss equation, K, = ¢, and (6.3), we have k! = ¢/2.
Since K%, = 4Ny, 2 < b < m, are positive constant on M, by (6.3) and

(5.11), we have K,,K,_,, = K%_,,, and so ki=Fki= --- =ki_,=1c¢/2. As
k, > 0, we get
(6.6) klz...:km_lz\/g,

Since we supposed N,., = 0 on M, we may assume N = 2m + 1, where
N is the dimension of the ambiant space. Then we can put

6.7 DE, = -k, 0E,_ — tWop_1,omEn + Ptmy »
where w,,_.,., @ = 2m, are the differential forms for frames constructed
in (6.2) and @,y = (Wem-1.2ms1 + “Wam 2mi1)€2mr1e BY (3.15)n11, (6.3) and (6.5),
we can set

Wam—1, 2mir + “Wom omir = Kn® »
where kk, -+ k,_k, = HoY,. Note that k,, ---, k,_, are real constant
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but %, is a complex valued function. From these results, Lemma 4 and
(4.27),,, we obtain

(6.8) bk, =2k, =c.

The vector E, = ¢, + i¢, is defined up to the transformation E,— E? =

¢"E,, where 7 is real. Under such a change, we have, by (6.2) and
3.17),

(6.9) : ¢ = e,
E} = ¢E, ,

and %k, ---, k,_, are invariants,

(6.10) kS = emtoik,

Therefore we may assume k, =1 ¢. By (4.11),, we have wy_, , = bw,,,
2<b=m, and, by (4.11),.,,

(6.11) w,=0.
Thus the Frenet-Boruvka’s formula for the surface is as follows:
DE1 = ]/%‘95E2 ’
DB, =~ LoB,  + LB b =2, m—1,
(6.12) _
DEm = _'\/_;'¢Em—1 + V?é_Em-H ’
DB, = ~V.0um, - V3R, ,

where E,.. = €,+,. It follows that the minimal sux;face ir_l consideration
is locally uniquely determined up to isometries of M, if M is connected
and simply connected, M connected. On the other hand, by (4.27),.1,

Ny = 0 on M is equivalent to H™ =0 on M. We summarize our
results in the following theorem.

THEOREM 3. Under the same assumption as in Theorem 2, if K =
0, there is a first integer m such that f, = 0 on M, for b < m and f i ury >
0 on M. If H®" =0 on M, then the Fremet-Boruvka’s formula is
given by (6.12). Furthermore, if M is connected and simply connected
then such a surface is uniquely determined up to isometries of M.

7. Generalized Clifford surface on S*™*'. Let us consider the special
case of an isometric minimal immersion z: M — S¥(1) of the flat surface
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with f,, =0 on M, for b < m and N, = 0. Theorem 2 and Theorem
3 have the consequence that the surface must lie on an odd dimensional
great sphere S*"*'(1) © S*(1). Thus we may assume N =2m + 1. If e,
is an orthonormal frame of tangent vectors to S?"*'(1) such that e, is
tangent to M at xe M, then {x, e,} is an orthonormal frame in R*™*2,
satisfying (z, 2) = 1, (z, ¢,) = 0 and (e,, ¢5) = 0,5, Where the scalar product
is defined for vectors in R*™*?. From these formulae, we have dE, =
DE, — ¢x and dE, = DE,,b >1. By (6.12) we have

1~ 1, 5
drx = — —¢F, ,
x 2¢E1+2¢

dE, = —¢z + —L_ 3B,

V2
_ 1 1 _
(7'1) dE, = —V—§‘¢Ea—1 + W¢Ea+u @=2 -, m— 1,
1 -
dE = ——= E -1 -Em 10
m _1/295 m + ¢ +
1 1+
QB = — Lo, — 13T, .
+1 2¢ 2¢
We put
(7.2) X = (X, X.) € C™" z = (z,, w.) € R™,

where X, =2, + i®pe, Xpv =2, — e, a =1 -, m+ 1L a*=a+m+ 1.
Since the (local) vector field e, will be considered as a R*™**-valued func-
tion, E, is the C***-valued function. We can put

(7'3) Ea = (Ea.(l); M) Ea(m-{«l)y Ea(l*)’ ey Ea((m+1)*)) € sz+2 .
Using (7.3), we define a complex vector F,e C*"** ag follows:
(7-4) FA = (FA(I), ) FA(m+m FA(v), R FA((m+1)*)) € C*ni* ’

where 1 < A < 2m + 2,

Fou = Eup + 1B 0, Fay = oy — 1B .00

Fa,*(b) = F(m-}—z—u)(b*); Fa.*(b*) = F(m+2—u)(b) )

(7.5)

and F,..; o uv is the b*-th component of the vector F,,, ..
Note that F,4 # Foge, 1 < a < m, since E,4) # E.gm, DUt Foiio) = Frpion
and F,.,= F, ..

By (6.11) we may take local coordinates z = x + ¢y such that ds* =
da? + dy® = dzdzZ. Then the system of differential equations (7.1) turns
as follows:
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dF, = —1-/1?2_¢Fa_1 + 171=95F,,+1, a=2 -, m—1,

dF, = 1/_ngF 2+ oF,..,
(7.6) L
dFmH: ——¢Fm—_¢Fm+3r
dFm+3 = 1/2975177”4 + ¢Fm+z ’
AF,.» = —'[/qu M+p+1+]/_¢Fm+p wb=4, -, m+1,
dF2m+2 = ';ZZX 1/1—¢F2m+1 .

Since ¢ = dz, we see immediately that

(1.7) aan,,,_ 1/12F,“, aagmzpm“,
i%—”—zV%Fm+pl,p:4,---,m+2, %2—:~X.
Let ¢,b=1,2, --.,m + 1, be roots of an equation e™*' = 1/—1, if m is

an even integer and let ¢ be a non trivial root of an equation &"*2 =1
and we set ¢, = ¢ if m is an odd integer. The solution of (7.7) is given

by
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sz—Tlﬁexpl/%{ebz—e,,_z},b=1, cee,m+ 1,

F.py=(—DV2(E) X,a=1,---,m,
Friir = Fupep = (=D)"E)"X, ,
(=) E)"Fow » if a is even;
(—1)™E)"Fowy » if a(=2) is odd.
Note that Finom = V' 26,X,. We call the above surface on S*™*!(1) the

generalized Clifford surface of index m which is the image of a minimal
immersion of the Euclidean plane into S*"*'(1). We give the explicit

representation of (7.8).
THEOREM 4. The generalized Clifford surface of index m on S*™+(1)
18 given by (X, X,, -+, Xpi1) € C™, where

(7.8)

Fa*(b) =

1 ; 1
7.9 X =—2%e", X,= —— ¢
(7.9) vVm+ 1 : m+1e

1 I a
X, = g ((90192) T—(%b—1]az)6) b=38,4,---,m+1,
T Vm + 1 ’

2(b — 1)
_,_

sin T, if m is even ,

ab = 1.
sin =Bz if m is oda
Proor. (1) If m is even, we have
— cos 40 =3 s (4b—3)
&, = COS 2(m + 1)7c + 7 8sin 2(m T 1)7: .

Then we get

7100 V'm + 1X, = /2 (1 sin (40— 3) (4b — 3) .
(7.100 V'm , = exp {z (w sin T 1)7; + ycos S D n)}

(II) When m is odd, we set ¢ = cos w/(m + 1) + ¢sin7/(m + 1). Then we
have

—_— . = . br b
(7.11) 1/m+1X,,—exp{ﬂ/2<xs1nm+1 +ycosm+1>}.

(7.9) follows from (7.10), (7.11) and

V?( sin — T cos——ﬂ—>, if i ,
) xlnz(m+1)+y 2m + 1) if m 18 even

§< N T T , . . ,
14 xsmm+1+ycos 1) if m is odd

m +
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2(m + 1) 2(m + 1)

- . 2 2r . .
2( ) £ .
Vv xsmm+1+ycosm+1 if m is odd g.e.d

V?(wsin——@z——+ycos—5ﬂ-——), if m is even,
T={

Let m = 1. Then we have

(X, X) = —A=(e", &) e C*.
This is the classical Clifford minimal surface on S*® which is also the

minimal immersion of a flat torus.
Let m = 2. Then we have

1 (1 iT -1 T
(XM XZ’ XS) = ﬁ(e 0’ e ’ € a )) € C3 .
This is the generalized Clifford surface on S°(1). Although the above
two mappings induce minimal immersions of a flat torus into the sphere,
we can not expect the same results for m = 3. For instance, the gen-
eralized Clifford surface with index 3:

1,0 . _ o
(Xn cen, X4) — —2—(6'0, e, e Vet a)’ ettt «/za))e Ct

does not induce a minimal immersion of a flat torus. (We shall remark
that a statement of §7 in the Introduction of this paper is incomplete.)

T. Otsuki ([15], p. 119) gives a different representation of the solution
of (7.6).

8. fu and 2, of compact surfaces with K=0 and K= 0. In
this section, we assume that M is compact, oriented, connected minimal
surface on S¥(1) C R"** with

(8.1) K=0 and K=#0.
Then we claim that
(8.2), foy=4n=0 on £,.,, for each possible b.

The (8.2), follows from a Chern’s discussion in [7], but there is a gap
in his paper, especially p. 36 in [7]. Therefore we shall give a proof of
(8.2),. We need the following results.

LEMMA 6. ([13]). Let x: M — S¥(1) C R be an isometric minimal
immersion and (4, v) are local isothermal coordinates for M, then x(u, v)
18 real analytic.
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LeEmmA 7. ([7], [18]). Let w,(2) be complex-valued functions which
satisfy the differential system

(8.3) e~ Sagw,, 1SHB=p,

in a netghborhood of z = o, where a,; are complex valued C'-functions.
Suppose the w, do not all vanish identically in a meighborhood of z = 0:
(1) Let w,=o0(z]") at 2=0,r=1. Then lim, , w,(2)z"" exists.

(2) Suppose w,=o0(|z|"™), all r. Then w, =0 tn a neighborhood of z=20.

Since f is a globally defined non-negative smooth function on M,
by (4.26), and (8.1), we have (8.2),. If K., # 0 on M, then we have
Ny, = 1/4K3, is not identically zero on M and

(8.4) Q(z) = {x € M: .N(z) #* 0 at x} .

Let ye M — 2,. Since ye2,, we have K2 = 4N, at y. As yiQ,,
by (8.4), we have K, = 0 at y. By (2.13) and Lemma 7, we can show
that the set M — 2, must be at most finite (cf. [7], [8]). Let z be an
isothermal coordinate on a neighborhood U of y in M such that z=10
corresponds to ¥ and ¢ = Adz on U. We define a complex valued function
Ay on an open set VU as follows:

MY (HPE on V—{0},
(8.5) A(a) = pab

0 on {0},

where N, # 0 on V — {0}. We prove that 4, is a holomorphic function
on V, and thus fi; = N4 is a smooth function on V, since N % 0 on
V: By (2.15) with ¢ = Adz and (4.17), A\°* 3..s (H?P)* is holomorphic on
V — {0}, (cf. [7], p. 86). If we can show that 4,(2) is a continuous
function on V, then, by the Rado’s theorem ([14], p. 53), 4(2) is holo-
morphic on V.

The continuity of A,(z): Let {z,} <V — {0} be a sequence such that
2,— 0 (n— ). Since x(u, v) is real analytic by Lemma 6, we can see
that h,,;’s are also real analytic. In Lemma 7, if w,(2), 1 < a < p, are
real analytic, we can write w,(2) = 2™w.,(2), where w,(z) are also real
analytic and for some «, w,(0) = 0. It follows that the function defined by

_ We
V'S Wy
is meaningful at z = 0 and smooth at z = 0. Therefore by the above

observation and (4.11),, the (local) vector field E, is smooth on a neigh-
borhood of z = 0. At the neighborhood of z = 0, we have obtained a
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smooth decomposition {e,, e, ¢;,}. By virtue of these vector fields, w,,,
and w,, defined on 2 tend to bounded forms at z = 0. Therefore by
(3.6), we have 4(z) —0 (n— o). That is, 4,(2) is a continuous function
on V. Since N £ 0, @ is smooth on M. As M is compact, f attains
a maximum at p,e M. If fu(p) =0, then f is identically zero and
thus we have (8.2),. If fi(p,) >0, we have p,e 2, and f attains the
maximum at p,. Since f is subharmonic on 2., by the maximum
principle, f(;, = constant, f ;K = 0 and 4, = 0 on 2, and so f = 0 on
Q@ by (8.1). Continuing in this way, we can define a smooth decomposition
{e:r €2 =+ +, €3,_,} of a (local) frame field e, at any point of M. Therefore,
for the possible b, if we define f, as follows:

~ fo on L4y
8.6 =
(8.6) e G

then f, is a smooth function on M and we have (8.2),. Summarizing
up these results, we get

PROPOSITION. Let x: M — S¥(1) C R"** be an isometric minimal tm-
mersion of a compact oriented 2-Riemannian manifold with K= 0 and
K=%=0. Then we have
(1) fwy=0o0n 24_y;

(2) M- Q24_, are at most finite, for the possible b.

Appendix

9. An extrinsic rigidity theorem. Let x: M — S"*?(1) be an isometric
minimal immersion of a compact oriented Riemannian n-manifold M™ into
S**?(1). As an extrinsic rigidity theorem of x, the following DeGiorgi-
Simons-Reilly’s Theorem is known: Let N be the smooth field of oriented
unit normal p-planes of M" in S**?(1) and let A,,,, A,z *++, A..» be an
orthonormal set of vectors in R"*?*', We put A= A4,,, AN 4,2 A -+ A
A, ., and U= (N, A), where (N, A) means the standard inner product of
N and A in exterior algebra. If U>1'(2p — 2)/(8p — 2), x is totally
geodesic. In particular if U > 1/2/3, z is so.

S. S. Chern conjectured [6] that if there exists a constant decom-
posable p-vector A=A, , A A, .. A\ -+ N A,,, such that (N, 4) >0, M
is totally geodesiec.

In the case when » = 2 and » > 2, we can answer affirmatively to
the conjecture of a little generalized form as follows:

THEOREM 5. Let x be an isometric minimal immersion of a compact
oriented Riemannian 2-manifold into S¥(1). If U > V'1/2, « is totally
geodesic.
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Proor. Reilly’s integral formula [16] is, in this case,
[(-KoU+Qam=o0,

where

Q Z Z Z (hazkhﬁ:k - ha:khﬂzk)haﬁw

i<j,a<p
and
RS (en+1 AN eee ANeluy N€ /N €upy N\ voo N €y
A €; Negr N\ 220 N eyip, A) .
The Cauchy-Schwartz inequality implies that

'S (S Cunoss — heshsn) ) HE S besa)

a<p,i<j a<pB,i<k

= 4N,(1 -U?»,
because of (3.23) and [16, p. 493], i.e.,
QR=2V NI -0 < KoVT -1,
because of fu = 0. Thus if U > 1/1/2 we have
—~ KU+ QL KU+ KoV1 U =Ko(VI-UT*-U}<0.
This implies that K, = 0 on M, i.e., = is totally geodesic. q.e.d.

ADDED IN PrOOF (May, 1973): (1) The inequality f =0 was used
firstly in [11], but the local version of the main theorem in [11] has been
proved by Y. C. Wong ([17], Th. 4.9).

(2) We wish to acknowledge that a closely related treatment was
announced by T. Itoh in Tokyo, April, 1973, based on the work of T.

Otsuki.
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