ON COMPACT MINIMAL SURFACES WITH NON-NEGATIVE GAUSSIAN CURVATURE IN A SPACE OF CONSTANT CURVATURE: II

Katsuei Kenmotsu

(Received June 30, 1973)

(Part 1 appeared in the preceding issue of this Journal, Vol. 25)

5. $N_{(b)}$ and $\Omega_{(b)}$ of compact flat surface. As an application of the formulae obtained in the $\S 4$, we shall study $N_{(b)}$ and $\Omega_{(b)}$ of a compact flat surface. Let \bar{M} be a space of constant curvature, $c \neq 0$. By the Gauss equation, we have $K_{(2)}=c$ and so $K_{(2)}$ is a positive constant and $c>0$. Since $f_{(2)}$ is a globally defined non-negative smooth function on M, by (4.26) , we have $f_{(2)}=$ constant and $A_{(2)}=0$ on M. By $4 N_{(2)}=$ $K_{(2)}^{2}-f_{(2)}, N_{(2)}$ is also constant on M. By $K_{(2)}>0$ on M and (3.11), we have $1 \leqq p_{1}(x) \leqq 2$ at any point of M. Since $N_{(2)}$ is constant, $p_{1}(x)$ is constant on M. Then the third fundamental forms are defined on a neighborhood of any point of M, i.e., we have $M=\Omega_{(2)}$. If $N_{(2)}=0$, equivalently, $p_{1}(x)=1$ on M, by Lemma 2, there is a 3 -dimensional totally geodesic submanifold of \bar{M} such that M is contained in the submanifold as a minimal surface. If $N_{(2)} \neq 0$, then $N_{(2)}$ is a positive constant on M and $p_{1}(x)=2$ on M. As $f_{(3)}$ is globally defined on M, by (4.26) , we have $f_{(3)}=$ constant and $A_{(3)}=0$. Then we can prove $K_{(3)}=$ constant by virtue of the following Lemma 4 and (4.27).

Lemma 4. Let M be a minimal surface in \bar{M}. Suppose that

$$
\begin{gather*}
p_{a}(x)=2,0 \leqq a \leqq b-2 \text { and } p_{b-1}(x)=\text { constant on } \Omega_{(b)} ; \tag{5.1}\\
\bar{A}_{(b)}=0 \text { on } \Omega_{(b-1)} ; \tag{5.2}\\
K_{(b)}=\text { constant on } \Omega_{(b-1)} . \tag{5.3}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
N_{(b)} H_{\lambda_{b-1}, 1}^{(b)}=0 \text { on } \Omega_{(b)} . \tag{5.4}
\end{equation*}
$$

Proof. By (5.1), we have $H_{\alpha}^{(b)}=0$ for $\alpha \geqq 2 b+1$. Then from (4.18) and (5.2), we obtain

$$
\begin{equation*}
H_{(2 b-1)}^{(b)} H_{(2 b-1), 1}^{(b)}+H_{(2 b)}^{(b)} H_{(2 b), 1}^{(b)}=0 . \tag{5.5}
\end{equation*}
$$

Since $K_{(b)}=$ constant and (4.24), we get

$$
\begin{equation*}
\bar{H}_{(2 b-1)}^{(b)} H_{(2 b-1), 1}^{(b)}+\bar{H}_{(2 b)}^{(b)} H_{(2 b), 1}^{(b)}=0 . \tag{5.6}
\end{equation*}
$$

It follows from (5.5) and (5.6) that we have

$$
\begin{equation*}
\left\{H_{(2 b-1)}^{(b)} \bar{H}_{(2 b)}^{(b)}-\bar{H}_{(2 b-1)}^{(b)} H_{l 2 b)}^{(b)}\right\} H_{\lambda_{b-1}, 1}^{(b)}=0 . \tag{5.7}
\end{equation*}
$$

By (4.21) and (5.7), we get (5.4).
From Lemma 4 and $N_{(2)}>0$ on M, we have

$$
\begin{equation*}
H_{\lambda_{1}, 1}^{(2)}=0 \quad \text { on } \quad M\left(=\Omega_{(2)}\right) . \tag{5.8}
\end{equation*}
$$

By (4.27) $)_{2}$ and (5.8), we can see

$$
\begin{equation*}
K_{(3)}=\frac{K_{(1)}}{N_{(1)}} N_{(2)}=\text { positive constant } \tag{5.9}
\end{equation*}
$$

It follows from the $f_{(3)}$'s constancy that $N_{(3)}$ is also constant on $M=\Omega_{(2)}$. Continuing in this way, we can show the following lemma.

Lemma 5. Let M be a compact oriented flat minimal surface in \bar{M}. If $M=\Omega_{(s-1)}$ and $K_{(b)}, N_{(b)}$ are constant on M with $N_{(b)}>0$, for $2 \leqq b \leqq s$, then we have $M=\Omega_{(s)}$ and $K_{(s+1)}, N_{(s+1)}$ are also constant on M with $K_{(s+1)}>0$.

Proof. Since $M=\Omega_{(s-1)}$, by (4.26) ${ }_{b}$, for $2 \leqq b \leqq s$, we have

$$
\begin{equation*}
f_{(b)}=\text { constant and } A_{(b)}=0 \text { on } M, 2 \leqq b \leqq s \tag{5.10}
\end{equation*}
$$

The $N_{(s)}$ being a (positive) constant on M, we have $M=\Omega_{(s)}$. It follows that $f_{(s+1)}=$ constant and $A_{(s+1)}=0$ on M by (4.26) $)_{s+1}$. Then by (4.27)s, (5.10) and Lemma 4, we get

$$
\begin{equation*}
K_{(s+1)}=\frac{K_{(s-1)}}{N_{(s-1)}} N_{(s)}(>0 \text { on } M) \tag{5.11}
\end{equation*}
$$

Since $K_{(s+1)}$ and $f_{(s+1)}$ are constant, $N_{(s+1)}$ is also constant on M. q.e.d.
Since dim. $T_{x}^{(b)} \leqq N$, the Lemma 5 says that there exist some integer q such that $K_{(q)}>0$ on M but $N_{(q)}=0$ on M. Thus by the Lemma 2 we have

Theorem 2. Let \bar{M} be an N-dimensional Riemannian manifold of constant curvature $c \neq 0$ and $x: M \rightarrow \bar{M}$ be an isometric minimal immersion of a compact connected oriented Riemannian 2-manifold into \bar{M} and $x(M)$ is not contained in any totally geodesic submanifold of \bar{M}. If the Gaussian curvature of M is identically zero, then $M=\Omega_{(b)}$, $b=1, \cdots, q-1, c>0$ and N is an odd integer $(=2 q-1)$.
6. Frenet-Borůvka's formula of a flat minimal surface. In this section we study the rigidity problem for a class of flat minimal surfaces.

From a result of $\S 5$, we have $f_{(b)}=$ constant for $2 \leqq b \leqq q$ and $f_{(q)}>0$ on M. Let m be a first integer such that $f_{(m+1)}>0$ on M and $f_{(b)}=0$ for $b \leqq m(\leqq q-1)$. In general it is probably $N_{(m+1)} \neq 0$, but we have interested in surfaces with $N_{(m+1)}=0$ on M. Since $f_{(b)}=0$ on M, for $2 \leqq b \leqq m$, we have

$$
\begin{equation*}
\sum_{\alpha} h_{\alpha 1 \cdots 1}^{2}=\sum_{\alpha} h_{\alpha 1 \cdots 12}^{2}\left(=\frac{1}{2} K_{(b)}\right)>0 \text { and } \sum_{\alpha} h_{\alpha 1 \cdots 1} h_{\alpha 1 \cdots 12}=0 \tag{6.1}
\end{equation*}
$$

Let

$$
\begin{align*}
\widetilde{e}_{2 b-1} & =\frac{\sum h_{\alpha 1 \cdots+1} e_{\alpha}}{\sqrt{\sum h_{\alpha 1 \cdots 1}^{2}}} \\
\widetilde{e}_{2 b} & =\frac{\sum h_{\alpha 1 \cdots{ }_{2}} e_{\alpha}}{\sqrt{\sum h_{\alpha 1}^{2} \cdots 12}} \tag{6.2}\\
E_{b} & =\widetilde{e}_{2 b-1}+i \widetilde{e}_{2 b}, 2 \leqq b \leqq m
\end{align*}
$$

Then for the above vector fields we have

$$
\begin{equation*}
H_{(2 b-1)}^{(b)}=-i H_{(2 b)}^{(b)}=\sqrt{\sum h_{\alpha 1 \cdots 1}^{2},} \tag{6.3}
\end{equation*}
$$

It follows from (3.15) ${ }_{b}$ that we have (cf. [7])

$$
\begin{equation*}
D E_{b}=-k_{b-1} \phi E_{b-1}-i w_{2 b-1,2 b} E_{b}+k_{b} \bar{\phi} E_{b+1}, 1 \leqq b \leqq m-1, \tag{6.4}
\end{equation*}
$$

where

By virtue of the Gauss equation, $K_{(2)}=c$, and (6.3), we have $k_{1}^{2}=c / 2$. Since $K_{(b)}^{2}=4 N_{(b)}, 2 \leqq b \leqq m$, are positive constant on M, by (6.3) and (5.11), we have $K_{(b)} K_{(b-2)}=K_{(b-1)}^{2}$, and so $k_{1}^{2}=k_{2}^{2}=\cdots=k_{m-1}^{2}=c / 2$. As $k_{b}>0$, we get

$$
\begin{equation*}
k_{1}=\cdots=k_{m-1}=\sqrt{\frac{c}{2}} \tag{6.6}
\end{equation*}
$$

Since we supposed $N_{(m+1)}=0$ on M, we may assume $N=2 m+1$, where N is the dimension of the ambiant space. Then we can put

$$
\begin{equation*}
D E_{m}=-k_{m-1} \phi E_{m-1}-i w_{2 m-1,2 m} E_{m}+\Phi_{(m)} \tag{6.7}
\end{equation*}
$$

where $w_{2 m-1, \alpha}, \alpha \geqq 2 m$, are the differential forms for frames constructed in (6.2) and $\Phi_{(m)}=\left(w_{2 m-1,2 m+1}+i w_{2 m, 2 m+1}\right) e_{2 m+1} . \quad$ By (3.15) $)_{m+1}$, (6.3) and (6.5), we can set

$$
w_{2 m-1},{ }_{2 m+1}+i w_{2 m, 2 m+1}=k_{m} \bar{\phi},
$$

where $k_{1} k_{2} \cdots k_{m-1} k_{m}=H_{(2 m+1)}^{(m+1)}$. Note that k_{1}, \cdots, k_{m-1} are real constant
but k_{m} is a complex valued function. From these results, Lemma 4 and $(4.27)_{m}$, we obtain

$$
\begin{equation*}
k_{m} \bar{k}_{m}=2 k_{m-1}^{2}=c . \tag{6.8}
\end{equation*}
$$

The vector $E_{1}=e_{1}+i e_{2}$ is defined up to the transformation $E_{1} \rightarrow E_{1}^{0}=$ $e^{i \tau} E_{1}$, where τ is real. Under such a change, we have, by (6.2) and (3.17),

$$
\begin{align*}
\phi^{0} & =e^{i \tau} \phi \tag{6.9}\\
E_{b}^{0} & =e^{b i \tau} E_{b},
\end{align*}
$$

and k_{1}, \cdots, k_{m-1} are invariants,

$$
\begin{equation*}
k_{m}^{0}=e^{(m+1) i \tau} k_{m} \tag{6.10}
\end{equation*}
$$

Therefore we may assume $k_{m}=\sqrt{c}$. By $(4.11)_{b}$, we have $w_{2 b-1,2 b}=b w_{12}$, $2 \leqq b \leqq m$, and, by $(4.11)_{m+1}$,

$$
\begin{equation*}
w_{12}=0 \tag{6.11}
\end{equation*}
$$

Thus the Frenet-Borůvka's formula for the surface is as follows:

$$
\begin{gather*}
D E_{1}=\sqrt{\frac{c}{2}} \bar{\phi} E_{2}, \\
D E_{b}=-\sqrt{\frac{c}{2}} \dot{\phi} E_{b-1}+\sqrt{\frac{c}{2}} \bar{\phi} E_{b+1}, b=2, \cdots, m-1, \\
D E_{m}=-\sqrt{\frac{c}{2}} \phi E_{m-1}+\sqrt{c} \bar{\phi} E_{m+1}, \tag{6.12}\\
D E_{m+1}=-\frac{\sqrt{c}}{2} \phi E_{m}-\frac{\sqrt{c}}{2} \bar{\phi}_{m},
\end{gather*}
$$

where $E_{m+1}=e_{2 m+1}$. It follows that the minimal surface in consideration is locally uniquely determined up to isometries of \bar{M}, if \bar{M} is connected and simply connected, M connected. On the other hand, by (4.27) $)_{m+1}$, $N_{(m+1)}=0$ on M is equivalent to $H_{\alpha, k}^{(m+1)}=0$ on M. We summarize our results in the following theorem.

Theorem 3. Under the same assumption as in Theorem 2, if $K \equiv$ 0 , there is a first integer m such that $f_{(b)}=0$ on M, for $b \leqq m$ and $f_{(m+1)}>$ 0 on M. If $H_{\alpha, k}^{(m+1)}=0$ on M, then the Frenet-Boriuvka's formula is given by (6.12). Furthermore, if \bar{M} is connected and simply connected then such a surface is uniquely determined up to isometries of \bar{M}.
7. Generalized Clifford surface on $S^{2 m+1}$. Let us consider the special case of an isometric minimal immersion $x: M \rightarrow S^{N}(1)$ of the flat surface
with $f_{(b)}=0$ on M, for $b \leqq m$ and $N_{(m+1)}=0$. Theorem 2 and Theorem 3 have the consequence that the surface must lie on an odd dimensional great sphere $S^{2 m+1}(1) \subset S^{N}(1)$. Thus we may assume $N=2 m+1$. If e_{A} is an orthonormal frame of tangent vectors to $S^{2 m+1}(1)$ such that e_{i} is tangent to M at $x \in M$, then $\left\{x, e_{A}\right\}$ is an orthonormal frame in $R^{2 m+2}$, satisfying $(x, x)=1,\left(x, e_{A}\right)=0$ and $\left(e_{A}, e_{B}\right)=\delta_{A B}$, where the scalar product is defined for vectors in $R^{2 m+2}$. From these formulae, we have $d E_{1}=$ $D E_{1}-\phi x$ and $d E_{b}=D E_{b}, b>1$. By (6.12) we have

$$
\begin{align*}
d x & =\frac{1}{2} \bar{\phi} E_{1}+\frac{1}{2} \phi \bar{E}_{1}, \\
d E_{1} & =-\phi x+\frac{1}{\sqrt{2}} \bar{\phi} E_{2} \\
d E_{a} & =-\frac{1}{\sqrt{2}} \phi E_{a-1}+\frac{1}{\sqrt{2}} \bar{\phi} E_{a+1}, a=2, \cdots, m-1, \tag{7.1}\\
d E_{m} & =-\frac{1}{\sqrt{2}} \phi E_{m-1}+\bar{\phi} E_{m+1}, \\
d E_{m+1} & =-\frac{1}{2} \phi E_{m}-\frac{1}{2} \bar{\phi} E_{m} .
\end{align*}
$$

We put

$$
\begin{equation*}
X=\left(X_{a}, X_{a^{*}}\right) \in C^{2 m+2}, x=\left(x_{a}, x_{a^{*}}\right) \in R^{2 m+2} \tag{7.2}
\end{equation*}
$$

where $\quad X_{a}=x_{a}+i x_{a^{*}}, X_{a^{*}}=x_{a}-i x_{a^{*}}, a=1, \cdots, m+1, a^{*}=a+m+1$. Since the (local) vector field e_{A} will be considered as a $R^{2 m+2}$-valued function, E_{a} is the $C^{2 m+2}$-valued function. We can put

$$
\begin{equation*}
E_{a}=\left(E_{a(1)}, \cdots, E_{a(m+1)}, E_{a\left(1^{*} *\right.}, \cdots, E_{a\left((m+1)^{*}\right)}\right) \in C^{2 m+2} \tag{7.3}
\end{equation*}
$$

Using (7.3), we define a complex vector $F_{A} \in C^{2 m+2}$ as follows:

$$
\begin{equation*}
F_{A}=\left(F_{A(1)}, \cdots, F_{A(m+1)}, F_{A\left(1^{*}\right.}, \cdots, F_{A\left((m+1)^{*}\right)}\right) \in C^{2 m+2} \tag{7.4}
\end{equation*}
$$

where $1 \leqq A \leqq 2 m+2$,

$$
\begin{align*}
F_{a(b)} & =E_{a(b)}+i E_{a\left(b^{*}\right)}, F_{a\left(b^{*}\right)}=E_{a(b)}-i E_{a\left(b^{*}\right)}, \\
F_{a^{*}(b)} & =\bar{F}_{(m+2-a)\left(b^{*}\right)}, F_{a^{*}\left(b^{*}\right)}=\bar{F}_{(m+2-a)(b)} \tag{7.5}
\end{align*}
$$

and $\bar{F}_{(m+2-a)\left(b^{*}\right)}$ is the b^{*}-th component of the vector \bar{F}_{m+2-a}.
Note that $\bar{F}_{a(b)} \neq F_{a\left(b^{*}\right)}, 1 \leqq a \leqq m$, since $\bar{E}_{a(b)} \neq E_{a\left(b^{*}\right)}$, but $\bar{F}_{m+1(b)}=F_{m+1\left(b^{*}\right)}$ and $F_{m+1}=F_{m+2}$.

By (6.11) we may take local coordinates $z=x+i y$ such that $d s^{2}=$ $d x^{2}+d y^{2}=d z d \bar{z}$. Then the system of differential equations (7.1) turns as follows:

$$
\begin{aligned}
d X & =\frac{1}{2} \bar{\phi} F_{1}+\frac{1}{2} \phi F_{2 m+2}, \\
d F_{1} & =-\phi X+\frac{1}{\sqrt{2}} \bar{\phi} F_{2}, \\
d F_{a} & =-\frac{1}{\sqrt{2}} \phi F_{a-1}+\frac{1}{\sqrt{2}} \bar{\phi} F_{a+1}, a=2, \cdots, m-1, \\
d F_{m} & =-\frac{1}{\sqrt{2}} \phi F_{m-1}+\bar{\phi} F_{m+1}, \\
d F_{m+1} & =-\frac{1}{2} \phi F_{m}-\frac{1}{2} \bar{\phi} F_{m+3}, \\
d F_{m+3} & =-\frac{1}{\sqrt{2}} \bar{\phi} F_{m+4}+\phi F_{m+2}, \\
d F_{m+p} & =-\frac{1}{\sqrt{2}} \bar{\phi} F_{m+p+1}+\frac{1}{\sqrt{2}} \phi F_{m+p-1}, p=4, \cdots, m+1, \\
d F_{2 m+2} & =-\bar{\phi} X+\frac{1}{\sqrt{2}} \phi F_{2 m+1} .
\end{aligned}
$$

Since $\phi=d z$, we see immediately that

$$
\begin{array}{ll}
\frac{\partial X}{\partial z}=\frac{1}{2} F_{2 m+2}, & \frac{\partial X}{\partial \bar{z}}=\frac{1}{2} F_{1}, \\
\frac{\partial F_{1}}{\partial z}=-X, & \frac{\partial F_{1}}{\partial \bar{z}}=\frac{1}{\sqrt{2}} F_{2}, \\
\frac{\partial F_{a}}{\partial z}=-\frac{1}{\sqrt{2}} F_{a-1}, & \frac{\partial F_{a}}{\partial \bar{z}}=\frac{1}{\sqrt{2}} F_{a+1}, a=2, \cdots, m-1,
\end{array}
$$

$$
\begin{align*}
& \frac{\partial F_{m}}{\partial z}=-\frac{1}{\sqrt{2}} F_{m-1}, \quad \frac{\partial F_{m}}{\partial \bar{z}}=F_{m+1} \tag{7.7}\\
& \frac{\partial F_{m+1}}{\partial z}=-\frac{1}{2} F_{m}, \quad \frac{\partial F_{m+1}}{\partial \bar{z}}=-\frac{1}{2} F_{m+3} \\
& \frac{\partial F_{m+3}}{\partial z}=F_{m+2}=F_{m+1}, \\
& \frac{\partial F_{m+p}}{\partial \bar{z}}=-\frac{1}{\sqrt{2}} F_{m+p+1}, p=3, \cdots, m+1 \\
& \frac{\partial F_{m+p}}{\partial z}=\frac{1}{\sqrt{2}} F_{m+p-1}, p=4, \cdots, m+2, \quad \frac{\partial F_{2 m+2}}{\partial \bar{z}}=-X
\end{align*}
$$

Let $\varepsilon_{b}, b=1,2, \cdots, m+1$, be roots of an equation $\varepsilon^{m+1}=\sqrt{-1}$, if m is an even integer and let ε be a non trivial root of an equation $\varepsilon^{2 m+2}=1$ and we set $\varepsilon_{b}=\varepsilon^{b}$ if m is an odd integer. The solution of (7.7) is given by

$$
\begin{align*}
X_{b} & =\frac{1}{\sqrt{m+1}} \exp \frac{1}{\sqrt{2}}\left\{\varepsilon_{b} z-\overline{\left.\varepsilon_{b} z\right\}}, b=1, \cdots, m+1,\right. \\
F_{a(b)} & =(-1)^{a} \sqrt{2}\left(\bar{\varepsilon}_{b}\right)^{a} X_{b}, a=1, \cdots, m, \tag{7.8}\\
F_{m+1(b)} & =F_{m+2(b)}=(-1)^{m+1}\left(\bar{\varepsilon}_{b}\right)^{m+1} X_{b}, \\
F_{a^{*}(b)} & =\left\{\begin{array}{lll}
(-1)^{m+1}\left(\bar{\varepsilon}_{b}\right)^{m} F_{a(b)}, & \text { if } a \text { is even ; } \\
(-1)^{m}\left(\bar{\varepsilon}_{b}\right)^{m} F_{a(b)}, & \text { if } a(\geqq 2) \text { is odd } .
\end{array}\right.
\end{align*}
$$

Note that $F_{2 m+2(b)}=\sqrt{2} \varepsilon_{b} X_{b}$. We call the above surface on $S^{2 m+1}(1)$ the generalized Clifford surface of index m which is the image of a minimal immersion of the Euclidean plane into $S^{2 m+1}(1)$. We give the explicit representation of (7.8).

Theorem 4. The generalized Clifford surface of index m on $S^{2 m+1}(1)$ is given by $\left(X_{1}, X_{2}, \cdots, X_{m+1}\right) \in C^{m+1}$, where

$$
\begin{align*}
X_{1} & =\frac{1}{\sqrt{m+1}} e^{i \theta}, \quad X_{2}=\frac{1}{\sqrt{m+1}} e^{i \tau}, \tag{7.9}\\
X_{b} & =\frac{1}{\sqrt{m+1}} e^{i\left(a_{b} ; a_{2)}\right)-\left(a_{b-1 /(a 2) \theta)}, \quad b=3,4, \cdots, m+1,\right.} \\
a_{b} & = \begin{cases}\sin \frac{2(b-1)}{m+1} \pi, & \text { if } m \text { is even }, \\
\sin \frac{(b-1)}{m+1} \pi, & \text { if } m \text { is odd } .\end{cases}
\end{align*}
$$

Proof. (1) If m is even, we have

$$
\varepsilon_{b}=\cos \frac{(4 b-3)}{2(m+1)} \pi+i \sin \frac{(4 b-3)}{2(m+1)} \pi
$$

Then we get

$$
\begin{equation*}
\sqrt{m+1} X_{b}=\exp \left\{i \sqrt{2}\left(x \sin \frac{(4 b-3)}{2(m+1)} \pi+y \cos \frac{(4 b-3)}{2(m+1)} \pi\right)\right\} \tag{7.10}
\end{equation*}
$$

(II) When m is odd, we set $\varepsilon=\cos \pi /(m+1)+i \sin \pi /(m+1)$. Then we have

$$
\begin{equation*}
\sqrt{m+1} X_{b}=\exp \left\{i \sqrt{2}\left(x \sin \frac{b \pi}{m+1}+y \cos \frac{b \pi}{m+1}\right)\right\} \tag{7.11}
\end{equation*}
$$

(7.9) follows from (7.10), (7.11) and

$$
\theta=\left\{\begin{array}{l}
\sqrt{2}\left(x \sin \frac{\pi}{2(m+1)}+y \cos \frac{\pi}{2(m+1)}\right), \quad \text { if } m \text { is even } \\
\sqrt{2}\left(x \sin \frac{\pi}{m+1}+y \cos \frac{\pi}{m+1}\right), \quad \text { if } \quad m \quad \text { is odd }
\end{array}\right.
$$

$$
\tau=\left\{\begin{array}{l}
\sqrt{2}\left(x \sin \frac{5 \pi}{2(m+1)}+y \cos \frac{5 \pi}{2(m+1)}\right), \quad \text { if } m \text { is even } \\
\sqrt{2}\left(x \sin \frac{2 \pi}{m+1}+y \cos \frac{2 \pi}{m+1}\right), \text { if } m \text { is odd. q.e.d. }
\end{array}\right.
$$

Let $m=1$. Then we have

$$
\left(X_{1}, X_{2}\right)=\frac{1}{\sqrt{2}}\left(e^{i \theta}, e^{i \tau}\right) \in C^{2}
$$

This is the classical Clifford minimal surface on S^{3} which is also the minimal immersion of a flat torus.

Let $m=2$. Then we have

$$
\left(X_{1}, X_{2}, X_{3}\right)=\frac{1}{\sqrt{3}}\left(e^{i \theta}, e^{i \tau}, e^{-i(\theta+\tau)}\right) \in C^{3}
$$

This is the generalized Clifford surface on $S^{5}(1)$. Although the above two mappings induce minimal immersions of a flat torus into the sphere, we can not expect the same results for $m \geqq 3$. For instance, the generalized Clifford surface with index 3 :

$$
\left(X_{1}, \cdots, X_{4}\right)=\frac{1}{2}\left(e^{i \theta}, e^{i \tau}, e^{i(\sqrt{2} \tau-\theta)}, e^{i(\tau-\sqrt{2} \theta)}\right) \in C^{4}
$$

does not induce a minimal immersion of a flat torus. (We shall remark that a statement of $\S 7$ in the Introduction of this paper is incomplete.)
T. O$t s u k i$ ([15], p. 119) gives a different representation of the solution of (7.6).
8. $f_{(b)}$ and $\Omega_{(b)}$ of compact surfaces with $K \geqq 0$ and $K \not \equiv 0$. In this section, we assume that M is compact, oriented, connected minimal surface on $S^{N}(1) \subset R^{N+1}$ with

$$
\begin{equation*}
K \geqq 0 \quad \text { and } \quad K \not \equiv 0 \tag{8.1}
\end{equation*}
$$

Then we claim that

$$
\begin{equation*}
f_{(b)}=A_{(b)}=0 \quad \text { on } \quad \Omega_{(b-1)}, \text { for each possible } b . \tag{8.2}
\end{equation*}
$$

The (8.2) ${ }_{b}$ follows from a Chern's discussion in [7], but there is a gap in his paper, especially p. 36 in [7]. Therefore we shall give a proof of (8.2) ${ }_{b}$. We need the following results.

Lemma 6. ([13]). Let $x: M \rightarrow S^{N}(1) \subset R^{N+1}$ be an isometric minimal immersion and (u, v) are local isothermal coordinates for M, then $x(u, v)$ is real analytic.

Lemma 7. ([7], [18]). Let $w_{\alpha}(z)$ be complex-valued functions which satisfy the differential system

$$
\begin{equation*}
\frac{\partial w_{\alpha}}{\partial \bar{z}}=\sum a_{\alpha \beta} w_{\beta}, \quad 1 \leqq \alpha, \beta \leqq p \tag{8.3}
\end{equation*}
$$

in a neighborhood of $z=0$, where $a_{\alpha \beta}$ are complex valued C^{1}-functions. Suppose the w_{α} do not all vanish identically in a neighborhood of $z=0$: (1) Let $w_{\alpha}=o\left(|z|^{r-1}\right)$ at $z=0, r \geqq 1$. Then $\lim _{z \rightarrow 0} w_{\alpha}(z) z^{-r}$ exists.
(2) Suppose $w_{\alpha}=o\left(|z|^{r-1}\right)$, all r. Then $w_{\alpha} \equiv 0$ in a neighborhood of $z=0$.

Since $f_{(2)}$ is a globally defined non-negative smooth function on M, by (4.26) ${ }_{2}$ and (8.1), we have (8.2) $)_{2}$. If $K_{(2)} \neq 0$ on M, then we have $N_{(2)}=1 / 4 K_{(2)}^{2}$ is not identically zero on M and

$$
\begin{equation*}
\Omega_{(2)}=\left\{x \in M: N_{(2)} \neq 0 \quad \text { at } \quad x\right\} \tag{8.4}
\end{equation*}
$$

Let $y \in M-\Omega_{(2)}$. Since $y \in \Omega_{(1)}$, we have $K_{(2)}^{2}=4 N_{(2)}$ at y. As $y \bar{\varepsilon} \Omega_{(2)}$, by (8.4), we have $K_{(2)}=0$ at y. By (2.13) and Lemma 7, we can show that the set $M-\Omega_{(2)}$ must be at most finite (cf. [7], [8]). Let z be an isothermal coordinate on a neighborhood U of y in M such that $z=0$ corresponds to y and $\phi=\lambda d z$ on U. We define a complex valued function $\Lambda_{(3)}$ on an open set $V \subset U$ as follows:

$$
\Lambda_{(3)}=\left\{\begin{array}{cl}
\lambda^{6} \sum_{\mu \geq 5}\left(\overline{H_{\mu}^{(3)}}\right)^{2} & \text { on } V-\{0\}, \tag{8.5}\\
0 & \text { on }\{0\},
\end{array}\right.
$$

where $N_{(2)} \neq 0$ on $V-\{0\}$. We prove that $\Lambda_{(3)}$ is a holomorphic function on V, and thus $\tilde{f}_{(3)}=\lambda^{-12} \Lambda_{(3)} \bar{\Lambda}_{(3)}$ is a smooth function on V, since $\lambda \neq 0$ on V : By (2.15) with $\phi=\lambda d z$ and (4.17), $\lambda^{6} \sum_{\mu \geq 5}\left(\overline{\left.H_{\mu}^{(3)}\right)^{2}}\right.$ is holomorphic on $V-\{0\}$, (cf. [7], p. 36). If we can show that $\Lambda_{(3)}(z)$ is a continuous function on V, then, by the Rado's theorem ([14], p. 53), $\Lambda_{(3)}(z)$ is holomorphic on V.

The continuity of $\Lambda_{(3)}(z)$: Let $\left\{z_{n}\right\} \subset V-\{0\}$ be a sequence such that $z_{n} \rightarrow 0(n \rightarrow \infty)$. Since $x(u, v)$ is real analytic by Lemma 6 , we can see that $h_{\lambda_{1} i_{1} i_{2}}$'s are also real analytic. In Lemma 7 , if $w_{\alpha}(z), 1 \leqq \alpha \leqq p$, are real analytic, we can write $w_{\alpha}(z)=z^{m} w_{\alpha}^{\prime}(z)$, where $w_{\alpha}^{\prime}(z)$ are also real analytic and for some $\alpha, w_{\alpha}^{\prime}(0) \neq 0$. It follows that the function defined by

$$
\frac{w_{\alpha}}{\sqrt{\sum w_{\beta} \bar{w}_{\beta}}}
$$

is meaningful at $z=0$ and smooth at $z=0$. Therefore by the above observation and (4.11) $)_{2}$, the (local) vector field E_{2} is smooth on a neighborhood of $z=0$. At the neighborhood of $z=0$, we have obtained a
smooth decomposition $\left\{e_{\lambda_{0}}, e_{\lambda_{1}}, e_{\lambda_{2}}\right\}$. By virtue of these vector fields, $w_{\lambda_{1} \lambda_{2}}$ and $w_{i_{3}}$ defined on $\Omega_{(2)}$ tend to bounded forms at $z=0$. Therefore by (3.6), we have $\Lambda_{(3)}(z) \rightarrow 0(n \rightarrow \infty)$. That is, $\Lambda_{(3)}(z)$ is a continuous function on V. Since $\lambda \not \equiv 0, \tilde{f}_{(3)}$ is smooth on M. As M is compact, $\tilde{f}_{(3)}$ attains a maximum at $p_{0} \in M$. If $\tilde{f}_{(3)}\left(p_{0}\right)=0$, then $f_{(3)}$ is identically zero and thus we have (8.2). If $\tilde{f}_{(3)}\left(p_{0}\right)>0$, we have $p_{0} \in \Omega_{(2)}$ and $f_{(3)}$ attains the maximum at p_{0}. Since $f_{(3)}$ is subharmonic on $\Omega_{(2)}$, by the maximum principle, $f_{(3)}=$ constant, $f_{(3)} K=0$ and $A_{(3)}=0$ on $\Omega_{(2)}$, and so $f_{(3)}=0$ on $\Omega_{(2)}$ by (8.1). Continuing in this way, we can define a smooth decomposition $\left\{e_{\lambda_{0}}, e_{\lambda_{1}}, \cdots, e_{\lambda_{b-1}}\right\}$ of a (local) frame field e_{A} at any point of M. Therefore, for the possible b, if we define $\tilde{f}_{(b)}$ as follows:

$$
\tilde{f}_{(b)}=\left\{\begin{array}{lll}
f_{(b)} & \text { on } & \Omega_{(b-1)} \tag{8.6}\\
0 & \text { on } & M-\Omega_{(b-1)}
\end{array}\right.
$$

then $\tilde{f}_{(b)}$ is a smooth function on M and we have (8.2) . Summarizing up these results, we get

Proposition. Let $x: M \rightarrow S^{N}(1) \subset R^{N+1}$ be an isometric minimal immersion of a compact oriented 2-Riemannian manifold with $K \geqq 0$ and $K \not \equiv 0$. Then we have
(1) $f_{(b)}=0$ on $\Omega_{(b-1)}$;
(2) $M-\Omega_{(b-1)}$ are at most finite, for the possible b.

Appendix

9. An extrinsic rigidity theorem. Let $x: M \rightarrow S^{n+p}(1)$ be an isometric minimal immersion of a compact oriented Riemannian n-manifold M^{n} into $S^{n+p}(1)$. As an extrinsic rigidity theorem of x, the following DeGiorgi-Simons-Reilly's Theorem is known: Let N be the smooth field of oriented unit normal p-planes of M^{n} in $S^{n+p}(1)$ and let $A_{n+1}, A_{n+2}, \cdots, A_{n+p}$ be an orthonormal set of vectors in R^{n+p+1}. We put $A=A_{n+1} \wedge A_{n+2} \wedge \cdots \wedge$ A_{n+p} and $U=(N, A)$, where (N, A) means the standard inner product of N and A in exterior algebra. If $U>\sqrt{(2 p-2) /(3 p-2)}, x$ is totally geodesic. In particular if $U>\sqrt{2 / 3}, x$ is so.
S. S. Chern conjectured [6] that if there exists a constant decomposable p-vector $A=A_{n+1} \wedge A_{n+2} \wedge \cdots \wedge A_{n+p}$ such that $(N, A)>0, M$ is totally geodesic.

In the case when $n=2$ and $p>2$, we can answer affirmatively to the conjecture of a little generalized form as follows:

Theorem 5. Let x be an isometric minimal immersion of a compact oriented Riemannian 2-manifold into $S^{N}(1)$. If $U>\sqrt{1 / 2}, x$ is totally geodesic.

Proof. Reilly's integral formula [16] is, in this case,

$$
\int_{M}\left\{-K_{(2)} U+Q\right\} d M=0
$$

where

$$
Q=\sum_{i<j, \alpha<\beta, k} \sum_{\alpha}\left(h_{\alpha i k} h_{\beta j k}-h_{\alpha j k} h_{\beta i k}\right) h_{\alpha \beta i j}
$$

and

$$
\begin{aligned}
h_{\alpha \beta i j} & =\left(e_{n+1} \wedge \cdots \wedge e_{\alpha-1} \wedge e_{i} \wedge e_{\alpha+1} \wedge \cdots \wedge e_{\beta-1}\right. \\
& \left.\wedge e_{j} \wedge e_{\beta+1} \wedge \cdots \wedge e_{n+p}, A\right)
\end{aligned}
$$

The Cauchy-Schwartz inequality implies that

$$
\begin{aligned}
Q^{2} & \leqq\left\{\sum_{\alpha<\beta, i<j}\left(\sum_{k}\left(h_{\alpha i k} h_{\beta j k}-h_{\alpha j_{k}} h_{\beta i k}\right)\right)^{2}\right\}\left\{\sum_{\alpha<\beta, i<k} \sum_{\alpha \beta i k}^{2}\right\} \\
& \leqq 4 N_{(2)}\left(1-U^{2}\right),
\end{aligned}
$$

because of (3.23) and [16, p. 493], i.e.,

$$
Q \leqq 2 \sqrt{N_{(2)}\left(1-U^{2}\right)} \leqq K_{(2)} \sqrt{\left(1-U^{2}\right)}
$$

because of $f_{(2)} \geqq 0$. Thus if $U>\sqrt{1 / 2}$ we have

$$
-K_{(2)} U+Q \leqq-K_{(2)} U+K_{(2)} \sqrt{1-U^{2}}=K_{(2)}\left\{\sqrt{1-U^{2}}-U\right\} \leqq 0
$$

This implies that $K_{(2)}=0$ on M, i.e., x is totally geodesic. q.e.d.
Added in Proof (May, 1973): (1) The inequality $f_{(2)} \geqq 0$ was used firstly in [11], but the local version of the main theorem in [11] has been proved by Y. C. Wong ([17], Th. 4.9).
(2) We wish to acknowledge that a closely related treatment was announced by T. Itoh in Tokyo, April, 1973, based on the work of T. Ōtsuki.

Reference (continued)

[18] P. Hartman and A. Wintner, On the local behavior of solutions of non parabolic partial differential equations, Amer. J. Math., 75 (1953), 449-476.
Department of Mathematics
College of General Education
Tôhoku University
Kawauchi, Sendai, Japan

