
NOTES ON FOUKIEK ANALYSIS (XVIII):

ABSOLUTE SUMMABILITY OF SERIES

WITH CONSTANT TERMS.*>

By

Gen-ichirό Sunouchi.

The object of this paper is to prove some theorems concering absolute

summability systematically. In § 1, key theorems are proved, from which

theorems of the remaining sections are derived. One of the key theorems

reads as follows: when (ΛW) is a given sequence and (yw) is defined by

where (an, JC) is an infinite matrix, then

» = l, 2, )
CO CC

is the necessary and sufficient condition that any Σ |Λ»Γ<°° implies Σ|Δjyw|

<oo. By this and the similar key theorems we prove theorems of Mercerian

type (in § 3), inclusion relation between absolute Riesz summations of

different types (in § 4) and Tauberian theorems (in § 5)

§ 1. Key theorems. Let (χn) be a sequence of real number and its linear

transformation be

( 1 ) y r t = Σ βn,k %ΊC.
Jc=()

Theorem 1. In order that any Σ|*n| <°° implies Σ |Δ> | <oo, it is neces-

sary and sufficient that

(2) Σ|α»+i,TO—Λ»,m) <M.

Proof. Necessity. We have

Ayn =yn+1 — yn = Σ C«n+ l, m — Oιιy m) Xm
m=0 N

which is a linear functional on (/). If we put Λ=(Λn)fi(/), Ayn= Un(x)r

then W(x) = Σ\Un(x)\ satisfies the assumption of the Bosanquet-Kestelman

theorem ζ2~). Hence we have

If we put Λ»=1(« = »I), Xn-0 (n±tn), then we get (2). Thus the necessity

*) Received Oct. 8th, 1947.
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of the condition is proved.

Sufficiency. On the other hand, if the condition of the. theorem is

satisfied, then

Σ |Δv» J = Σ | Σ O»+1, »ι—tf«, m) χ,a\
ti = 0 ri = 0 i)i = 0

00 CO oc

^ Σ \Xm I Σ I ffw+l, MI —«,*, m I < M Σ J £ »ι I
Hl=ϋ M=0 01=1)

Thus the convergence of Σ|*,ι| implies that of Σ|Δy«.|.

We will now remark that the necessity of the condition can be derived

from Gelfand's theorem £3}. For, if we put z = (aa), y-Cy^ΞΞjJCx), then U is

a linear operation from (/) onto (bv), by Gelfand's theorem. By the represen-

tation theorem,

ya — Σ tin, m Xni

where A»=(ai,,», fl2,ι», , «»,*», ) lies in (60) and the norm of Λm

in (£w) is uniformly bounded, which is nothing but the condition of

the theorem.

More generally, we will consider the transformation,

(3) Φ )
m = 0

Then we get
00

Theorem 2. In order that any Σ \x,\ <°° implies the existence of
»ι = 0

(4) lim / \dΦ(z)\,
z-?z0 J

it is necessary and sufficient that

(5) lim /, \dψιn(z)\<M.
Z->ZQ J

ĵ roof runs similarly as that of Theorem 1.

We have also

Theorem 3 . w In order that any Σ (ΔΛ»| <°° implies Σ |Δyn| <^, it is
00 « = 0 rι = i)

necessary and sufficient that Σ cn, k converges for all n and
fc l

(6) Σ | Σ (an+hk-an,k)\ <M'(m = l, 2,
H=Ufc=l

Proof. After S. Izumi £5̂ 1 we have

<•> After prepared this note, 1 have learned this rhe>ieui is pro veil by F.M. Mears,
Absolute regularity and XΓ>rIund mean, Annals of Mali:., s (19H7} 549-'V].
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yn - Σ An, m, ΔΛm+Λ' An.

where

Au,m -Σfl», i , Aί = Hm A,., ,„, and ^ = lim #„.

h:-~i Hi-/-jr. n-?co

Thus we get the theorem by Theorem 1.

Theorem 4. In order that any ΣJ'ΔΛH <cχ> implies (4), it is necessary

and sufficient that 2 % ( » converges for all z and

lim / |rf.φHί(7) lim / |rf.φHί (2) I <M, Φ,rt(*) = £

§ 2. Absolutely regular transformation. Linear transfomation (1) (or

(3)) is absolutely regular provided that it transforms all absolutely

convergent series into absolutely summable ones.

Theorem 5. Riesz's method of summation is absolutely regular.
CO

Proof. Riesz mean of Σ aΛ is defined by
n = 0

\ m <ω

This is a transformation of the type (3). Now the condition (5) is satisfied,

since

\ Λ> / _^ I \ CO I Cύ~

λ,,,. w ω->co j χ^

The following theorems are proved by the similar method.

Theorem 6. Abel's method of summation is absolutely regular. More

generally the summation by Dirichlet series is also.

Theorem 7. In (1), if Toeplitz condition is satisfied and (#•>»>*) is

a monotone sequence of n for each m, then (1) is absolutely regular.

Corollary. Riesz's (R, ρn)-summation is absolutely regular, if />,«.>0 and

(R, pn) -summation is defined by

where

§ 3. Theorems of Mercerian type.

Theorem 8. If JΊ*= (1+*»)..«-Λ,* a,-._i fe>0)? then i|A3'«l <°° implies
« = 0 .
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Proof. Putting an = l/an and expressing χn by (y)t),

Oil , ( l + <*i) <** „ , ,

say. By Theorem 3, it is sufficient to prove that the transformation satisfies

the condition (6).

m i

Γ Π
Lv- l

Σ I 2 (an+uK-an*)]^-^—\ Π ( l + « , ) - l Π (

which is evidently bounded uniformly. This theorem has been proved by

the author £63 by direct calculation.
n

Corollary. If q>—l$pn>0, P r t=Σ pm-+?° and

βo oo

then 21 Δy« | < oo implies 21 ΔΛ» | < OO.

For put

then we have

This theorem includes Bosanquet's (ΊJ and Hayashi's results (̂ 4̂ .

§ 4. Inclusion relation of absolute Biesz's summations of different
CO

types. Let us suppose that pn>0, P«=Σ />»»—• oo and put

then we have

(8) 5, = - ^ r L - ^ ^ + ^ L ynm

yn yn
oo oo

Theorem 9. In order that 2iΔyM[ <oo implies ΣlΔ5w|<oo, it is necessary

and sufficient that Pn/Pn^1>a> ϊ .

Proof. It is sufficient to prove that the condition (6) in Theorem 3 is

satisfied. If we put (8) in the form
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then

and the other aa,m becomes zero. Thus the left-hand side of the condition (6)

becomes

Pm
2 2 (cin+ι,k—a>ι, fc + 1 2 ^

p
which is bounded if and only if

Pn/pn+ι<M, i.e.,

This is equivalent to the condition of the Theorem.

Theorem 10. If pn+ι/Pn<qn+vlQn, then the [#, ̂ -summation implies

\R, />w|-summation.

Proof. Let us put

which is equivalent to

We have

SH- — tn.λ

say. Then for nt<n we have

n>m

qnι+ι I

where the left-hand side is equal to 1 for m>n. Hence we have

2 (Cln+i, k — βn, fc)

•ίιn + 1 qm+i

^ 2 <2.

By Theorem 3 we get the implication relation required.

If we denote the consequence of Theorem 10 by

|i?, pn\ Z) \R, qn\,
symbolically. Then we have, by Theorem 10,
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\R, 1/π log n log, w| Z \R, l/« log «| D |1?, l/« I

D I i?, 11 = IC, 11 ID I #, kn I = absolute convergence.

§ 5. A Tauberian theorem. Hyslop CO has proved a Tauberian tneorem

for absolute Abel summability, which may be generalized in the following

form:

Theorem 11. If

(1°) <P(x,t) is continuous and 0 < ^ ( Λ , O ^ 1 ,

(2°) φ(x,t) is monotonic with respect to x,

ru

(3°) I ψ(x,t)d\(t)—\(x) is bounded variation in any finite interval of
J o

x uniformly to u, and monotonic witJy respect to x from a fixed a,

(4°; [ </<u,t)dUt)-\(u) = θa),
J ΰ

nil '

(5°) lim I I^CΛ,^)—l\d\(t) exists and is bounded then, any function

s(O which is absolutely summable φ:

Φ( Λ )= f <P(x,t)ds(t)sBV(0,oo),
J 0

Φ(#) being an absolutely regular transformation, is absolutely convergent

(s(O έ 5F(0,oo)), provided that

where

Proof. If we put

(1) δ ( Λ ) = ΛTΪ) / Λ ( 0

then

(2) Γ ' dδ(Λ) I SM

Solving (1) with respect to S(Λ), we have

(3)
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Substituting this into Φ(x), we get

p p
J π ^ 0

say. Since Φ is absolutely regular, IΛ is absolutely summable and then

J 0

Now

/ Φ(x,ι

f f
Jo *' ' J 0

where

Since S(x) t BV (0,oo), if we can prove that

(4) I ψ U,0 δ COrfλCO ε ^ V C0,oo),
J 0

then 5(Λ) ε BV(0,oo) which is required. By 8(x) ε BV(0,oo) and Theorem 4,

if lira / ψ(x,t)d\(t) exists and

ψ(x:t) d X(t)

,O-l, i f
 O ^ / ^

then we get (4). Now

f . p
I \dr, I ψ(x,t) d X(ί) I

J n " J o '

= I &/ ψ(x,t)dχ(t) + J J j
•/ I) •/ I) ί */ 7/, »/ 0

,0 d λCO

say.

I ^ ( Λ , 0 d λ(O )
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o

by (4°). Since Ψixfo is monotonic,

> SUNOUOHI

dj

= lim f {^(Λ,O-lUλ(O-Γ \<P(u,t)-l\d\(O

-0(1),

by (4°) and (5°). Thus we get the theorem.

Corollary. If Φ(x) = f e'w u(t) dt a BVCL,OQ)

and

1 P
x J l

then

J \u(t)\dt<oo.

This is aTauberian theorem for \A\ -summability, proved by Hyslop

Proof. As by Λ(0 = *, and λ(O=log/,

e !x —j~dt—log x

is monotonic from some x, and

and

(e " t l x — 1) ~τ~ dt=0.

noo

(Corollary 2. If Φ ( Λ ) = / u(t)e~°o* tVrdt

= f n(t)Γllxdt
and

u(t) log— dt s BVα,*>)
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then

\ \u(t)\ dt<oo.
J 1

This is a Tauberian theorem for the absolute summability of the ordin-

ary Dirichlet series.

Literature

(1) Bosanquet, L S., An analogue of Mercer's theorem, Journ. London Math. Soc, 13

(1931), 177-J8U.

(2) Bosanquet, L. S. and Kestelman, H., The absolute convergence of series of

integrals, Pnc, London Math. Soc. 4"> (1938), 88-97.

(3) Gelfand, L, Abstrakte Funktionen und lineare Operatoren, Recueil Math.. 4

(1938), 235-284

(4) Hayashi, G. A theorem on limit, Tόhokn Math. Journ. 45 (1939), ^29-3^.

(5) Izumi, S., Uber die liDeare Transformation in der Theorie der uner.dlichen

Reihen, Tόhoku Math. Journ , 27 (1920), 313-323.

(6) Sunouchi, G , On Mercer's theorem, Proc. Imp. Acad. Tokyo, (under the press).

(7) Hyslop, J. M., A Tauberian theorem for absolute summability, Journ. London

Math. Soc! 12 (1937), 176-180.

Tδhoku University, Sendai.




