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1. Introduction. Let G be a (not necessarily lacally compact) topolo-
gical group. A continuous (complex-valued) function f(g) is called- positive
definite provided that

>, f(gig5Deat; = 0

1,J=1
for any set of complex numbers {a;} and elements {¢g;} of G. A strongly
continuous function x(g), being defined on G and having its values in a Hil-
bert space H, is called, after A.Khintchine [7], stationary provided that
(%(g), x(h)) depends only on gh~1.

A closed connection between positive definite functicns and stationary
functions is firstly pointed out by K.Fan [27], when G is the (discrete) ad-
ditive group of integers. He shows that for a positive definite sequence
{a,} there exists a stationary sequence {#,} wWith &n_,, = (¥, 2,,). (Converse is
naturally obvious.) Establishing this, he developed the theory of positive
definite sequences parallel with that of stationary sequences, and proved
several theorems without use of the Herglotz Theorem of integral repre-
sentation,

On the other hand, it is known that I. Gelfand and D.Raikov [3] estab-
lished the natural one-to-one correspondence between positive difinite func-
tions and unitary representations of locally compact group, that is, for a
given continuous positive definite function f(¢) there exists a unitary (strong-
ly continuous) representation U(g) with f(g) = (#U(g), x) where x is a sui-
table element of the representation space. (Although Gelfand-Raikov’'s paper
is not available to the authors, this result is reproduced in R, Godement
[47 and H. Yosizawa [9]). Hence, putting x(g) = x(1)U(g), x(9) becomes a
stationary function on G, and so Fan’'s theorem is generalized onto locally
compact groups as follows: For any positive definite function f(g) on G
there is a stationary function x(g) on G with f(gh~!) = (x(g), x (h)).

It seems, therefore, Fan’s method of the proof is applicable to this gene-
ralization. As it is seen in the below, this is done in §2, with a few modifi-
cation. Moreover, it generalized Gelfand-Raikov's Theorem without local
compactness (Theorem 1). However, it is not so unexpected. Let G be a
topological group (with or without local compactness) and f(9) be a conti-
nuous positive definite function on G. Considering G as a discrete group,
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f(g) gives an algebraic (i.e. not necessarily continuous) unitary representa-
tion U (g) of G. Therefore, if the strong continuity of U(g) is deducible
from the continuity of f(g), then this gives the desired generalization. The
proof of Fan (in a generalized form) is actually like that, and continuity pro-
blem is solved by virtue of Riesz-Kakutani’s lemma, which states that a
directed set of elements of a uniformly convex Banach space converges
strongly if and only if it converges weakly and its norm converges. (Cf. Kaku-
tani [6]). Thus our tactics yield essentially nothing new.

‘Comparing Fan’s and Gelfand-Raikov’s theorems, it naturally arises
the following question: Is it possible to find a unitary representation U(g)
of the group for a given stationary function x(g) such as x(g9) = x(1)U(9) 7
(The converse is obvious). In the below, it is solved that the problem is
possible assuming the separability of the group (Theorem 2). This is fairly
done following the proof of von Neumann-Schoenberg [8], which is used in
the research of screw functions in the metric geometry. (This analogy is
already pointed out by K.Fan [2]). §3 consists of the proof. From this re-
presentation, Khintchine’s Theorem [7] becomes a corollary of the mean
ergodic theorem of J.von Neumann.

In §4, Fourier series of a stationary function which is representable
by unitary operators, is analyzed for a (not necessarily locally compact but)
commutative group. Some theorems, which are obtained by K.Fan {27 to
the case of the additive group of integers, are derived by the help of the
general ergodic theorem due to Alaoglu-Birkhoff [17] (Theorem 3,4); for ex-
ample, (1) the existence of the mean for a stationary function (for arbitrary
G), (2) “Fourier coefficients” of such functions depends on group characters
and mutually orthogonal for distinct indices, (3) “Fourier series” converges
absolutely and its sum is also stationary.

2. A Generalization of Gelfand-Raikov’s Theorem. We begin by prov-
ing, following the line of K.Fan [2] with a few modification, the next

THEOREM 1. For any positive definite continuous function f(g) on G there
exists a unitary representation U(g) of G such that
(1) 7/ (g) = (xU(g), x).

Proof of the theorem requires some steps of lemmas:

LemmMma 1. Le{ flg,h) (9, h) € G x G) be a complex-valued function such
that f(g,h) = f(h,g9). In order that there exists a Hilbert space valued func-
tion x(g) such that f(g, h) is equal to the inner product (x(g),x(h)):

2 f(g, k) = (x(9), x(h)),
it is necessary and sufficient that the inequality

(3) D> (g, by) @i a; =0

i=1j=3
holds for any finite system of complex numbers o; and any system of elements
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91, h} (l§i7 jén) OfG.

Proor. Since the necessity of the condition is evident, we shall prove
the sufficiency. Let L be the set of all functions defined on G, which does
not vanish only on a finite subset of G. For any function f’(g9) of L, the
norm |/ || will be defined by

(4) 112 = 2> (g, B) f(9)f (k)

which is always real, non-negative in virtue of (3). That this norm has pro-
perties of usual norm is easily verified, but ||/’ || = 0 does not implies /' = 0

Moreover, it is easy to verify that in Z the identity

(5) I+ 7B+ 1 =78 =200 + 20

holds. Therefore, by a theorem due to P.Jordan and J.von Neumann [3]

L is considered as a subspace of the Hilbert space H, by making a suitable
quotient space, with inner product

6) (1= (!If’ F = =SS+ iR — = i),
On the other hand, if we define x(g) such that

/1, for h =g;
(7) x(g) (B) = ¢ for 7o g
then we find, by (6), (x(g), x(Rh)) = f(g, h).

LEMMA 2. A continuous positive definite function f(g9) defined on G can
be represented by a continuous stationary function on a suitable Hilbert space
H as follows :

(8) f(gh™1) = (x(g), x(h)).

Proor. It is sufficient to show that the function x(g), constructed in
Lemma 1,is strongly continuous and stationary. The stationarity is fol-
lowed from the identity

(9) (x(9), x(R) =f(gh™?)=f(gh~*1) = (x(gh~?),x(1)),
and the strong continuity is verified by the following two relations and
Riesz-Kakutani’s lemma [6]; if g, converges to g, then
10) (% (9a), x(1)) = f(ga)—>f(9) = (x(g), x(1)),
(11) 1 (ga)lF =1 (1) = [|x(9) |
LemMa 3. Let Ulg) be an operator on H constructed in Lemma 1 which
is induced by the operator U'lg) on L to L:
(12) U'(9): FU(9))(h) = f'(hy),
then the mapping g > U(g) is a unitary representation of G.

Proor. It is sufficient to show that the operator U’(g) is an isometric
operator on L.
By (6), the inner product of (k) and f'(h) of L is
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(f, )= 2 f(gh=))f(g) F"(h).

g, h
The fact that U’ (g) is an isometric operator on L is easily seen from the
following equalities,

FUg), ["Ug)) = 2/ (hk=")f (hg)f (kg)
h, &

Il

hZf(h'g~1gk'—1>f'<h'>/"’<k7)"
XY
hzkz’f (WE-Yf (W) (K)
=, 1.
By using this unitary representation U(g), x(g) = x(1)U(g) holds, therefore
flg) = (x(9), x1)=(xDU(g), x(1)).

This completes the proof of the theorem.

COROLLARY. If f and [’ are continuous p.d. functions on G, then
13 [fpl =7 Q).
and the pointwise product of f and f' is also p.d.

Proor. Inequality (13) is easily verified by using the Schwarz inequality
for f(g) = (x(1)U(g), x(1)). To prove the last part of the corollary, it is
sufficient to show that

Il

a4 EEﬁf(gi g asa; =0
i

for any finite system of ¢g; € G and complex numbers «;,

Let x(g9) be a stationary function, by which f(g) is represented: f (gh~!) =
(x(g), x(k)), and H’'(ZH) be a closed linear manifold spanned by the set
x(q1), -+ -+, %(gn). If the set {ex; k=1, ----,p}, (p <n)is a base of H, then

b4
X (gi) = zxi,kek (i = 1, °c '7”)
k-1

and

r b4 p» _
f(g:9;71) = (x(g0), x(g5) = <2 Ni € 2 A elc) = 2 Ak A ke

k=1 k=1 k=1

Therefore,
Y4

SIS igr™) fgigr™) ava; = > (21” (9: 9571 e @) (7:;;0—‘1')) =0
P g k=1 i,j

by the positive definiteness of 1.

3. The Representation of a Stationary Funetion. Firstly, we shall
prove the following
THEOREM 2. In a separable group, any continuous stationary function
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x(g) is representable by a unitary representation U(g) of G :
15) x(9) = 2 (L)U(9).

Proor, Let H; be the closed linear subset of H, which is spanned by
all {x(9); g € G}.

Write a dense subset of G as a sequence, ¢,=1, g, g;, --, and then
orthogonalize the sequence
x(91), %(ga), -+ =, X(gn)y -+

by the Gram-E.Schmidt procedure, thus we obtain the normalized orthogonal
set

ul} u:"-.o.’ u‘n’..‘- .
Thus
(16) U = 2 a,jx(gj),
J=1
where all a;; are complex scalars, The x(g;); i=1, 2,-.--, are linear agg-

regates of the #/s, hence (owing to x(g)'s continuity in g) all x(g), g € G,
are limit points of such linear aggregates, Therefore all x(g) belong to
the closed linear set which is spanned by #;,#,, --.., and therefore coin-
cides with H,. Hence

17) x(y) = Zai (9) us

where a;(g) are complex continuous functions of g.
Combining (16) and (17) we get

i
(18) x(9) = > ai(g) { Sagx (9;)} .
i J=1
Consider the equation .
a9 5ok = Bato)| Dastosh) |
i J=1

(19) can be written as a relation of the
(x(g'h), x(g"h)) for ¢, 9" =9, 91, 92+,
and the
a: (9), a;;.
By the stationarity of x(g), this means a relation of the
(x(g'k), x(9"h)) =[(g'hh~g"~%) =F(9'9""")
and the
a; (g), a;;j,
Hence (19) is independent of 2. But for B =1 (19) coincides with (18), and
hence is true. Therefore they hold for all 2.
Let

i
(20) ui (h) = 2 @iz (gsh).

Jj=1
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Then (19) gives

(21) x(gh) = 2 aig) uih).

By the same method as the proof of (19), we can prove

(22) w(h), ux(h), ---- is a normalized orthogonal set for all k.
Consider a fixed #. The u,(h), uXh), --- span the same closed, linear set

as the x(¢.h), x(g.h), ---. Owing to the continuity of x(g) in g, this is the

same set as spanned by the x(gh), g € G, or, if we write g for gk, by the
x2(9), g € G. In other words:

(23)  uy(h), ulh),---- span the closed linear set H; for all &.
By (22), (23) the equations
(24) w,U (k) = u;(h), for7=1,2 ----,

define a unitary transformation U(g) in H;. Then that the representation
9->U (g) is a desired one follows from (18) and (21).

CoroLrArY (Khintchine). If x(n) is a stationary sequence on the additive
group of integers, then its arithmetic mean

y(n)=@2n+ 1) 2 x(P)

P==n

converges strongly, that is,
lim [y (n) —y (m)* =
n,M—>c0

Proor. Since by Theorem 2 the stationary sequence x(») is of form
x(0) U», this is an immediate consequence of the celebrated mean ergodic
theorem of J. von Neumann.

4. Fourier Series of a Stationary Function. In the following we shall
consider a continuous stationary function x(g) on G with range in H, which
is representable by a unitary representation U(g) of G: x(g) = x(1) U (9).
By Theorem 2, this class includes all stationary functions on separable
groups.

For the following discussion, we recall the following well-known Lemma
due to L. Alaoglu and G. Birkhoft [1]:

LemMma 4. Let H be a Hilbert space and | = {U} be a group of unitary
operators on H; let F be a closed linear manifold of H spanned by the set
{x; xU = x for all U c W}. Then for any x € H, the smallest closed convex
set K, which contains {xU ; U € U} meels with F by a unique point x, which
is same time (a) the projection of x in F, (b) the point which has the smallest
norm in K,.

By the use of the preceding Lemma 4 for a given representable sta-
tionary function x(g), there exists a projection P on H such that PU(g) =
U(g)P = P, x(g9) = x(1) Ulg) for all g € G. Define the mean by
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@5) fx(y)dg =2(@)P=xOU@P=x1)P,

then we Have:
LEMMA 5. For a representable stationary function x(g),

fx(g)dy},
Proor. ([ (@ ds, () =z P, x VTG = (D, 2OV M) P)

fo(g)dg

THEOREM 3, Let G be abelian, x (g) be a representable stationary function:
x(g) = x(1) U(g), and X (g9) be a continuous character of G. Then

(fx(g)dg, x(h)) = (x(h), fx(g)dg>=)
for all h of G.

3

!

=(x0), x(HP)=[x1) P|F =

x(X) = ff@x(l)mg)dg = x(1)P,

defines a projection Py tn H and Py -Py = 0 for any different characters X, X'
of G.

ProOF. The existence of x(X) is certified by the fact that y(g) = X(g)x(1)U(g)
is also a representable stationary function. Since we can assume that H
is spanned by {x(g); ¢ € G} without loss of generality, it is sufficient to
show that x (1) PyPy = 0.

Now,

x(1) PPy = [%x(l) PyU(g)dy
= f (X(9)/ X (9)) X' () 2(1) Py Ulg)dyg

- f X"(g) (9)dy,

where X”(g) = X(9)/X/(¢9) is a character, and 3(g) = X(9) x (1) P,U(g). Since
P,X'(9) U (y) = P, by the mean ergodic theorem of Alaoglu-Birkhoff, y(g) =
2(1)P,,, that is, it is constant on G. Clearly, x> X (¢9)x is a unitary trans-
formation, whence Lemma 4 is also applicable. On the other hand, if
X (g) is non-trivial, K, contains the origin as a fix-point, that is, the last
term of the above equality vanishes. This proves the theorem.

By the preceding theorem, {P,; X, character} is a system of mutually
orthogonal projections on H, therefore

2Mx 1) Pl < [ x1) [,
X
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and
> X (9) x (1) Py
X

converges .absolutely (with respect to g) to »(g). Now, we may define -the
Fourier. series of a stationary function x(g) such that

x(g) ~ 2X(g)x(1)Py.
X

THEOREM 4. [n an abeliarn group G, consider a representadle stationary
Junction x(g) and its Fourier series

Y@= 2X(9)x1)Py.
X

Then, y(9) and z(g9) = x(g) — ¥ (g) are also stationary, and the Fourier series
of 2(g) does vanish,
Proor. Except the stationarity of z(g), all other statements are easily
verified. While about 2(g);
(2(9), 2(h) =(x(9) —(9), x(h) —y(h)

= (2@~ Zx@xOPy x0) ~ Zx ) 1) By
X X

= (x(9), x(h) — 2 (X(9)x(1) Py, x(h)) — 2 (x(g), X (Wx(1)Py) + ((9), (W)).
X X

In the right hand side, the first and the fourth term have the stationary
property, and about the second term,

2 X (@) x1) Py, x(h))= 2 X(9)(x)Py, x(1) U (h))
X

X

= 2 X(9)X (h)(x(1) Py, X(h)x1)U(h))
X

= S xeh ( f X5 U (Wdh, X () x(1) U )
X

= > X(gh) ‘![X(h)x(l)U(h)dh 'IE‘ (By Lemma 5).
X i
Since the third term can be discussed similarly, this completes the proof.

BIBLIOGRAPHY

[ 1] L.ALAOGLU-G. BIRKHOFF, General ergodic theorems, Ann. of Math. , 41(194 ), 293-309.

[2]) K.FAN, On positive definite sequences, Ann. of Math., 47 (1946), 593-607.

[3] I GELFAND-D. RAIKOV, Irreducible unitary representations of arbitrary [ocally
compact groups, Rec. Math. (Mat. Sbornik) N.S., 13(1943),301-316.

(4] R.GODEMENT, Les fonctions de type positif et la théorie des groupes, Trans.
Amer. Math. Soc., 63 (1945), 1-84.

[5) P.JORDAN-J.VON NEUMANN, On inner products in linear metric spaces, Ann.
of Math., 36(1935),719-723.



ON THE REPRESENTATION OF POSITIVE DEFINITE ETC. 9

(6] S.KAKUTANI, On some properties concerning uniformly convex Banach spaces (in
Japanese), Isésiigaku, 1, No.2 (1939), 51-52.

{73 A.KHINTCHINE, Uber stationire Reihen zufilliger Variablen, Rec. Math., 40
(1933), 124-128.

(8] J.vON NEUMANN-IL J.SCHOENBERG, Fourier integrals and metric geometry, Trans.
Amer. Math. Soc., 50 (1941), 226-251.

(93 H.Yosizawa, Unitary representations of locally compact groups, Osaka Math.
Journ., 1 (1949), 81-89.

OsakA NORMAL COLLEGE, TENNOJI, OSAKA;
2ND COLLEGE OF ARTS & SCIENCES, TOHOKU UNIVERSITY, SENDAIL





