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The necessary and sufficient condition of absolute regularity for any
sequence-to-sequence transformation was given by Knopp-Lorentz [2] and
one of the present authors [4] independently. On the other hand, for any
function-to-function transformation Knopp-Lorentz stated sufficient conditions
for absolute regularity, but they did not prove the necessity. The object of
this note is to prove this.

THEOREM 1. In order that for any a{t) €£(0, oo) the transformation

a(x)= I b{x,t)a(t)dt
o

is defined and b(x) € .£(0, oo), it is necessary and sufficient that

ess. sup I Ib(x, f)\dx<* Mf

~ ϋ

where M is an absolute constant.
THE FIRST PROOF. The method of this proof is analogous to the previous

paper of Sunouchi £4]. We prove only the necessity, since the sufficiency
is evident.

The transformation

b(x, t)a(t)dt
o

is an additive and homogeneous operation from L(Q, oo) into itself. Put
oo

U(a)= ί b(x,t)a(t)dt
o

and

U(a) - p(a\

where the generic elements a{-) and £/(•) € L{0, oo) and the norm is in the
Z-sense.

Then, since

p(a)=> J I b(x,t)a(t)dtdx,
j

0

we get
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lϊm inf f f

/
lim inf 7
ll*n-«ί|2Γ*0 J

0 0

J J b(x,t)a(t)dt

dx

b(x,t)an(t)dt dx

dxy

by Fatou's lemma. That is> p(x) is lower semi-continuous, so p(x) is
continuous from Gelfand's lemma \Ύ]. Thus U(a) is a linear bounded
transformation from L(0, oo) into Z(0, oo).

On the other hand the most general linear bounded transformation of
, oo) into itself is well known, for example see Phillips [3].
His general form is

r(«) = «(ί)Ji

where 0β) is the integral of Phillips' sense and

V°°(x) is the class of Lφ, oo)-valued abstract additive set functions x{τ), and

V"(x) = ίx(τ) I \\x{τ) || ^ M I r |, I r | < col

So, in our case we can write

'(α)= I b(x,t)a(t)dt-.
o

where

XT, ί ) < #

for any measurable set T.
Consequently, if we denote by W the class of all measurable sets with

finite measure, then we have

L u. b. i f ^
T e 9)1 I T

that is,

l.u.b. i - Γ [ b(x,t)dt
0 T

Letting | r | -> 0, we have
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— jb(x,t)dt b(x,t)

and so

l.u.b. j dx\b(x,t) I <M,

p.p. in /,

p.p. in /.

THE SECOND PROOF OF NECESSITY. The continuity of the functional p(a)
is deduced as in the preceding proof. Then we can find two positive numbers
8 and N such that p(a) < N for every a(t), if

\a(t)\dt< B

is satisfied. For any fixed x, let Ex be the Lebesgue set in t of the function
b(x, t), clearly its complement CEX is a null set. Hence, by the Fubini
theorem, almost all t are the Lebesgue points of b(x, t) in t for almost all
x. We denote such set of ^-points by T, then | CΓ | = 0. For any τ ζ T,

put
ah(f) = B/h if t € (T, T + A),

= 0 otherwise.

Since I | ah{t) \dt <^8, we get by the above fact
ϋ

W > />K(f)) = J - | J b(x, t) dt\dx

or

-i- *(*,«)* dx.

Let h -» 0 ίind take the lower limit in each side, then we have
oo τ+Jl oo

~ > f liminf 4~ / b{x,t)dt dx- [ \b(x,τ)\dx,
b J h^o h J J

0 T ' 0

As I CT I == 0, this proves the necessity with M - N/B.

THEOREM 2. In order that for any s(t) € BV{0, oo), £/&£ transformation

a(x)= j b(x,t)ds(t)
0

& defined and a(x) € £(0, oo), iί is necessary and sufficient that

s. sup I I b(x, t) I dx g Mess.
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PROOF. If we fix an x, then b(x,t) is continuous for t. Especiallyjve

assume that s(t) is absolutely continuous and its derivative is denoted by

a(t), then

a(x) = ί b(x} t) ds{t) = ί b(x, t) a(t) dt.
ϋ 0

So, by Theorem 1, we get

e s s . s u p I I b(x, t)\dxS M.
Ogί<oo J

0

The sufficiency is evident.
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