THE PARACOMPACTNESS OF CW-COMPLEXES

HIROSHI MIYAZAKI

(Received November 1, 1952)

The category of paracompact normal spaces is a sufficiently broad class in which some methods of algebraic topology may be applied. It is well-known that this category contains all metric spaces, compact normal spaces and fully normal Hausdorff spaces. Simplicial complexes with the weak topology and CW-complexes in the sense of J.H.C. Whitehead $[5, §5]^{1}$ especially play important roles in the algebraic topology. Author [3, Lemma 4], J.Dugundji [2, Theorem 4] and D.G.Bourgin [1, Theorem 3] have been proved that any simplicial complex with the weak topology is paracompact. The purpose of the present note is to prove that any CW-complex is paracompact.

1. Notations. Let X be a space and W be a subset of X and $\mathfrak{V} = \{V_j\}$ be a family of subsets $V_j \subset X$ and $f: Y \to X$ be a continuous map of a space Y into X. We shall use the following notations

 $\overline{\mathfrak{V}} = \{\overline{V}_j\}$ (\overline{V}_j denotes the closure of V_j in X),

 $\mathfrak{V} \cap W = \{V_j \cap W\}, \text{ St}(W; \mathfrak{V}) = \bigcup V_j(V_j \cap W \neq \phi, V_j \in \mathfrak{V}),$

 $\operatorname{St}(\mathfrak{V}) = \{\operatorname{St}(V_j; \mathfrak{V}) | V_j \in \mathfrak{V}\}, \ f^{-1}(\mathfrak{V}) = \{f^{-1}(V_j) | V_j \in \mathfrak{V}\}.$

And $\mathfrak{U} > \mathfrak{V}$ means that each element of \mathfrak{U} is contained in some element of \mathfrak{V} .

Let E^n be the subset of *n*-dimensional Euclidean space defined by

$$-1 \leq x_i \leq 1 \qquad (i = 1, \ldots, n).$$

The boundary of E^n is denoted by S^{n-1} . For a point $x \in S^{n-1}$ and a real number $t(0 \le t \le 1)$ let (x, t) denotes a point which divides the segment joining x to the center $0 = (0, \dots, 0)$ of E^n in the ratio t: 1 - t.

For a given point $(x_0 \ t_0)$ $(x_0 \in S^{n-1}, \ 0 < t_0 < 1)$ let V be an open set of S^{n-1} which contains x_0 and let \mathcal{E} be a number such that $0 < \mathcal{E} < \min(t_0, 1 - t_0)$. Then the open set $W(x_0, \ t_0) = \{(x, \ t) | x \in V, |t - t_0| < \mathcal{E}\}$ is called a regular open set of E^n with the center $(x_0, \ t_0)$ and the bottom B $[W(x_0, \ t_0)] = V$ and the breadth $\delta[W(x_0, \ t_0)] = \mathcal{E}$.

2. Two lemmas. Here we shall prove two lemmas which are used in the proof of our main theorem.

LEMMA 1. Let P be a union²) of at most (n + 1)-dimensional element E_{Λ}^r which are mutually disjoint. Let $\mathfrak{U} = \{U_{\alpha}\}$ be any open covering of P. Let

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

²⁾ P is topologized so that each E_{λ}^{r} with its own topology is both open and closed in P.

 $\mathfrak{B} = \{V_i\}$ be a given open covering of n-skeleton P^n such that for each element V_i of \mathfrak{B} there corresponds an element $U_{\alpha(j)}$ of \mathfrak{U} which contains the star set $\operatorname{St}(V_j; \overline{\mathfrak{B}})$ and for each (n+1)-element E_{λ}^{n+1} , $\mathfrak{B} \cap \dot{E}_{\lambda}^{n+1}$ is a finite covering. Then there exists an open covering $\mathfrak{B} = \{W_i, W_n\}$ which satisfies the conditions:

- (1) $W_j \cap P^n = V_j$ and $W'_a \subset P^{n+1} P^n$,
- (2) $\mathfrak{W} \cap E_{\lambda}^{n+1}$ is a finite covering,
 - (3) $\operatorname{St}(\overline{\mathfrak{W}}) > \mathfrak{U}$ and in particular $\operatorname{St}(\overline{W}_{j}; \overline{\mathfrak{W}}) \subset U_{\mathfrak{a}(j)}$.

This lemma will be easily obtained from the following lemma.

LEMMA 1'. Let E be an n-element and S its boun lary. Let $\mathfrak{U} = \{U_{\alpha}\}$ be any open covering of E and let $\mathfrak{V} = \{V_i\}$ be a given finite open covering of S such that for each element V of \mathfrak{V} there corresponds an element $U_{\alpha(j)}$ of \mathfrak{U} which contains the star set $\operatorname{St}(\overline{V_j}; \mathfrak{V})$. Then there exists a finite open covering $\mathfrak{W} = \{W_i, W_{\alpha}\}$ such that $W_j \cap S = V_j$, $W'_{\alpha} \subset E - S$, $\operatorname{St} \mathfrak{W} > \mathfrak{U}$ and in particular $\operatorname{St}(\overline{W_j}; \mathfrak{W}) \subset U_{\alpha(j)}$.

PROOF. We may assume that $E = E^n$, $S = S^{n-1}$. For a fixed element V_j of \mathfrak{V} , let $\overline{V}_{j_0}, \ldots, \overline{V}_{j_p}$ be element of \mathfrak{V} such that $\overline{V}_j \cap \overline{V}_{j_i} \neq \phi$. We set

$$U_{j}^* = \bigcap_{\iota=0}^p U_{a(j_i)} \cap U_{a(j)}.$$

By the assumption St $(\overline{V}_j; \overline{\mathfrak{B}}) \subset U_{a(j)}$, hence we have $\overline{V}_j \subset U_{a(j)}$. Therefore there exists a real number $t_0(0 < t_0 < 1)$ such that for any $x \in S$, if $x \in V_j$ and $0 \leq t \leq 2t_0$ then $(x, t) \in U_j^*$.

Now we set

$$W_{J} = \{ (x, t) | x \in V, 0 \leq t < t_{0} \},$$

$${}^{1}W_{J} = \{ (x, t) | x \in V, 0 \leq t < 2t_{0} \}.$$

Since \mathbb{I} is an open covering of compact metric space E, there exists a positive number \mathcal{E} such that any subset W of E with the diameter $d(W) < \mathcal{E}$ is contained in some element of \mathbb{I} .

Next, for each point (x, t_0) $(x \in S)$ let $W^*(x, t_0)$ be the intersection of all elements of $\{{}^1W_j\}$ which contain (x, t_0) . Then $W^*(x, t_0)$ is non-empty open set. Therefore there exists a regular open set $W(x, t_0)$ such that $W(x, t_0) \subset W^*(x, t_0)$ and $d[W(x, t_0)] \leq \rho = \varepsilon/6$. Since $S_1 = \{(x, t_0) | x \in S\}$ is compact, S_1 is covered by finite elements of $\{W(x, t_0) | x \in S\}$, say $\{W(x_\alpha, t_0)\}$ $(\alpha = 1, \dots, q)$. Let $2\delta_0 = \min \delta[W(x_\alpha, t_0)]$ and we define W'_{α} and ${}^1W'_{\alpha}$ by

$$W'_{a} = \{(x, t) | x \in B_{a}, |t - t_{0}| < \delta_{0} \},$$

$${}^{1}W'_{a} = \{(x, t) | x \in B_{a}, |t - t_{0}| < 2\delta_{0} \},$$

where B_{α} is the bottom of $W(x_{\alpha}, t_0)$.

For each point (x, t_1) $(t_1 = t_0 + \delta_0)$, let $W^*(x, t_1)$ be the intersection of all elements of $\{{}^1W'_a\}$ which contain (x, t_1) . Then $W^*(x, t_1)$ is a non-empty

open set. Hence there exists a regular open set $W(x, t_1)$ such that $\overline{W(x, t_1)} \subset W^*(x, t_1)$ and $\delta[W(x, t_1)] \leq \delta_0/2$. Since $S_2 = \{(x, t_1) | x \in S\}$ is compact, S_2 is covered by finite elements of $\{W(x, t_1) | x \in S\}$, say $\{W(x_\beta, t_1)\}(\beta = 1, \dots, r)$. Let $\delta_1 = \min\{\delta[W(x_\beta, t_1)]\}$ and we define W'_{β} by

$$W_{\beta}^{\prime\prime} = \{ (x, t) | x \in B_{\beta}, |t - t_{1}| < \delta_{1} \},\$$

where B_{β} is the bottom of $W(x_{\beta}, t_1)$.

For each point(x, t) $(x \in S, t_1 + \delta_1 \leq t \leq 1)$ we associate a spherical neighborhood W'''(x, t) with the diameter $\leq \delta_1/2$. Since $E' = \{(x,t) | x \in S, t_1 + \delta_1 \leq t \leq 1\}$ is compact, E' is covered by finite elements of $\{W''(x, t) | x \in S, t_1 + \delta_1 \leq t \leq 1\}$, say $\{W_{\gamma}'''\}$ $(\gamma = 1, \dots, s)$.

Now we set

$$\mathfrak{W} = \{ W_i, W'_a, W''_\beta, W'''_\gamma \},\$$

then \mathfrak{W} is a finite open covering of E. By the construction it is obvious that

 $\overline{W}_{j} \cap \overline{W}_{\beta}^{\prime\prime} = \phi, \ \overline{W}_{\alpha}^{\prime} \cap \overline{W}_{\gamma}^{\prime\prime\prime} = \phi, \ W_{j} \cap S = V_{j}, \ W_{\alpha}^{\prime}, \ W_{\beta}^{\prime\prime\prime}, \ W_{\gamma}^{\prime\prime\prime} \subset E - S$ and

$$d[W'_{\alpha}] \leq \rho, \ d[W''_{\beta}] \leq \rho, \ D[W''_{\gamma}] \leq \rho.$$

Hence

$$d[\operatorname{St}(\overline{W}_{\beta}^{\prime\prime};\,\mathfrak{W})] \leq 3\rho < \delta,$$
$$d[\operatorname{St}(\overline{W}_{\gamma}^{\prime\prime};\,\mathfrak{W})] \leq 3\rho < \delta,$$

therefore $\operatorname{St}(\widetilde{W}_{\beta}^{\prime\prime}; \overline{\mathfrak{W}})$ and $\operatorname{St}(\widetilde{W}_{\gamma}^{\prime\prime\prime}; \overline{\mathfrak{W}})$ are respectively containd in some element of \mathfrak{U} .

Also it is clear that $\overline{V}_i \cap \overline{V}_j \neq \phi \Leftrightarrow \overline{W}_i \cap \overline{W}_j \neq \phi$.

If $\overline{W}_i \cap \overline{W}_j \neq \phi$, then $\overline{V}_i \cap \overline{V}_j \neq \phi$, hence $\overline{W}_i \subset U_i^* \subset U_{\alpha(j)}$.

If $\overline{W}_j \cap W'_{\alpha} \neq \phi$, then $\overline{V}_j \cap \overline{V}_k \neq \phi$, where $x_{\alpha} \in V_k$. Hence $W'_{\alpha} \subset W^*$ $(x_{\alpha}, t_0) \subset U_j^* \subset U_{\alpha(j)}$. Therefore St $(\overline{W}_j; \overline{\mathfrak{W}}) \subset U_{\alpha(j)}$. Similarly we know that St $(\overline{W}'_{\alpha}: \overline{\mathfrak{W}})$ is contained in some element of \mathfrak{U} .

Hence the covering \mathfrak{W} is required.

Q. E. D.

Now let K be a CW-complex and the the cells in K be indexed and with each m-cell $e_{\lambda}^{m} \in K(m = 0, 1, \dots)$ let us associate an m-element E_{λ}^{m} as follows. The points in E_{λ}^{m} shall be the pair (x, e_{λ}^{m}) for every point x in E^{m} , and E_{λ}^{m} shall have the topology which makes the map $x \rightarrow (x, e_{\lambda}^{m})$ a homeomorphism. No two of these elements have a point in common and we unite them into a topological space²)

$$P=\bigcup_{m,\lambda}E_{\lambda}^{m}.$$

Let $f_{\lambda}^{m}: E^{m} \to e_{\lambda}^{n}$ be a characteristic map for e_{λ}^{m} and let $f: P \to K$ be the map which is given by $f(x, e_{\lambda}^{m}) = f_{\lambda}^{m} x$ for each point $(x, e_{\lambda}^{m}) \in P$. Since $\overline{e_{\lambda}^{m}}$ has

H. MIYAZAKI

the identification topology determined by f_{λ}^{m} it follows that the weak topology in K is the identification topology determined by f. Let P^{n} and K^{n} denote the *n*-skeleton of P and K. Then $f^{-1}(K^{n}) = P^{n}$ and $f | P^{n+1} - P^{n}$ is topological.

LEMMA 2. Using the above notation if V, W are any subsets of K^n then $\overline{V} \cap \overline{W} \neq \phi \Leftrightarrow \overline{f^{-1}(V)} \cap \overline{f^{-1}(W)} \neq \phi$.

PROOF. Since $\overline{V} \subset V$, $f^{-1}(V) \subset f^{-1}(\overline{V})$, hence $\overline{f^{-1}(V)} \subset \overline{f^{-1}(V)} = f^{-1}(\overline{V})$. Hence if $\overline{f^{-1}(V)} \cap \overline{f^{-1}(W)} \neq \phi$ then $f^{-1}(\overline{V}) \cap f^{-1}(\overline{W}) \neq \phi$. Therefore $\overline{V} \cap \overline{W} \neq \phi$.

Conversely let us assume that $\overline{V} \cap \overline{W} \ni p$. Then there exists a cell $e_{\lambda}^{m} \in K$ containing the point p. Let $g = f | E_{\lambda}^{m} - \dot{E}_{\lambda}^{m}$ then g is a topological map of $E_{\lambda}^{m} - \dot{E}_{\lambda}^{m}$ onto e_{λ}^{m} . Hence there exists the unique point $q \in E_{\lambda}^{m} - \dot{E}_{\lambda}^{m}$ such that g(q) = p. Since $\overline{f^{-1}(V)} \supset \overline{f^{-1}(V)} \cap [E_{\lambda}^{m} - \dot{E}_{\lambda}^{m}] = \overline{g^{-1}(V)} = g^{-1}(V)$, $\overline{f^{-1}(V)} \ni q$. And similarly $\overline{f^{-1}(V)} \ni q$. Therefore $\overline{f^{-1}(V)} \cap \overline{f^{-1}(W)} \ni q$.

3. The main result. We shall prove the following our main theorem. THEOREM. Any CW-complex is paracompact.

PROOF. Let K be a CW-complex and P, $f: P \rightarrow K$ be the same as preceding. Let \mathfrak{ll}_0 be a given open covering of K.

For a fixed integer *n* we assume that there is an open covering $\mathfrak{V}^n = \{V_i^n\}$ of K^n which satisfies the conditions:

(1_n) for each element V_j^n of \mathfrak{B}^n there corresponds an element $U_{\alpha(j)}$ of \mathfrak{U}_0 such that $\operatorname{St}(\overline{V}_j; \mathfrak{B}') \cap U_{\alpha(j)}$,

(2_n) for each cell $E_{\lambda}(r \leq n+1)$ $f^{-1}(\mathfrak{Y}^n) \cap E_{\lambda}^r$ is a finite covering.

Let us put $\mathfrak{ll} = f^{-1}(\mathfrak{ll}_0)$, $\mathfrak{V} = f^{-1}(\mathfrak{V}^n)$. Then, by Lemma 2, (1_n) implies that St $\overline{(f^{-1}(V_j^n); \mathfrak{V})} \subset f^{-1}(U_{\alpha(j)})$. Therefore, by Lemma 1, there exists a covering $\mathfrak{W} = \{W_j, W_a'\}$ of P^{+1} such that

$$W_{j} \cap P^{n} = f^{-1}(V_{j}^{n}), \qquad W_{a}' \subset P^{n+1} - P^{n},$$

and

(A) St $(\overline{\mathfrak{W}}) > \mathfrak{l}$ and in particular St $(\overline{W}_{i}; \overline{\mathfrak{W}}) \subset f^{-1}(U_{\alpha(j)})$,

and $\mathfrak{W} \cup \dot{E}_{\lambda}^{r}(r \leq n+2)$ is a finite covering.

We put $V_{j}^{n+1} = f(W_{j}), \quad V_{a}^{n+1} = f(W'_{a}), \text{ then } f^{-1}(V_{j}^{n+1}) = W_{i}, \quad f^{-1}(V_{a}^{n+1}) = W'_{a}.$ Therefore $V^{n+1} = \{V_{j}^{n+1}, V_{a}^{n+1}\}$ is an open covering of K^{n+1} and $f^{-1}(\mathfrak{Y}^{n+1}) = \mathfrak{Y}$. Hence from Lemma 2 and (A) we have

St $(\mathfrak{Y}^{n+1}) < \mathfrak{U}_0$ and in particular St $(\overline{V}^{n+1}_j; \overline{\mathfrak{Y}}^{n+1}) \subset U_{\mathfrak{a}(j)}$.

Therefore the covering \mathfrak{V}^{n+1} satisfies the conditions (1_{n+1}) and (2_{n+1}) .

For n = 0, since K^0 is discrete, the covering $\mathfrak{V}^0 = \mathfrak{U}_0 \cap K^0$ is satisfies the conditions (1_0) and (2_0) . Starting with V^0 , it follows by induction on n

that there is a sequence of covering $V^n = \{V^n_{\rho_0}, \ldots, V^n_{\sigma_n}\} (\rho_0 \in J_0, \ldots, \rho_n \in J_0, \ldots,$ J_n) of K^n such that $\operatorname{St}(\overline{V}^n_{\rho_i};\overline{\mathfrak{V}^n}) \subset U_{\alpha(\rho_i)}$ and $V^{n+1}_{\rho_i} \cup K^n = V^n_{\rho_i} (i=0,\ldots,n-1;$ $\rho_i \in J_i$). If we put

$$\mathfrak{V} = \{V_{\rho_0}, V_{\rho_1}, \ldots,\} \qquad (\rho_0 \in J_0, \rho_1 \in J_1, \ldots)$$

where

$$V_{\rho_k} = \bigcup_{n=k}^{\infty} V_{\ell_k}^n,$$

then \mathfrak{V} is an open covering of K and it is obvious that St $\mathfrak{V} > \mathfrak{U}_0$. Thus it has been proved that any open covering of K has a star refinement. Hence K is fully normal. By the definition of CW-complex K, K is a Hausdorff space, hence, by [4, Theorem 1], K is paracompact. Q. E. D.

References

- [1] D.G. BOURGIN, The paracompactness of the weak simplicial complex, Proc. Nat. Acad. Sci., U. S. A., 38(1952), 305-313.

- [2] J.DUGUNDJI, Notes on CW polytopes, Portugaliae Mathematica, 11(1952), 7-10-b.
 [3] H.MIYAZAKI, A note on paracompact spaces, Tôhoku Math. Journ. 4(1952), 88-92.
 [4] A.H.STONE, Paracompactness and product spaces, Bull. Amer. Math. Soc., 54 (1948), 977-982.
- [5] J. H. C. WHITEHEAD, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55(1949), 213-245.

MATHEMATICAL INSTITUTE, TÓHOKU UNIVERSITY, SFNDAI.