THE PARACOMPACTNESS OF CW-COMPLEXES

Hiroshi Miyazaki
(Received November 1, 1952)

The category of paracompact normal spaces is a sufficiently broad class in which some methods of algebraic topology may be applied. It is well-known that this category contains all metric spaces, compact normal spaces and fully normal Hausdorff spaces. Simplicial complexes with the weak topology and CW-complexes in the sense of J.H.C. Whitehead [5, §5 $]^{1)}$ especially play important roles in the algebraic topology. Author [3, Lemma 4], J.Dugundji [2, Theorem 4] and D. G.Bourgin [1, Theorem 3] have been proved that any simplicial complex with the weak topology is paracompact. The purpose of the present note is to prove that any CWcomplex is paracompact.

1. Notations. Let X be a space and W be a subset of X and $\mathfrak{V}=$ $\left\{V_{j}\right\}$ be a family of subsets $V_{j} \subset X$ and $f: Y \rightarrow X$ be a continuous map of a space Y into X. We shall use the following notations.

$$
\begin{gathered}
\overline{\mathfrak{B}}=\left\{\bar{V}_{j}\right\} \quad\left(\bar{V}_{j} \text { denotes the closure of } V_{j} \text { in } X\right), \\
\mathfrak{B} \cap W=\left\{V_{j} \cap W\right\}, \operatorname{St}(W ; \mathfrak{B})=\cup V_{j}\left(V_{j} \cap W \neq \phi, V_{j} \in \mathfrak{B}\right), \\
\operatorname{St}(\mathfrak{B})=\left\{\operatorname{St}\left(V_{j} ; \mathfrak{B}\right) \mid V_{j} \in \mathfrak{B}\right\}, f^{-\mathrm{P}}(\mathfrak{B})=\left\{f^{-1}\left(V_{j}\right) \mid V_{j} \in \mathfrak{B}\right\} .
\end{gathered}
$$

And $\mathfrak{U}>\mathfrak{B}$ means that each element of \mathfrak{U} is contained in some element of V.

Let E^{n} be the subset of n-dimensional Euclidean space defined by

$$
-1 \leqq x_{i} \leqq 1 \quad(i=1, \ldots, n)
$$

The boundary of E^{n} is denoted by S^{n-1}. For a point $x \in S^{n-1}$ and a real number $t(0 \leqq t \leqq 1)$ let (x, t) denotes a point which divides the segment joining x to the center $0=(0, \ldots, 0)$ of E^{n} in the ratio $t: 1-t$.

For a given point $\left(x_{0} t_{0}\right)\left(x_{0} \in S^{n-1}, 0<t_{0}<1\right)$ let V be an open set of S^{n-1} which contains x_{0} and let ε be a number such that $0<\varepsilon<\min \left(t_{0}, 1-\right.$ $\left.t_{0}\right)$. Then the open set $W\left(x_{0}, t_{0}\right)=\left\{(x, t)\left|x \in V,\left|t-t_{0}\right|<\varepsilon\right\}\right.$ is called a regular open set of E^{n} with the center (x_{0}, t_{0}) and the bottom $\mathrm{B}\left[W\left(x_{0}, t_{0}\right)\right]$ $=V$ and the breadth $\delta\left[W\left(x_{i}, t_{0}\right)\right]=\varepsilon$.
2. Two lemmas. Here we shall prove two lemmas which are used in the proof of our main theorem.

Lemma 1. Let P be a union ${ }^{2}$ of at most $(n+1)$-dimensional element E_{λ}^{r} which are mutually disjoint. Let $\mathfrak{U}=\left\{U_{\alpha}\right\}$ be any open covering of P. Let

[^0]$\mathfrak{B}=\left\{V_{i}\right\}$ be a given open covering of n-skeleton P^{2} such that for each element V, of \mathfrak{B} there corresponds an element $U_{\alpha(j)}$ of \mathfrak{H} which contains the star set $\mathrm{St}\left(\bar{V}_{j} ; \overline{\operatorname{S}}\right)$ ant for each $(n+1)$-element $E_{\lambda}^{n+1}, \mathfrak{B} \cap \dot{E}_{\lambda}^{n+1}$ is a finite covering. Then there exists an open covering $\mathfrak{M}=\left\{\mathrm{V}_{j}, W_{n}^{\prime}\right)$ which satisfies the conditions:
\[

$$
\begin{align*}
& W_{j} \cap P^{n}=V_{j} \quad \text { and } \quad W_{n}^{\prime} \subset P^{n+1}-P^{n}, \tag{1}\\
& \mathfrak{B} \cap E_{\lambda}^{n+1} \quad \text { is a finite covering, } \tag{2}\\
& \left.\operatorname{St}(\overline{\mathfrak{W}})>\mathfrak{H} \text { and in particular } \operatorname{St}\left(\bar{W}_{i} ; \overline{\mathfrak{B}}\right) \subset U_{\alpha(\cdot)}\right) . \tag{3}
\end{align*}
$$
\]

This lemma will be easily obtained from the following lemma.
Lemma 1'. Let E be an n-element and S its boun lary. Let $\mathfrak{U}=\left\{U_{\alpha}\right\}$ be any open covering of E ant let $\mathfrak{V}=\{V$,$\} be a given finite open covering of$ S such that for each element V of \mathfrak{B} there corresponds an element $U_{a(j)}$ of \mathfrak{H} which contains the star set $\operatorname{St}\left(\overline{V_{j}} ; \overline{\mathfrak{V}}\right)$. Then there exists a finite open covering $\mathfrak{W}=\left\{W_{i}, \quad W_{n}^{\prime}\right\} \quad$ such that $W_{j} \cap S=V_{i}, \quad W_{a}^{\prime} \subset E-S, \quad$ St $\overline{\mathfrak{B}}>\mathbb{U}$ and in particular $\operatorname{St}\left(\bar{W}_{j} ; \overline{\mathfrak{D}}\right) \subset U_{\alpha(j)}$.

Proof. We may assume that $E=E^{n}, S=S^{i-1}$. For a fixed element V_{j} of \mathfrak{B}, let $\bar{V}_{j_{0}}, \ldots, \bar{V}_{p_{p}}$ be element of $\overline{\mathfrak{B}}$ such that $\bar{V}_{j} \cap \bar{V}_{\dot{i}_{i}} \neq \phi$.
We set

$$
U_{j .}^{*}=\bigcap_{i=0}^{p} U_{a\left(j_{i}\right)} \cap U_{a(j)} .
$$

By the assumption $\operatorname{St}\left(\bar{V}_{j} ; \overline{\mathfrak{V}}\right) \subset U_{\alpha(i)}$, hence we have $\bar{V}_{j} \subset U_{\alpha(j)}$. Therefore there exists a real number $t_{0}\left(0<t_{0}<1\right)$ such that for any $x \in S$, if $x \in V_{j}$ and $0 \leqq t \leqq 2 t_{0}$ then $(x, t) \in \mathrm{U}_{j}^{*}$.

Now we set

$$
\begin{aligned}
W_{J} & =\left\{(x, t) \mid x \in V, \quad 0 \leqq t<t_{0}\right\} \\
{ }^{1} W, & =\left\{(x, t) \mid x \in V, 0 \leqq t<2 t_{0}\right\} .
\end{aligned}
$$

Since $\mathfrak{l l}$ is an open covering of compact metric space E, there exists a positive number ε such that any subset W of E with the diameter $d(W)<\varepsilon$ is contained in some element of \mathfrak{U}.

Next, for each point $\left(x, t_{0}\right)(x \in S)$ let $W^{*}\left(x, t_{0}\right)$ be the intersection of all elements of $\left\{{ }^{1} W_{j}\right\}$ which contain $\left(x, t_{0}\right)$. Then $W^{*}\left(x, t_{0}\right)$ is non-empty open set. Therefore there exists a regular open set $W\left(x, t_{0}\right)$ such that $W\left(x, t_{0}\right) \subset W^{*}\left(x, t_{0}\right)$ and $d\left[W\left(x, t_{0}\right)\right] \leqq \rho=\varepsilon / 6$. Since $S_{1}=\left\{\left(x, t_{0}\right) \mid x \in S\right\}$ is compact, S_{1} is covered by finite elements of $\left\{W\left(x, t_{0}\right) \mid x \in S\right\}$, say $\left\{W\left(x_{a}\right.\right.$, $\left.\left.t_{0}\right)\right\}(\alpha=1, \ldots, q)$. Let $2 \delta_{0}=\operatorname{Min}_{a} \delta\left[W\left(x_{\alpha}, t_{0}\right)\right]$ and we define W_{α}^{\prime} and ${ }^{1} W_{\alpha}^{\prime}$ by

$$
\begin{aligned}
W_{a}^{\prime} & =\left\{(x, t)\left|x \in B_{\alpha}, \quad\right| t-t_{0} \mid<\delta_{0}\right\}, \\
{ }^{1} W_{a}^{\prime} & =\left\{(x, t)\left|x \in B_{a}, \quad\right| t-t_{0} \mid<2 \delta_{\mathrm{c}}\right\},
\end{aligned}
$$

where B_{α} is the bottom of $W\left(x_{\alpha}, t_{0}\right)$.
For each point $\left(x, t_{1}\right)\left(t_{1}=t_{0}+\delta_{0}\right)$, let $W^{*}\left(x, t_{1}\right)$ be the intersection of all elements of $\left\{{ }^{1} W_{\alpha}^{\prime}\right\}$ which contain $\left(x, t_{1}\right)$. Then $W^{*}\left(x, t_{1}\right)$ is a non empty
open set. Hence there exists a regular open set $W\left(x, t_{1}\right)$ such that $\overline{W\left(x, t_{1}\right)}$ $\subset W^{*}\left(x, t_{1}\right)$ and $\delta\left[W\left(x, t_{1}\right)\right] \leqq \delta_{0} / 2$. Since $S_{2}=\left\{\left(x, t_{1}\right) \mid x \in S\right\}$ is compact, S_{2} is covered by finite elements of $\left\{W\left(x, t_{1}\right) \mid x \in S\right\}$, say $\left\{W\left(x_{\beta}, t_{1}\right)\right\}(\beta=1, \cdots, r)$. Let $\delta_{1}=\operatorname{Min}_{\beta}\left\{\delta\left[W\left(x_{\beta}, t_{1}\right)\right]\right\}$ and we define $W_{\beta}^{\prime \prime}$ by

$$
W_{\beta}^{\prime \prime}=\left\{(x, t)\left|x \in B_{3},\left|t-t_{1}\right|<\delta_{1}\right\},\right.
$$

where B_{β} is the bottom of $W\left(x_{\beta}, t_{1}\right)$.
For each point $(x, t)\left(x \in S, t_{1}+\delta_{1} \leqq t \leqq 1\right)$ we associate a spherical neighborhood $W^{\prime \prime \prime}(x, t)$ with the diameter $\leqq \delta_{1} / 2$. Since $E^{\prime}=\{(x, t) \mid x \in S$, $\left.t_{1}+\delta_{1} \leqq t \leqq 1\right\}$ is compact, E^{\prime} is covered by finite elements of $\left\{W^{\prime \prime \prime}(x, t)\right.$! $\left.x \in S, t_{1}+\delta_{1} \leqq t \leqq 1\right\}$, say $\left\{W_{\gamma}^{\prime \prime \prime}\right\}(\gamma=1, \cdots, s)$.

Now we set

$$
\mathfrak{Y}=\left\{W_{i}, \quad W_{a}^{\prime}, \quad W_{\beta}^{\prime \prime}, \quad W_{\gamma}^{\prime \prime \prime}\right\},
$$

then $\mathfrak{Y G}$ is a finite open covering of E. By the construction it is obvious that

$$
\bar{W}_{j} \cap \bar{W}_{\beta}^{\prime \prime}=\phi, \bar{W}_{a}^{\prime} \cap \bar{W}_{\gamma}^{\prime \prime \prime}=\phi, W_{j} \cap S=V_{j}, W_{a}^{\prime}, W_{\beta}^{\prime \prime}, W_{\gamma}^{\prime \prime \prime} \subset E-S
$$

and

$$
\left.d\left[W_{\alpha}^{\prime}\right] \leqq \rho, d\left[W_{\beta}^{\prime \prime}\right] \leqq \rho, D_{\llcorner }^{-} W_{\gamma}^{\prime \prime \prime}\right] \leqq \rho .
$$

Hence

$$
\begin{aligned}
& \left.d_{\mathrm{L}} \operatorname{St}\left(\bar{W}_{\beta}^{\prime \prime} ; 2 \overline{\mathfrak{B}}\right)\right] \leqq 3 \rho<\delta, \\
& d\left[\operatorname{St}\left(\bar{W}_{\gamma}^{\prime \prime} ; \bar{W}\right)\right] \leqq 3 \rho<\delta,
\end{aligned}
$$

therefore $\operatorname{St}\left(\bar{W}_{\beta}^{\prime \prime} ; \bar{W}\right)$ and $\operatorname{St}\left(\bar{W}_{\gamma}^{\prime \prime \prime} ; \bar{W}\right)$ are respectively containd in some element of \mathfrak{H}.

Also it is clear that $\bar{V}, \cap \bar{V}_{j} \neq \phi \Leftrightarrow \bar{W}_{i} \cap \bar{W}_{j} \neq \phi$.
If $\bar{W}_{i} \cap \bar{W}_{j} \neq \phi$, then $\bar{V}_{i} \cap \bar{V}_{j} \neq \phi$, hence $\bar{W}_{i} \subset U_{i}^{+} \subset U_{\alpha(j)}$.
If $\bar{W}_{j} \cap W_{\alpha}^{\prime} \neq \phi$, then $\bar{V}_{i} \cap \bar{V}_{k} \neq \phi$, where $x_{a} \in V_{k}$. Hence $W_{a}^{\prime} \subset W^{*}$ $\left(x_{a}, t_{0}\right) \subset U_{j}^{*} \subset U_{\alpha(\jmath)}$. Therefore $\operatorname{St}\left(\widetilde{W}_{1} ; \overline{W_{1}}\right) \subset U_{\alpha(j)}$. Similarly we know that $\operatorname{St}\left(\bar{W}_{a}^{\prime}: \overline{\mathfrak{I B}}\right)$ is containd in some element of \mathfrak{H}.

Hence the covering \mathfrak{W} is required.
Q.E.D.

Now let K be a CW-complex and let the cells in K be indexed and with each m-cell $e_{\lambda}^{n n} \in K(m=0,1, \cdots)$ let us associate an m-element E_{λ}^{m} as follows. The points in E_{λ}^{m} shall be the pair $\left(x, e_{\lambda}^{m}\right)$ for every point x in E^{n}, and E_{λ}^{m} shall have the topology which makes the map $x \rightarrow\left(x, e_{\lambda}^{m}\right)$ a homeamorphism. No two of these elements have a point in common and we unite them into a topological space ${ }^{2)}$

$$
P=\underset{m, \lambda}{U} E_{\lambda}^{m} .
$$

Let $f_{\lambda}^{m}: E^{n} \rightarrow e_{\lambda}^{n}$ be a characteristic map for e_{λ}^{m} and let $f: P \rightarrow K$ be the map which is given by $f\left(x, e_{\lambda}^{m}\right)=f_{\lambda}^{n n} x$ for each point $\left(x, e_{\lambda}^{m}\right) \in P$. Since $\overline{e_{,}^{m}}$ has
the identification topology determined by f_{λ}^{m} it follows that the weak topology in K is the identification topology determined by f. Let P^{n} and K^{n} denote the n-skeleton of P and K. Then $f^{-1}\left(K^{n}\right)=P^{n}$ and $f \mid P^{n+1}-P^{n}$ is topological.

Lemma 2. Using the above notation if V, W are any subsets of $K^{\prime \prime}$ then $\bar{V} \cap \bar{W} \neq \phi \Leftrightarrow \overline{f^{-1}}(\boldsymbol{V}) \cap \overline{f^{-1}(W)} \neq \phi$.

Proof. Since $\bar{V} \subset V, f^{-1}(V) \subset f^{-1}(\bar{V})$, hence $\overline{f^{-1}(V)} \subset \overline{f^{-1}(V)}=f^{-1}(V)$. Hence if $\overline{f^{-1}(V)} \cap \overline{f^{-1}(W)} \neq \phi$ then $f^{-1}(\bar{V}) \cap f^{-1}(\bar{W}) \neq \phi$. Therefore $\bar{V} \cap \bar{W} \neq$ ϕ.

Conversely let us assume that $V \cap W \ni p$. Then there exists a cell $e_{\lambda}^{m} \in K$ containing the point p. Let $g=f \mid E_{\lambda}^{m}-\dot{E}_{\lambda}^{m}$ then g is a topological map of $E_{\lambda}^{m}-\dot{E}_{\lambda}^{m}$ onto e_{λ}^{m}. Hence there exists the unique point $q \in E_{\lambda}^{m}-\dot{E}_{\lambda}^{m}$ such that $g(q)=p$. Since $\overline{f^{-1}(V)} \supset \overline{f^{-1}(V)} \cap\left[E_{\lambda}^{m}-\dot{E}_{\lambda}^{m}\right]=\overline{g^{-1}(V)}=g^{-1}(V)$, $\overline{f^{-1}(V)} \ni q$. And similarly $\overline{f^{-1}(V)} \ni q$. Therefore $\overline{f^{-1}(V)} \cap \overline{f^{-1}(W)} \ni q$.
3. The main result. We shall prove the following our main theorem.

Theorem. Any CW-complex is paracompact.
Proof. Let K be a CW-complex and $P, f: P \rightarrow K$ be the same as preceding. Let \mathfrak{l}_{0} be a given open covering of K.

For a fixed integer n we assume that there is an open covering $\mathfrak{Q}^{\mathfrak{n} n}=$ $\left\{V_{j}^{n}\right\}$ of K^{n} which satisfies the conditions:
$\left(1_{n}\right)$ for each element V_{j}^{n} of \mathfrak{F}^{n} there corresponds an element $U_{\alpha(!)}$ of \mathfrak{U}_{0} such that $\operatorname{St}\left(\bar{V}_{j} ; \mathfrak{B}\right) \cap U_{\alpha(j)}$,
$\left(2_{n}\right)$ for each cell $E_{\lambda}^{\prime}(r \leqq n+1) f^{-1}\left(\mathfrak{B}^{n}\right) \cap \dot{E}_{\lambda}^{r}$ is a finite covering.
Let us put $\mathfrak{U}=f^{-1}\left(\mathfrak{U}_{0}\right), \mathfrak{V}=f^{-1}\left(\mathfrak{F}^{n}\right)$. Then, by Lemma 2, $\left(1_{n}\right)$ implies that $\left.\operatorname{St} \overline{\left(\overline{f^{-1}(} \overline{V_{j}^{n}}\right)} ; \mathfrak{B}\right) \subset f^{-1}\left(U_{\alpha(i)}\right)$. Therefore, by Lemma 1 , there exists)a covering $\mathfrak{W}=\left\{W_{i}, W_{a}^{\prime}\right\}$ of P^{+1} such that

$$
W_{j} \cap P^{n}=f^{-1}\left(V_{j}^{n}\right), \quad W_{a}^{\prime} \subset P^{n+1}-P^{n}
$$

and
(A)

$$
\operatorname{St}(\mathfrak{R B})>\mathfrak{H} \text { and in particular } \operatorname{St}\left(\bar{W}_{i} ; \overline{2 i}\right) \subset f^{-1}\left(U_{\alpha(j)}\right),
$$

and $\mathfrak{B} \cup \dot{E}_{\lambda}^{r}(r \leqq n+2)$ is a finite covering.
We put $V_{j}^{n+1}=f\left(W_{i}\right), \quad V_{n}^{n+1}=f\left(W_{a}^{\prime}\right)$, then $f^{-1}\left(V_{j}^{n+1}\right)=W_{i}, f^{-1}\left(V_{a}^{n+1}\right)$ $=W_{a}^{\prime}$. Therefore $V^{n+1}=\left\{V_{,}^{n+1}, V_{a}^{n+1}\right\}$ is an open covering of K^{n+1} and $f^{-1}\left(\mathfrak{B}^{n+1}\right)=\mathfrak{I}$. Hence from Lemma 2 and (A) we have

$$
\operatorname{St}\left(\mathfrak{B}^{n+1}\right)<\mathfrak{H}_{0} \text { and in particular } \operatorname{St}\left(\bar{V}_{j}^{a+1} ; \overline{\mathfrak{S}}^{n+1}\right) \subset U_{\alpha(j)} .
$$

Therefore the covering \mathfrak{B}^{n+1} satisfies the conditions (1_{n+1}) and (2_{n+1}).
For $n=0$, since K^{0} is discrete, the covering $\mathfrak{B}^{0}=\mathfrak{U}_{0} \cap K^{0}$ is satisfies the conditions $\left(1_{0}\right)$ and $\left(2_{0}\right)$. Starting with V^{0}, it follows by induction on n
that there is a sequence of covering $V^{n}=\left\{V_{\rho_{0}}^{n}, \cdots, V_{\sigma_{n}}^{n}\right\}\left(\rho_{0} \in J_{0}, \cdots, \rho_{n} \in\right.$ $\left.J_{n}\right)$ of K^{n} such that $\operatorname{St}\left(\overline{\bar{V}_{\rho_{i}}^{n}} ; \sum_{\sum_{n}^{n}}^{\bar{n}}\right) \subset U_{\alpha\left(\rho_{i}\right)}$ and $V_{\rho_{i}}^{n+1} \cup K^{n}=V_{\rho_{i}}^{n}(i=0, \ldots, n-1$; $\rho_{\imath} \in J_{i}$). If we put

$$
\mathfrak{B}=\left\{V_{\rho_{0}}, V_{\rho_{1}}, \cdots,\right\} \quad\left(\rho_{0} \in J_{0}, \rho_{1} \in J_{1}, \ldots,\right)
$$

where

$$
V_{P k}=\bigcup_{n=k}^{\infty} V_{i k^{\prime}}^{n}
$$

then \mathfrak{B} is an open covering of K and it is obvious that $S t \mathfrak{B}>\mathfrak{U}_{\mathfrak{U}}$. Thus it has been proved that any open covering of K has a star refinement. Hence K is fully normal. By the definition of CW-complex K, K is a Hausdorff space, hence, by [4, Theorem 1], K is paracompact.
Q. E. D.

References

[1] D. G. Bourgin, The paracompactness of the weak simplicial complex, Proc. Nat. Acad. Sci., U.S. A., 38(1952), 305-313.
[2] J. Dugundjl, Notes on CW polytopes, Portugaliae Mathematica, 11(1952), 7-10-b.
[3] H. Miyazaki, A note on paracompact spaces, Tôhoku Math. Journ. 4(1952), 88-9).
[4] A.H.Stone, Paracompactness and iproduct spaces, „Bull. Amer. Math. Soc., 54 (1948), 977-982.
[5] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55(1949), 213-245.
mathematical Institute, Tôhoku University, Sfndai.

[^0]: 1) Numbers in brackets refer to the references cited at the end of this note.
 2) P is topologized so that each E_{λ}^{r} with its own topology is both open and closed in P.
