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1. Suppose that X(¢) is a continuous stationary process in wide sense,
E{X()} = 0, E{| X(?)|*} < oo and p(«) is the correlation function E{X(? + #)X(2)}
which is represented as

oo

L.1) o= [ ewarty

F(x) being a bounded, non-decreasing function.

In previous papers [1],[2], we have discussed about Wiener’s prediction
theory. The object of the present paper is to give some remarks on pre-
diction problem in the case where F(x) satisfies a further condition that

(1.2) f x*? dF(x) < oo,

p being a positive integer.
We shall first give some definitions, notations and some known

results.
Let K(¢) be a function of bounded variation in every finite interval in

A4
[0, o). If f e~#® dK(@) converges in L, ( — oo, o0) with respect to F(x) to a
0

function %(x) when A - oo, K{(@) is called to belong to K(0, o). That is, if
oo A

f e~ dK(0) — k(x) | *dFx) = 0,

-0 0

then K(6) € K(0, ) and this fact is denoted as

(1.3) lim

A>e0

A
1.4) I.j;m. Lz(F)f edKi(0) = k(x),
0

and X(x) is called the Fourier-Stieltjes transform of K() in Ly(F).
It is known[3] that if K(¢) € K(0, o), then

A
(1.5) Lim. f X(¢ — 0)dK(6)
A>c0
0

exists. 1.i. m. means the limit in variance. (1.5) is denoted as

1) This paper was written sponcered by Japanese Union of Scientists and
Engineers.
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(1.6) T[X(@®)].

Next let {&.(x)} be a sequence of Fourier-Stieltjes transform of functions
of K(0, ). If k(x) € L(F) is such that

Li.m, Ly(F)kd(x)= k(x),
n->co0

then k(x) is called'to belong to the class RZF). And it has been shown that
Ok, [X(¥)] converges in mean (in variance) to a stationary process. This
process is denoted as F[X(2), %(-)].

2. On ordinary Fourier transforms. Let f(x) € L,( — o, ) and its
Fourier transform be

@.1) F(t) = 72% f Swe = d.

It is well known that if, further, xf(x) € L,( — oo, ) then F(t) is differen-
tiable and

Pty = 723—7; f f(x)ixe"™ dx.

Connecting this we shall prove :
LeMMA 1. Let ixf(x) € L — oo, ) and its Fourier transform be G(t). If
f(x) € Ly — oo, o), then %Ah Ft) = Wconverges in L, to G(2).

izh .

ance% ARF(t) is the Fourier transform of f(x)e A —1, by Parseval

relation we have

]=f [AnF(2) — G(B)|* dt
2.2) J.

=f ]f(x)em’lh_1 —ixflx)| dx,

which tends to zero as >0, for |(e"* —1)/h|? =< x%

REMARK. If ixf(x) € Ly — o0, ), then f(x) € L, in the vicinity of infinity.
Hence further if Ax) € L — o0, =), fi(x¥) € Li(— o0, o) and the Fourier
transform F{?) is continuous.

The following lemma is immediate from Lemma 1.

LEMmMA 2. If F(t) =0, for t < 0, then G(t) = 0 almost everywhere for t < Q.
For AnF(t)= 0 for t < — h, if R >0, and if &, > h, then

-h1
limf fhiAhm)—G(t) =0,

h->0

whence

2) It is evident that if we have only to define R 1t suffices to take more
special class instead of K.



REMARKS ON PREDICTION PROBLEM 15

h;

~ny -hy
f |G(t)|2dt = limf
h>0

2
% AWF()| dt = .

Hence G(#) = 0almost everywhere in ¢z < —h,. Since &, is arbitrary positive
number, G(¢) = 0 almost everywhere in £ < 0.

LeEmMMA 3. Under the assumptions of Lemma 1,

Ft) — R0) = f Glu)due

By Lemma 1, %;AhF(t) converges to G(¢) in L, Hence by weak con-
vergence
13 13
lim f L A Fwdu = f G(u)du
>0 /2
0 0
But
13 13 3
%[ A F(u)du = %(f KRu + h)du — f Ru) du)
b 0 0
2.3)

5

=lf
h
t

Since F(t) is continuous for f(x) € L,, the right of (2.3) converges to K?)
— FO).

3. Derivatives of a stationary process. Let Fl(x) be the spectral
function of a continuous stationary process X(?). If

Ru)du — hl— f Rudu.
0

oo

3.1) f x2dF(x) < oo,
then X'(¢) exists in the sense that
Li.m, XEER=XO o)

h>0
z

X'(¢) is a stationary process and its spectral function is f x*dF(x). This is

well known[2]. Repeated applications of this fact show ir;lmediately that

I
(3.2) : f x27dF(x) < oo,

D being a positive integer, then
(6—1) — X%-1) .
X = Ligm, KEERZIEO g da,p)




16 T.KAWATA

T

exists, the spectral function of this stationary process is f x*dF(x), and the

correlation function of X®X(¢) is ( — 1)Pp@*X(u), p(u) being the correlation function

of X(t).
We shall prove that
4
. _ p _ _ _
3.3) Lim. hoe 35 (§)( = r2X (e + k)| = X0

k=0
under the condition (3.2).

Let this statement holds for any stationary process with the condition
(3.2) for p= 7. And if it should be proved that (3.3) holds for p=7»+1
under (3.2) with p = » + 1, then our statement holds generally by induction,
Hence it is sufficient to show that

i =(@r+DA , (r+1) — h-TAM X7 —=
(3.4) Lim, {h SDACDX(E) — hoTAL X(t)} 0,
where

ArX(t) = APX(E) = X(2 + B) — X(2),
Ah(r+1)X(t) = AhAh(r)X(t).

x

For X'(#) is a stationary process whose spectral function is f **dF(x) = Fy(x)

—co

and
f x¥ dFy(x) = f x2+DAF(x) < oo,

—eo —co

Now we can easily prove that, if Z(#) is a stationary process, with

/ x%2dF z(x) < oo, Fz(x) being the spectral function of Z, then

(3.5) E{| 3 mzt)| } = — i o) — 200) + o — B}
= — 5 AP(— 1),
where ¢ is the correlation function of Z{(2),
1 1 2| _ "
(3.6 EOZ01 =tim B {| ;20 = =970,
1 v . 1 1 7Y 1 7 7
3.7 E {WA,.Z(t)- Z(t)} = lim E{—hAnZ(-t) ?AEZ(t)} AW = (O}
and

(3.8) E{A,.Z(t + u)AZ,.m} = AP@(u — 1).

Under these preliminaries, we shall prove (3.4). Since the finite linear
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combination of X (¢ + d;) is also a stationary process, we can take A{"X(¢)
for Z(t) above. And we have, by (3.5) and (3.7)

E{Ia0X®) '} = — 4 aPp(— 1)

E{ | APXW)|*} = S APARR( — 2h) = S BPp( — 2h)
and at last
3.9 F{r"APX(R) 2} = (— 1VR~27AF p( — 7h).
Moreover
(3.10) E{h-"APX(E + wh~"AOXD)} = (— 1A p(u — rh).
And

E{|~+DADX(E) — h7"AP X' (8)] %}
= F{h~*Th~ ' Mn- AP X(#) — {AP XY 15

which by taking A{ X(¢) for Z(t) again, applying (3.5) (3.6) and (3.7), and
using (3.9) we can write as
(= Ly o2 DAGCE I — (7 + D) — (= 1yh*AEp'(— 7h)

+ (= 1B AR (= (r — Dh) + (= IPAYAPP( — (7 + Dh)

—2( = 1yr A p'( — rh)}.
By letting 2> 0, it is easily verified that the limit is
( — 1)1'+1p2('r+1)(0) + ( — 1)r+1p(2r+1)(0) + ( — l)rp(zr-u)(o) + P(2r+1)(0) = 0_
Thus we have proved (3.3).

4. A differential operator. In this section we also assume that the
spectral function F{x) of a continuous stationary process X(?) satisfies
“4.1) f x?22°dF(x) & oo,

» a positive integer. We shall prove that X®)¢) can be expressed as
LX), k(-)] for some k(x) € K¢.
Let the function K,(¢) of bounded variation be defined as

K(0)=0at §=0
J

_ » SUP\ _ yo-r g i+1
s =(—mn) g(k/( 1p-k, for < <O=" -,
i=01,....,p—1,
? . P
=(—1)"2(€)("1)”"“, for - <¢< oo

k=0

Then
T, [X(2)] = f X(t — 9)dKA(0)
0
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r

= (=B (- vex(t- £

k=0

N
~—

By (3.3)
4.3) Lim. §i[X)] = XO0).

The Fourier-Stieltjes transform L,(F) of K,(§), is ka(x) which converges
to (ix)?. Further we have

B(%) — (i)?]2 < 2m w{(l ~cosZ )t 4 sin%}p + ) <clx .
And hence

4.4) Lim. L(F) ka(x) = (ix)*.
n->e0
By the fact stated in the last part of §1, we have
(4.5) XO(t) = LX), k()] ,
where
k(x) = (ix)".

5. Optimum prediction operator. Assume through this sectlon that
the spectral function F(x) is absolutely continuous,

F(x) = ®(x)
and
log ®(x)
5.1) f 198 B8 gy < oo,
Then
(5.2) - D(x) = | P2

where the Fourier transform in ordinary L, sense of W(x)

1w 1 ot
‘p(t)’l“};fl' N fA V(x)e'*dx

satisfies _
(5.3) P(t) = 0, t<0,
almost everywhere. We have in a previous paper proved that if
1
5.4 te-=tdt = h(x), a >0,
(5.4) o) V2w f Y(a + t)e (%), @ >

(the integral is taken in Lg sense) is a function of R, then F[X(?), A(-)]
becomes the optimum predictor of X(¢ + a) when X(¢ + a) is to be estimated
bY %[X(t): k(')]: k(x)e RF-

It is the object of the present section is to express (5.4) in another
form, under the condition that,

5.5) f |1z < oo,
0

3 h(z) in (5.4) is, in fact, a function of @ This circumstance was investigated
by K. Takano, Note on Wiener’s prediction theory, Annales of the Institute of
Stat. Math., 5 (1954).
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Following theorems are given, essentially by N. Wiener [4], but we shall prove
in a more rigorous manner.
THEOREM 1. Let (5.5) hold p=1. If

1 1 fm v. \/‘m ‘ '
5. 6 = — =itz fut U — —
(5.6) r(x) N \I'(x)o e~tzdt | W(u)e [e 1—iau
(ia)ﬂ—lup—.l il
- \du
®— D!
s of Rx, then h(x) in (5.4) is the optimum predictor and is represented as
= ; a? . _artt
B.7) h(x) =1+ ixa + ~2-!—(zx) + o+ =1 (ix)P-1 + 7(x).

The outer integral in the right hand side of (5.6) is taken as L.-sense,
and the inner integral is absolutely convergent for p = 1.

We consider ¥(x) in (5.2). Then
(5.8) | 222 (x)| = |2V (x)|?
and by Lemma 2, the Fourier transform of x*¥(x) vanishes for x < 0, for
k=12 ....p, and we have

5.9) PE(t) = N 1” f Ex)W(x)e™dx, k=1,2....,p— 1.

(xyW(x) € L, (ix)*¥(x) also belongs to L, and hence we can consider it is
the Fourier transform (inverse transform) of {®X#).

Now put
1 St r 1 — _ .. _arixnrt
610 gs o f (@ + teedt — 1 — i L)
We have
7(x) = 1 [ —i:‘/‘wsz(a + e =dt
W(x) | 27 ’
G.11) — W(R) — AT (x) — - .. (p (zx)v-hlr(xﬂ
L 1 m{vf(t +a)— Yt — av(t) —
W(x)JZ
- e

(the integral being taken as Lz sense)

1 1 ; — it ‘: fm{ fud >
= o zt it w( — V(u) — aiu¥
'\I’(x) N/27Z' ! e J \u)e (u) u (u)
al’
w D-1 eiutduJ
~ Gy )
which proves (5.6).
If 7(x) € R then h(x) € &, because in (5.10) (ix)* is a function of ®r as
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was shown in §4. Thus our theorem is proved.

THEOREM 2. #(x) in Theorem 1 can be represented as
upy—-1

1 __Lf izt f f f (D),
\P(x)JZ—;[) e ®dt | dw APt + wp)duy,

V<2)(t) being defined as the limit in mean h >0 of W Ay P-1(1),

6.12) (0=

Clearly we have

Yt + a) = ¥(@t) + ay'(t) + g;-\b" ) + . (p )' A (r=0)(F)

] Uy
+ f dm, f f BBt + 1y )dttp-y,
0 a 0

A @=1(¢) = f VP (uy)duty.

and by Lemma 3

0
These in connection with (5.11), proves the theorem. Theorem 1 can be
also stated as

THEOREM 3. If h(x) € 8&F, or r(x) € &, then X(t + «) is best predicted by

(5.31) X(¢t) + aX @) + - ( P“ "1), X@=0(1) + FLXE), 7()].

In conclusion, I should like to express my hearty thanks to Prof. G.
Sunouchi for his kind criticism and valuable suggestions. Lemma 1 was
improved and I add some footnotes by his suggestion.
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