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1. Suppose that X(t) is a continuous stationary process in wide sense,
E{X(t)} = 0, E{\X(t)\2} < oo and p(u) is the correlation function E{X(t + u)W)}
which is represented as

(1.1) p(«)

F\x) being a bounded, non-decreasing function.
In previous papers [1], [2], we have discussed about Wiener's prediction

theory. The object of the present paper is to give some remarks on pre-
diction problem in the case where F{x) satisfies a further condition that

(1.2) j x2pdF(x)< oo,
— oo

p being a positive integer.
We shall first give some definitions, notations and some known

results.
Let K{θ) be a function of bounded variation in every finite interval in

cΛ

[0, oo). If / e~lxθ dK{θ) converges in Lλ (— oo, oo) with respect to Fix) to a
o

function k{x) when A -> oo, K(θ) is called to belong to K(0, oo). That is, if

(1.3) lim
- o o 0

= 0,

then K(ff) € K(0, oo) and this fact is denoted as

(1.4) l.i.m. LIF) [ eixθdK(θ)= k(x),
0

and k(x) is called the Fourier-Stieltjes transform of K(ff) in L2(F).
It is known[3] that if K(θ) € K(0, oo), then

(1.5) l.i.m. f X(t-θ)dK(θ)
0

exists, l.i.m. means the limit in variance. (1.5) is denoted as
J) This paper was written sponcered by Japanese Union of Scientists and

Engineers.
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(1.6)
Next let {kn(x)} be a sequence of Fourier-Stieltjes transform of functions

of K(0, oo). If k(x) € L2{F) is such that
l.i.m. L^F)-kn{x)=k(x\

then k{x) is called'to belong to the class $2). And it has been shown that
\$κn [X(t)] converges in mean (in variance) to a stationary process. This

process is denoted as %[X(t)j *(•)].

2. On ordinary Fourier transforms. Let f(x) € Lx{ — oo, oo) and its
Fourier transform be

oo

(2.1) F(t) = — = J /(3i)e'-:dx.
— oo

It is well known that if, further, xf(x) £ LL( — oo, oo) then F(f) is differen-
tiable and

Connecting this we shall prove :

LEMMA 1. Let ixf{x) ^ Z.( — oo, oo) and its Fourier transform be G(t). If

f(x) € LI - oo, oo), then ~Ah F(t) = ^ + ^ "" F ( f ) converges in Lz to G{t).

Since -^- ΔΛF(/) is the Fourier transform of f{x)—g—, by Parseval

relation we have

/=
(2.2)

2

dx,-f
which tends to zero as &->0, for \{etxh — 1)1 h[* ^ x2.

REMARK. If ixf(x) C L2( — oo, oo), then f(x) € Lv in the vicinity of infinity.
Hence further if /(*) € Li — oo, oo), f(χ) ^ Zi( — oo, oo) and the Fourier
transform F(t) is continuous.

The following lemma is immediate from Lemma 1.

LEMMA 2. If Fif) = 0, for t < 0, then Git) = 0 almost everywhere for t < 0.
For ΔΛ/^) = 0 for t < — ft, if h > 0, and if hγ > h, then

im I
w J

lim

whence

2> It is evident that if we have only to define SF, it suffices to take more
special class instead of K.
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/ \G(t)\*dt = lim /
J Λ->0 J

Hence G(ί) = 0 almost everywhere in t < — hi. Since &i is arbitrary positive
number, G(t) = 0 almost everywhere in t < 0.

LEMMA 3. Under the assumptions of Lemma 1,

F(/) — 7^0) = Γ G ( « ) ^
0

By Lemma 1, j-~AπF(t) converges to G(t) in L2. Hence by weak con-

vergence

lim / ~ΔΊhF{u)du^ \ G(ύ)du
h->0 J Jl J

0 0

But

y I Δ;ίF{u)du = ±(j F(u + h)du- J F\u)

(2.3)
t+ft s

= ~hj ^ M ) £ / M ~ ¥ J
t 0

Since /^/) is continuous for f(x) € Lu the right of (2.3; converges to F\t)

3. Derivatives of a stationary process. Let F\x) be the spectral
function of a continuous stationary process X(t). If

r

then X\t) exists in the sense that

is a stationary process and its spectral function is / x2dF\x). This is
— CO

well known[2]. Repeated applications of this fact show immediately that

Γ<3.2) Γ x2pdF(x) < 00,
— C

i> being a positive integer, then
X*Kt) = l.i.m. X^tt+h)-*«-»«) { k = u ^

h^0 rl
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exists, the spectral function of this stationary process is \ xilcdF(x), and the
— CO

correlation function of XiP\t) is ( — l)pp(223)(w), p{u) being the correlation function
of X(t).

We shall prove that

C3. 3) 1. i. m. h~* Γ ] £ (?) ( - iy-*X(t + kh)λ = -ϊ (p)(/)

under the condition (3.2).
Let this statement holds for any stationary process with the condition

(3.2) for p = r. And if it should be proved that (3.3) holds for p = r + 1
under (3.2) with £ = r + 1, then our statement holds generally by induction.
Hence it is sufficient to show that

(3.4) 1. i. m. IA-cr+1>ΔΛ

(r+1)-X(ί) - fc-rΔΓ Xr(t)\ = 0,
Λ-X) I J

where
= X(t + W

For ^P(f) is a stationary process whose spectral function is I x2dF{x) = Fi(xy

and

ί *» rfFi(*)= Γ ^ r + 1 >rfFW< oo.

Now we can easily prove that, if Z(t) is a stationary process, with

/ x2dFz(x) < oo, Fz{x) being the spectral function of Z, then

(3.5) E{\~ AΉt) I } = - i {<?(/*) - 2«p(0) + 9K - A)}

where >̂ is the correlation function of Z{t),

(3.6) E{\Z{t)\*} = lim £ { | ̂ -

(3.7) £ {χΔΛZ(ί) ZW} = Jim β{-^Δ»Z( ί) |-ΔEZ(Γ)} . \ {φ\h) - φ'

and

(3.8) E {A,.Z(i + «)ΔZ^ί)"} = ^φ{u - h).

Under these preliminaries, we shall prove (3.4). Since the finite linear
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combination of X(t + dt) is also a stationary process, we can take
for Z(t) above. And we have, by (3.5) and (3.7)

I1} = - ^ Δ P P ( - Λ)

{ } ^ - 2A) = ^ Δ ^ / > ( - 2Λ)
and at last

(3.9) F{\h-'WJHt)\*} = ( - lfA-^Δf>( - rA).
Moreover
(3.10) E{h-rA^X(t + u)h-rAjpX(t)} = ( - iyA-2rΔ£2r)p(« - rA).

And

which by taking Δjp X(t) for Z(/) again, applying (3.5) (3.6) and (3.7), and
using (3.9) we can write as

( - l)» +iA-a<r+1W4

acr+1>V( - (r + 1)A) - ( - l)rA-2rΔi2r)Pf/( - rh)

+ (( - irhΔtW - (r - DA) + ( - DΆ-*ΔFV( - (̂  +

- 2( -

By letting A -> 0, it is easily verified that the limit is

( - iy+ipa(r+1)(0) + ( - l)r+1p<2r+1>(0) + ( - Drp<» +i>(0) + P(2r+1)(0) = 0.
Thus we have proved (3.3).

4. A differential operator. In this section we also assume that the
spectral function F(x) of a continuous stationary process X(t) satisfies

(4.1) J x2pdF(x) < oo,

p a positive integer. We shall prove that X(J)>(ί) can be expressed as

%[X(t), £(•)] for some k(x) € £*•.
Let the function ϋΓw(0) of bounded variation be defined as

Kn{θ) = 0 at θ = 0

(4.2) ϊ

= (-1)*>y\(ϊ)(~-l)p-k, for — <^<oo.

Then
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By (3.3),
(4.3) l.i.m. 8

The Fourier-Stieltjes transform L2(F) of ufn(0), is kn(x) which converges
to (/#)p. Further we have

\kn(x) -UxY\*%2n™\(l-cos~f -f sin—

And hence
(4.4) l.i.m. L2{F) *.(*)=(£*)*.

By the fact stated in the last part of § 1, we have

(4.5) x»xt)=%mt),κ-yi,
where

k(x) = (ixy.
5. Optimum prediction operator. Assume through this section that

the spectral function F\x) is absolutely continuous,
F{x) = Φ(x)

and

(5.1;

Then
(5.2)
where the Fourier transform in ordinary L2 sense of Ψ(x)

-τ4= Γ
\/ Z 7T J

A->oo
-A

satisfies
(5.3) ψ{t)=0, t<0,
almost ever}rwhere. We have in a previous paper proved that if

(5*4) ΨOc) V^ ί
o

Cthe integral is taken in L2 sense) is a function of $F 3 ), then %[X(t), h(-)]
becomes the optimum predictor of X(t -f OL) when X(t + a) is to be estimated
by TO*), *(.)! *f*)€ΛΛ

It is the object of the present section is to express (5.4) in another
form, under the condition that,

(5.5) Γ \x\^φ{x)dx< oo.
o

3) h{x) in (5.4) is, in fact, a function of $F+ This circumstance was investigated
by K. Takano, Note on Wiener's prediction theory, Annales of the Institute of
Stat. Math., 5 (1954).
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Following theorems are given, essentially by N. Wiener [4], but we shall prove
in a more rigorous manner.

THEOREM 1. Let (5.5) hold ρ>l. If

1 Λ Γ Γ Γ
(5.6) r(x) = -?== τ τ ~ ; / e~'txdt / ^(u)eiut eiau - 1 - ictu -

v 2 7t Ίί \x) J J L

du

is of SfF, then h(x) in (5.4) is the optimum predictor and is represented as

The outer integral in the right hand side of (5.6) is taken as Z2-sense,
and the inner integral is absolutely convergent for p^l.

We consider Ψ(x) in (5.2). Then
<5.8) I ***<!>(*) I - |**Ψ(*)| a

and by Lemma 2, the Fourier transform of x?°ψ(x) vanishes for x < 0, for
k = 1,2, . . . .p, and we have

<5.9) ψ<n(t) = - 7 = f (i
V2τr J

L] (ί*)*ψ(x) also belongs to Z* and hence we can consider it is
the Fourier transform (inverse transform) of ^( f r)(f).

Now put

We have

υ

.11) - ψ(x) - a iχψ(x) - . . . . -
(P — 1)1

(^ — 1)!
<the integral being taken as Lz sense)

OO OO

= - i - -pLi f e-ίxtdt\ [ [ψ(u)eiu« - Ψ(«) - aiuΨ{u)
Ψ(x) sj2 7t J L J I

which proves (5.6).
If r{x) € @F then h{x) € ΛF, because in (5.10) (ixf is a function of Λ* as
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was shown in §4. Thus our theorem is proved.

THEOREM 2. r(x) in Theorem 1 can be represented as

(5.12) r(X) = ^ 7 = / e-Utj * / ' • • /
0 0

w^ defined as the limit in mean h -> 0 o/-,-

Clearly we have

=> Ψ(t) + aψif) + 2, ψ" ( / ) + . . . . + (-^Γ

+ \ dUι\ .... \ ψ <*-»(* + «„-,)
0 0 0

and by Lemma 3

f
o

These in connection with (5.11), proves the theorem. Theorem 1 can be
also stated as

THEOREM 3. If h(x) € 8F, or r(x) € 8F, then X(t + a) is best predicted by

(5.31) X(t) + aX(t) + . . .

In conclusion, I should like to express my hearty thanks to Prof. G.
Sunouchi for his kind criticism and valuable suggestions. Lemma 1 was-
improved and I add some footnotes by his suggestion.
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