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Recently Y.Mutd [5] has shown interesting results about the fibred
Riemannian spaces, and A.G. Walker [7] has dealt with the fibring of the
manifold with a Riemannian metric which readuces locally to a product of
two Riemannian matrices. Among thz various typzs of fibred Riemannian
spaczs introduced by Y.Mutd, the one with isometric parallel fibres is
especially interesting. In this papsr we shall attempt to detail some of its
properties. For this purpose, it is important to know the bundle structure
of the fibred Riemannian space with isomztric parallel fibres, but this problem
is completely solved by Walkzar. Starting from a lemma which is covered
by the Walkar’s, we shall study properties of fibred Riemannian spaces with
isometric parallel fibres.

For notations and concepts conczrning the fibre bundles we follow
N. Steenrod [6]. Throughout the whole discussion let the indices run as
follows :

abe, ....=12.....n;645k ....=n+1,n+2 ...., n+m;
M)N,....=1,2,...., n-+ m.

1. Differentiable fibre bundles. First of all, we shall recall some
properties of the differentiable fibre bundles, especially their systems of local
coordinates of a special type. [n a differentiable fibre bundle B of class C7,
its bundle space B, base space X and fibre space Y are all differentiable
manifolds of class C’, and the structure group G of B is a group of diffe-
rentiable transformations of Y onto itself.

In the bundle space B there exists a system of coordinate neighbourhoods
{W?} such that a system of coordinates (x?, ¥") is defined in each neighbourhood
W of {W}, and moreover the system of equations x* = const. and 3 = const.
give a portion of a fibre and a local slice respectively.

Let p: B> X be the projection of the bundle structure of B. So the
collection {p(W)} of open sets p(W) is a system of neighbourhoods on the
base space X and (x%) is a system of coordinates in p(W). Now we shall
denote the open covering {p(W)} of X by {U,}, say p(W) = U,, where {U,}
may be assumed to be a system of coordinate neighbourhoods of the fibre
bundle B. The coordinate function of B is given by

Ga: Uy X Y > p~HUL)

for any neighbourhood U, of {U,}. Further, a mapping
Prp: Y O pix)

for any point x € U, 'is defined as follows :
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Pra(P) = dA(x, ), YEY.
Then there exists a mapping

Dr: DN UMY,
which is defined by

PB) = S7MB), bE DTN, x=pb) € Un.

Here it is easily seen that the set pA(W)CY isopenin Y. Thus we are able
to take the collection {p(W)} of such open sets p,(W) as a system of co-
ordinate neighbourhoods on the fibre space Y,and (3%) is a system of co-
ordinates in p,(W). A system ot local coordinates on B just considered is
called a system of favourable coordinates by Y.Mutd. Similarly, such a co-
ordinate neighbourhood W is called a favourable neighbourhood.

Let (27, 3%) and (x7,37) be two systems of favourable coordinates at a point
of B. Then there exists a transformation, between these systems, expressed
by the equations

a0 = (L, A,

371 — B}I(xl, A2, L., Ay YL ymz "yn+m)’

whose classes are C” obviously. The first system of equations (1) gives a
transformation of coordinates in the base space X, and the second one for
fixed (x?) is nothing but a local expression of a coordinate transformation
of the fibre bundle B, that is,

¥ = Y,

where ¥, y€ Y, x€ U,NU.<X and U,, U, are two intersecting coordinate
neighbourhoods of the fibre bundle %. It is well known that the mapping
Y Url U.-> G, which associates an element ,.(x) € G to each point
x € U,NU,, is differentiable one of class C".

To avoid complexity, the words ‘“differentiable fibre bundle” will be
simply replaced by ‘“fibre bundle” in the following sections. We assume
hereafter that the classes of differentiability of fibre bundles, manifolds,
mappings and so on are sufficiently high.

@

2. Fibred Riemannian spaces. We shall give the definition of the
fibred Riemannian space and its fundamental properties in this section.

An (n + m)-dimensional Riemannian space B is called a fibred Riemannian
space, if its underlying manifold has a bundle structure ¥ = {B, X, Y, G},
where the base space X and the fibre space Y are supposed to be manifolds
of n and m dimensions respectively.

There exists a field F of n-dimensional plane-elements which are orthogo-
nal to the tangent space of the fibre at each point of B. Each fibre Y in
the given fibred Riemannian space B has a Riemannian metric induced from
the metric of B by the inclusion mapping. Consequently any fibre Y will be
considered as a Riemannian space having such an induced metric.

By definition, the fibred Riemannian space B is called to have holonomic
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fibres according to Y. Mutd, if the field F is completely integrable.
We shall introduce some concepts and notations. Let us take a piece-
wise differentiable curve C of the base space X. Let x, and x; be its initial

and terminal points respectively. Then there exists an integral curve C of

the field F which covers the given curve C, if the initial point &, of C is
given on the fibre Y, over the point x. Suppose that 5, is the terminal point-

of the integral curve C. Then the point b, is on the fibre Y, covering the
point x,. Thus there exists a correspondence which associates a point b; of
Y, to a given point by of Y,, when a curve C is given on the base space X.

This correspondence defines a mapping @(C): Y,-> Y, and the mapping
@(C) is obviously differentiable. Especially, if we take a closed piece-wise
differentiable curve C passing through a fixed point x, then the mapping
@(C) maps the fibre Y, onto itself. The totality of such mappings @(C) has
a group structure and the group thus obtained is a group H, of transfor-
mations of the manifold ¥, The group H, just introduced is called the
holonomy group of the given fibred Riemannian space at the point x,.

It is easily seen that the holonomy group H, at any point x of X is
isomorphic to H,. The following fact is easily proved:

The fibred Riemannian space B has a bundle structure B which has H,
as its structure group, if the group H, is the holonomy group of B at a point
% € X

3. I.P.F.Riemannian spaces. A fibred Riemannian space B is called
to have isometric fibres, if the mapping @(C): Y,—> Y. defined in §2 is an
isometric correspondence between two fibres Y, and Y, for any piece-wise
differentiable curve C on X.

By definition, a fibred Riemannian space is called to have isometric parallel
fibres by Y.Mutd, if it has holonomic and isometric fibres, and it is denoted
by I.P.F. Riemannian space for the sake of convenience. The following
theorem has been given by Y. Mutd. )

THEOREM 1. In an I. P.F. Riemannian space B,there exists a system of
JSavourable coordinates (x",3") havingthe following properties at each point of B.

i) With respect to such a system of coordinates the Riemannian space B
has a decomposed metric :
) ds? = ga(x)dx*dx’ + g:;()dY'dy’.

ii) The system of equations x* = const. gives a portion of a fibre and the
system of equations ¥ = const. gives a local slice which is a local integral
variety of the field F of plane-elements.

The Walker’s Theorem 2 [7] covers the following lemma.

LemMMma 1. An I P.F. Riemannian space B has a bundle structure B
= {B, X,Y,G} having the following properties:

1°. The base space X and the fibre space Y are Riemannian spaces.

2°. The structure group G of B is a Lie group of isometric homeomorphisms
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acting on Y.

3°. The coordinate transformations vy, of the fibve bundle B are constant
SJunctions on U,(\U., where U\, U, are two coordinate neighbourhoods of the
fibre bundle B such that UxN\U, * ¢.

Here, we shall give a sketch of the proof of Lemma 1. Let us consider
a closed piece-wise differentiable curve C passing through a point % € X on
the base space X, then there exists an isometric mapping @(C) of Y, onto
itself, where Y, is the fibre over the point x, It follows obviously from the
complete integrability of the field F that two mappings @(C) and @(C")
corresponding to two closed curves C and C’ respectively are identical, if
C and C’ are homotopic. Thus the isometric mapping @(C):Y, > Y, depends
only on homotopy class of the closed curve C.

Consequently, we denote this transformation of Y, by s(a), where « is
the homotopy class of the closed curve C. The totality of these trans-
formations s(«), when « runs over the homotopy group z;(X) of X, forms
the holonomy group H, of the given 1. P.F. Riemannian space B at the point
%,. Then the holonomy group of B is a homomorphic image of the homotopy
group 7,(X) of X. By some elementary consideration, we can conclude that
the structure group G of the fibre bundle B is reducible to the group H,.
Hence, Lemma 1 holds good.

It is remarkable that the structure group of an I.P.F. Riemannian
space is isomorphic to a factor group of the homotopy group zi(X) of the
base space X. From this remark we have the following result :

COROLLARY. If an I. P.F. Riemannian space has a simply connected base
space, then it is reducible to a product of two Riemannian spaces which are
isometric and homeomorphic to the base space and the fibre space respectively.

At the last of this section we shall seek for a proposition equivalent to
the condition 3° of Lemma 1. Let us consider a fibre bundle B and its base
space X. Let X be a covering space of X, and B be an induced fibre bundle
of the fibre bundle B by the projection of the coivering structure of X over
X. Then we can prove the following lemma :

LemmA 2. A fibre bundle B has the property 3° of Lemma 1, if and only
if there is a suitable covering space X of its base space X and the induced fibre
bundle B s equivalent 1o a product bundle.

Proor. If a fibre bundle ¥ has the property 3° of Lemma 1, then
the induced bundle %U over the universal covering space of X~0 of X is obvi-
ously equivalent to a product bundle. Conversely, if an induced bundle N is
equivalent to a product bundle X x Y, it has a cross-section M, defined by
g X y, passing through any point (x,y) of B=XxY. Let p: )?—) Y and ;;
B > B be the natural mappings of coverigns, where B is the bundle space
of B. Suppose that p: B > X and 5: B > X are the projection of the bundles
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B and B respectively. Then there exists a relation among them, that is,
bp=pp
Putting M = p(M), then M < B. Moreover,
A = p p(M) = pp(M) = p(X) = X
by virtue of the above relation. Hence M is a covering of the space X and
its covering projection is given by p: MM > X which is the restriction of
p: B> X on M. Moreover, it is easily seen that there exists one and only one
subvariety I passing through any given point of B. Consequently, it follows
that the bundle B has a discrete group as its structure group. Therefore,

9B has the property 3° of Lemma 1. Hence Lemma 2 is proved.
If an I.P.F. Riemannian space B satisfies the condition of Lemma 2,

then the induced fibre bundle B = {E )Z Y, G} over Xisa product bundle.

Thus, the bundle space B=XxYof Bisa covering space of B,and B has
a Riemannian metric of the type (2) which is the Pythagorean sum of the

metrices of ¥ and X. Hezre, ths projaction of thez covering structure of B

~

over B is locally an isomatric coyrraspondancs, that is, the covering B over
B is an isometric covering.

4. Inverse problem. We shall now consider the inverse proposition of
Lemma 1.

THEOREM 2. Let us suppose that a differentiable manifold B has a bundle
structure satisfying the condition 1°,2° and 3° of Lemma 1. Then there
exists such a Riemannian metric on B that the fibred Riemannian space B
with this metric is an I. P. F. Riemannian space.

Proor. Let B = {B,X,Y,G} be the given fibre bundle. Then the fibre
space Y and the base space X are both Riemannian spaces and the structure
group G is a Lie group of isometric homeomorphisms of Y onto itself.

Let us suppose that {U,} is a system of cyordinate neighbourhoods of
the given bundle B and the mappings y\.: Ux | U. > G are the coordinate
transformations of B. According to the condition 3°, the elements v,,(x) €
G is a fixed element for any point x € Ux | U,. Thus, in the transformation
(1) of two systems of favourable coyordinates, the second equations

ﬁ :_ﬂ(x17 xz’ el xn; y77-+17y"+2) . 7yn+m)
contain no variable x* and, in conssquencs, the transformation (1) has the
following expression :
2= xx, A2, .. a),
Y= YLy g,
At the present step, we shall introducz a reduced Riemannian metric on
the bundle space B. We take a favourable neigabourhood W defined in § 1.

Let p(W) = Ux bz a coordinate nzigabournood of the fibre bundle B and
Pp.(W) = V be anzighbourhood of the fibre spacz Y. Moreover, if a system of

3
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favourable coordinates is given by (1%, 3%) in W, then (%) and ()) are a system
of coordinates in U, and V respectively. Take a point 4 having the coordinates
(x%,5") in W ; then the point x = p(b) in U, and the point ¥ = p,(») in V have
respectively (x") and (%) as their coordinates.

Let | gw(x)] be the matrix-representation of the metric tensor of the
Riemannian space X at the point x with respect to the system of coordinates
(»7) and g;;(¥) be the similar one related to the Riemannian space Y.

Using the above two matrices, let us consider the following matrix:

x) 0 |

0 9:59) |
at the point 8 € W. Naturally, the matrix [ganx(b)' defines a Riemannian
metric on W with respect to (x%,3%). If we can show that the matrix | gunx(b) !,
which is given in each W, define a tensor on B, then the proof of the
Theorem 2 is completed. This assertion is a consequence of the two facts
that the transformation (1) of the systems of favourable coordinates has
the special type (3), and that . gu»(b) has a completely reduced type. Thus
we have the Theorem 2.

As an additional result we have the following corollary :

~ COROLLARY. Let us suppose that a fibre bundle B = {B,X,Y,G} has a
compact Lie group G as its structure group and it satisfies the condition 3°
of Lemma 1. Then the bundle space B is an I. P.F. Riemannian space by a
suitable metrization,

In fact, a Riemannian metric is defined on the base space X by a method
of N.Steenrod [6] and the similar process can be applied to the fibre space
Y. On the other hand, since the compact Lie group G is a group of trans-
formations operating on Y, then we are able to construct a Riemannian metric
on Y which is invariant under the action of -G by the average process.
Consequently, we have the corollary from Theorem 2.

As a consequence of Lemma 1 and Theorem 2 we have easily the
following result:

The bundle space of a fibre bundle B is an I. P. F. Riemannian space by a
suitable metrization, if and only if B has the properties 1°,2° and 3° of
Lemma 1.

1
,ngN(b) = é Gan(

5. The Betti numbers of the I.P.F.Riemannian spaces. When an
1. P.F.Riemannijan space B is compact, the fibre space Y and the base space
X are both compact. It is easily seen that X is orientable for orientable B
and Y. Similarly, when B and X are orientable, ¥ is so. Here we shall prove
the following theorem.

THEOREM 3. Consider a compact orientable I. P. F. Riemannian space B. If
either the fibre space or the bace space is orientable, and moreover if ils
structure group G is a subgroup of a connected group of isometries on Y,
then the p-th Betti numbers R, B) of B is equal to the p-th Betti numbers
Ry(X x Y) of the product space of X and Y jfor all integers p such that
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0 <p =<dim B.
To prove Theorem 3, we have to remark the following lemma due to
K. Yano [8].

LEMMA 3. The harmonic forms on a compact orientable Riemannian space
are invariant under a connected group of isometries of this space.

Proor or THEOREM 3. The following inequalities are well known for any
fibre bundle B = {B, X, Y}. (See [3] and [4]). That is,

(4) R (B)=R,(X x Y) 0 =<p=<dim B).
Consequently, if we get the inequalities
(5) RyB)= Ry(X X Y) 0<p<dim B),

then we have the required Theorem 3.

Now, we are going to show the inequalities (5). First of all, it is usefull
to associate a harmonic form on B to a given harmonic form on Y. If we
take a harmonic form » on Y, then we can define a differential form w,\ on

U\ x Y as follows:

wp = BP)\((D)
Here &p, is the dual of dp, which is the differential of the projection
pr: UnxY>Y and U, is a coordinate neighbourhood of the fibre bundle

B ={B,X,Y}. Let a homeomorphism
ST UND>UNXY

be the inverse mapping of the local isometric homeomorphism ¢, of the
fibre bundle %B. Denote the differential of the homeomorphism ¢;! by d(¢5?),
and the dual mapping of d(¢;}) by 8(¢5). Now, we shall define a differential

form ;\ on p~YU,) by the relation
or = (i) ().

For a point b € p~}(U,) N p~XU,) the point x = p(b) is in U, N U,, where
U\, U, are two intersecting coordinate neighbourhoods of the bundle 2.

Then, at the point & two differential forms ;A(b) and ;“(b) are defined and
they are related as follows. That is, by a simple consideration, we have
o = (B3 )S()w),

where 8(yau(x)) is the dual of the differential of the transformation gu(x):
Y > Y. But,since w is a harmonic form, it is invariant under the structure
group G by means of Lemma 3 just mentioned. Then we have

o = 8 ().
Hence, it follows that
0u() = @x(d)
From the above discussion, it is easily seen that a differential form ‘@
on B is defined by the differential form ‘@ on »7Y(U,). On the other hand,
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Christoffel’s symbols of B satisfy the relations

HE

since the metric is decomposed as shown in (2) of Theorem 1. Using these

relations, we have by a slight calculation that the differential form o is
harmonic as a consequencz of the fact that the form o is harmonic.
Furthermore, it is not difficult to show that the two harmonic forms

w; and w, respectively corresponding to harmonic forms w; and w, on Y are
linearly independent, if w, and w, are so.

Neaxt, there corresponds a harmonic form ﬁ(b) on B with a given one

O(x) on X in such a manner that Q= op(Q)), where 8p is the dual mapping
of the differential of the projection p: B - X of the fibre bundle B. By the
same reason as above, the linear independency between the several harmonic
forms on X is preserved by this correspondence. Finally, it is easily seen

that the two harmonic forms @ and O thus introduced are linearly indepen-
dent to each other.

Summing up the above results, we arrive at the required inequalities (5)
by virtue of Hodge’s theorem. Thus Theorem 3 is proved.

Next, we have the following theorem :

THEOREM 4. Let B be an I. P. F. Riemannian space satisfying the conditions
of Theorem 3. Then every fibre of B is not homologous to zero in B. And
all of them are contained in a fixed homology class of B,when B is connected.

Proor. Let us suppose that a fibre Y, passing through a point » of B
is homologous to zero in B. Let w be the differential form on Y expressing
the volume element of the fibre space Y. Then o is harmonic. Corresponding

to w, a harmonic form ® of degree m (m = dim Y) on B is defined by the
same method as we used in the proof of Theorem 3. Since Y, is homolo-

gous to zero and w is harmonic, then we have

V(Ys) = f ® = 0.
Yb

On the other hand, V(Y,) is not equal to zero, since the integral V(Y5)
expresses obviously the total volume of ¥, This result constradicts the
preceding conclusion. Hence, the first part of Theorem 4 holds true.

The second part follows easily from the fact that any two consecutive
fibres are mutually homologous in B, since B is locally homeomorphic to
the product of ¥ and an open subset of X by virtue of the local product
representation of B. Thus Theorem 4 is proved completely.

6. Eixamples and applications. We shall consider some examples of
the I. P. F. Riemannian spaces and their applications.
6.1. The torus and the Klein bottles are simple examples of the I.P.F.
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Riemannian space. In these examples the base spaces are circles, and then
the universal covering spaces of these base spaces are contractible to a
point. Generally, if a fibre bundle ® has a base space whose universal
covering space is constractible to a point, then the bundle B has the property
3° of Lemma 1.

6.2. Recently C. Ehresmann [2], S.S. Chern [1] and other authors have"
dealt with the infinitesimal connection in a fibre bundle. In this place we
attempt to characterize the fibre bundle which admits a locally flat infinite-
simal connection.

The infinitesimal connection in a fibre bundle ¥B is introduced in two
manners. In the first method, it is defined by a differential form with some
special properties on the bundle space. In the other method, the connection
is defined using a field of #-planes of a special type in the bundle space,
where 7 is the number of dimension of the base space.

In the latter definition the local flatness is defined by the complete inte-
grability of the n-field defining the connection.

Here, we shall recall the second definition of the infinitesimal connection.
In a principal fibre bundle B = {B, X, G,G} an infinitesimal connection is
defined by a field F ot »n-planes which satisfies the following two conditions :

i) The tangent space of B at any point » of B is spanned by the plane-
element F(b) of the field F and the tangent plane of the fibre at the point b.

ii) The field F is invariant under the right translations of the principal
bundle %B.

It is well known that a principal bundle B admitting a locally flat connection
has the property 3° of Lemma 1. (See [1]).

Conversely, it is interesting to ask whether a principal bundle having
the property 3° of Lemma 1 admits a locally flat connection or not. To
attack this problem, we shall assume that the structure group of B is a
compact group G. Then it follows from the corollary of Theorem 2 that
the bundle space B is an I.P.F.Riemannian space by a suitable metrization.
Since the group G is compact, the group G has a Riemannian metric g;; on
its group space which is invariant under the left- and the right-translation
by G itself. Now, using this invariant metric g:;; on the fibre space G, we
can introduce a metric gy~ of the I. P. F.Riemannian space B.In this case it
is easily seen that all of the right-translation of the principal bundle B are
isometries of the I.P.F. Riemannian space B.

Let b a point of B and F(b) be an #n-plane orthogonal to the tangent
plane of the fibre through the point 4. Then a field ¥ of »n-planes is defined
on B by the correspondence b-> F(b). We shall show that a locally flat
infinitesimal connection is defined by the field F of zm-planes thus introduced.

In fact, the field F satisfies obviously the condition i). Since the Riemannian
metric guy is invariant under the right-translations of B, the field F is also
invariant. Consequently, the condition ii) is fulfilled by the field F. Hence the
field F defines an infinitesimal connection on . Finally, it is obvious. that
the field F is completely integrable, and then the connection defined by F' is
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locally flat. Thus we have a locally flat connection on B. The following
theorem is obtainzd from the discussions above.

THEOREM 5. A principal fibre bundle with a combact structure group
admits a locally fiat infinitesimal connzection when and only when it has the
property 3° of the Lemma 1.

The author wishes to express his thanks to Prof. H.Hombu, Prof.S.
Hokari and his colleague M. Obata for their advices.
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