NOTE ON SOME MAPPING SPACES

Hidekazu Wada

(Received February 8, 1958)

1. In [2], the author obtained a result:

Let G_{n} be the mapping space of an n-sphere S^{n} on itself, and let F_{n} be a subspace of G_{n}, whose every ele nent fixes a reference point of S^{n}. Then G_{n} is of the same homotopy type as $S^{n} \times F_{n}$ if and only if $\pi_{2 n+1}\left(S^{n+1}\right)$ contains an element, whose Hopf invariant is 1.

From this result, we can see that G_{1}, G_{3} and G_{7} are homotopically equivalent with $S^{1} \times F_{1}, S^{3} \times F_{3}$ and $S^{7} \times F_{7}$ respectively [2, Corollary (6.5)]. In the present note, the author will notice that the homeomorphisms hold instead of the homotopy equivalences in the above three cases.
2. We shall say that a space X is an H_{*}-space if the following conditions are satisfied:
(i) The bi-continuous product $x \cdot y \in X$ is defined for every pair of points x, y of X.
(ii) There is a fixed point $e \in X$, which satisfies the condition

$$
x \cdot e=x
$$

for every point x of X. We shall call e the right identity of X.
(iii) There exists a point x^{-1} of X, continuously defined by x of X such that

$$
x \cdot x^{-1}=e,
$$

for every x of X. We shall call x^{-1} the right inverse of x.
(iv) For every pair of points x, y of X, the following identity holds:

$$
x^{-1} \cdot(x \cdot y)=y .
$$

If we put $y=e$ in (iv), we obtain
(iii)'

$$
x^{-1} \cdot x=e
$$

using (ii).
Now, for an x, if there is another z such that $x \cdot z=e$, then, by multiplying x^{-1} to the left in this equation, we get $z=x^{-1}$ using (iv) and (ii), which shows the uniqueness of x^{-1}.

On the other hand, if there is a y for a given x such that $y \cdot x=e$, then $x=y^{-1}$ from the uniqueness of the right inverse. In general, $y^{-1} \cdot y=e$ holds from (iii)', therefore $x \cdot y=e$, which proves $y=x^{-1}$. Therefore the right inverse is the left inverse, which is unique.

Next, if there is a z such that $x \cdot z=x$ for any x, then, multiplying x^{-1} to the left in this equation, we obtain $z=e$ using (iv) and (iii)', which proves the uniqueness of e.

Now, from (iii), (iii)' and from the uniqueness of the right inverse, we obtain $\left(x^{-1}\right)^{-1}=x$, from which and from (iv) we get
(iv)'

$$
x \cdot\left(x^{-1} \cdot y\right)=y,
$$

for every pair of points x and y.
3. Now, let Y be an H_{*}-space. Let G be the space of mappings of X in itself with the compact-open topology, and let F be its subspace, whose every mapping fixes e unchanged. We shall define two mappings

$$
\begin{aligned}
& \lambda: G \rightarrow X \times F \\
& \mu: X \times F \rightarrow G
\end{aligned}
$$

as follows:

$$
\begin{array}{ll}
\lambda(g)=\left(g(e), g_{*}\right) & \text { for every } g \in G, \\
\mu(x, f)=f_{x} & \text { for every } x \in X, f \in F,
\end{array}
$$

where $g_{*} \in F$ and $f_{x} \in G$ are defined by

$$
\begin{array}{ll}
g_{*}(x)=(g(e))^{-1} \cdot g(x) & \text { for } x \in X, \\
f_{x}(y)=x \cdot f(y) & \text { for } x, y \in X .
\end{array}
$$

The continuities of λ and μ can be seen as follows:
Lemma. Let x be a point of X, let C be a compact set of X, and let U be an open set of X such that $x \cdot C \subset U$, then there are open sets $V(\ni x)$ and W ($\supset C$) such that $V \cdot W \subset U$.

In fact, let $c_{\alpha} \in C$ be any point, then there are open sets $V_{\alpha}(\ni x)$ and $W_{\alpha}\left(\ni c_{\alpha}\right)$ such that $V_{\alpha} \cdot W_{\alpha} \subset U$. As C is compact, there are finite number of W_{α} which cover C, which we shall denote as $\left\{W_{i}\right\}$. Then $V=\cap V_{i}$ and $W=U W_{i}$ satisfies the conclusion of the Lemma.

Let C be a compact set of X, and U be an open set of X. We shall denote by U^{c} the set of mappings of G such that $C \rightarrow U$. Then, U^{c} is an open set of G.

Proof of the continuity of λ. Let W be an open set of $\lambda(g)=\left(g(e), g_{*}\right)$. Then there are an open set U_{1} of X containing $g(e)$, and an open set U_{2}^{C} of F containing g_{*} such that $U_{1} \times U_{2}^{\epsilon} \subset W$. As $g_{*}(C)=(g(e))^{-1} \cdot g(C) \subset U_{2}$, there are open sets V_{1} and V_{22} of X such that $(g(e))^{-1} \in V_{1}, g(C) \subset V_{2}$ and $V_{1} \cdot V_{2} \subset V_{2}$ from the Lemma. Then, we see easily $\lambda\left(\left(U_{1} \cap V_{1}^{-1}\right)^{e} \cap V_{i}^{e}\right) \subset W$, which proves the continuity of λ.

Proof of the continuity of μ. Let U^{c} be an open set containing $\mu(x, f)=f_{x}$. Then, from $f_{x}(C)=x \cdot f(C) \subset U$, there are an open set V_{1} containing x and an open set V_{2} containing $f(C)$ such that $V_{1} \cdot V_{2} \subset U$. Then, we can see easily that $\mu\left(V_{1} \times\left(V_{2}^{c} \cap F\right)\right) \subset U^{c}$, which proves the continuity of μ.

Next, for any $g \in G$, we see

$$
\begin{aligned}
\boldsymbol{\mu} \lambda(g) & =\mu\left(g(\boldsymbol{e}), g_{*}\right) \\
& =\left(g_{*}\right)_{g(e)} .
\end{aligned}
$$

On the other hand, for every $x \in X$, we get

$$
\begin{aligned}
\left(g_{*}\right)_{g(e)}(x) & =g(e) \cdot g_{*}(x) \\
& =g(e) \cdot\left((g(e))^{-1} \cdot g(x)\right) \\
& =g(x) \quad \text { from (iv) },
\end{aligned}
$$

which proves $\mu \lambda=1$ in G.
For $x \in X$ and $f \in F$, we see

$$
\begin{aligned}
\lambda \mu(x, f) & =\lambda\left(f_{x}\right) \\
& =\left(f_{x}(e),\left(f_{x}\right)_{*}\right) .
\end{aligned}
$$

On the other hand, as $f(e)=e$, we see $f_{x}(e)=x \cdot f(e)=x$ from (ii), and for every $y \in X$, we get

$$
\begin{aligned}
\left(f_{x}\right)_{*}(y) & =\left(f_{x}(e)\right)^{-1} \cdot f_{x}(y) \\
& =(x \cdot f(e))^{-1} \cdot(x \cdot f(y)) \\
& =x^{-1} \cdot(x \cdot f(y)) \\
& =f(y) \quad \text { from (iv) },
\end{aligned}
$$

which proves $\lambda \mu=1$ in $X \times F$. Therefore, we obtain
Theorem 1. For an H_{*}-space X, G and $X \times F$ are homeomorphic.
Now, S^{1}, S^{3} and S^{7} are H_{*}-spaces regarded as complex numbers, quaternions and Cayley numbers of norm 1 respectively [1, p. 108]. Therefore, we conclude

Theorem 2. G_{1}, G_{3} and G_{7} are homeomorphic to $S^{1} \times F_{1}, S^{3} \times F_{3}$ and $S^{7} \times F_{7}$ respectively.
4. S^{1}, S^{3} and S^{7} are H_{*}-spaces with the 2 -sided identity by the multiplications cited above. Namely, for every x, e of (ii) satisfies

$$
\begin{equation*}
e \cdot x=x . \tag{ii}
\end{equation*}
$$

But the following example shows that the condition (ii)' is independent with the conditions of the H_{*}-space.

$$
\begin{gathered}
H_{*}=\{e, x, y\}, \\
e \cdot e=e, x \cdot e=x, y \cdot e=y, e \cdot x=y, e \cdot y=x, \\
x \cdot x=y, y \cdot y=x, x \cdot y=y \cdot x=e .
\end{gathered}
$$

This system satisfies the conditions of H_{*}-space, but e is not the left identity.
I thank Prof. H. Kuniyoshi for his algebraic advice during the preparation of this note.

Bibliography

[1] N. E.Steenrod, The topology of fibre bundles, Princeton 1951.
[2] H. WADA, On the space of mappings of a sphere on itself, Ann. of Math., 64(1956), 420-435.

TÔHOKU University.

