NOTE ON SOME MAPPING SPACES

HIDEKAZU WADA

(Received February 8, 1958)

1. In [2], the author obtained a result:

Let G_n be the mapping space of an n-sphere S^n on itself, and let F_n be a subspace of G_n , whose every element fixes a reference point of S^n . Then G_n is of the same homotopy type as $S^n \times F_n$ if and only if $\pi_{2n+1}(S^{n+1})$ contains an element, whose Hopf invariant is 1.

From this result, we can see that G_1 , G_3 and G_7 are homotopically equivalent with $S^1 \times F_1$, $S^3 \times F_3$ and $S^7 \times F_7$ respectively [2, Corollary (6.5)]. In the present note, the author will notice that the homeomorphisms hold instead of the homotopy equivalences in the above three cases.

2. We shall say that a space X is an H_* -space if the following conditions are satisfied:

(i) The bi-continuous product $x \cdot y \in X$ is defined for every pair of points x, y of X.

(ii) There is a fixed point $e \in X$, which satisfies the condition

$$x \cdot e = x$$
,

for every point x of X. We shall call e the *right identity* of X.

(iii) There exists a point x^{-1} of X, continuously defined by x of X such that

$$\boldsymbol{x}\boldsymbol{\cdot}\boldsymbol{x}^{-1}=\boldsymbol{e},$$

for every x of X. We shall call x^{-1} the right inverse of x.

(iv) For every pair of points x, y of X, the following identity holds: $x^{-1} \cdot (x \cdot y) = y.$

If we put y = e in (iv), we obtain (iii)' $x^{-1} \cdot x = e$,

using (ii).

Now, for an x, if there is another z such that $x \cdot z = e$, then, by multiplying x^{-1} to the left in this equation, we get $z = x^{-1}$ using (iv) and (ii), which shows the uniqueness of x^{-1} .

On the other hand, if there is a y for a given x such that $y \cdot x = e$, then $x = y^{-1}$ from the uniqueness of the right inverse. In general, $y^{-1} \cdot y = e$ holds from (iii)', therefore $x \cdot y = e$, which proves $y = x^{-1}$. Therefore the right inverse is the left inverse, which is unique.

Next, if there is a z such that $x \cdot z = x$ for any x, then, multiplying x^{-1} to the left in this equation, we obtain z = e using (iv) and (iii)', which proves the uniqueness of e.

Now, from (iii), (iii)' and from the uniqueness of the right inverse, we obtain $(x^{-1})^{-1} = x$, from which and from (iv) we get

 $(\mathrm{iv})' \qquad \qquad x \cdot (x^{-1} \cdot y) = y,$

for every pair of points x and y.

3. Now, let Y be an H_* -space. Let G be the space of mappings of X in itself with the compact-open topology, and let F be its subspace, whose every mapping fixes e unchanged. We shall define two mappings

$$\lambda: G \rightarrow X \times F$$
$$\mu: X \times F \rightarrow G$$

as follows:

$$\begin{split} \lambda(g) &= (g(e), g_*) & \text{for every } g \in G, \\ \mu(x, f) &= f_x & \text{for every } x \in X, \ f \in F, \end{split}$$

where $g_* \in F$ and $f_x \in G$ are defined by

$$g_*(x) = (g(e))^{-1} \cdot g(x) \quad \text{for } x \in X,$$

$$f_x(y) = x \cdot f(y) \quad \text{for } x, y \in X.$$

The continuities of λ and μ can be seen as follows:

LEMMA. Let x be a point of X, let C be a compact set of X, and let U be an open set of X such that $x \cdot C \subset U$, then there are open sets $V(\ni x)$ and W $(\supset C)$ such that $V \cdot W \subset U$.

In fact, let $c_{\alpha} \in C$ be any point, then there are open sets $V_{\alpha}(\ni x)$ and $W_{\alpha}(\ni c_{\alpha})$ such that $V_{\alpha} \cdot W_{\alpha} \subset U$. As C is compact, there are finite number of W_{α} which cover C, which we shall denote as $\{W_i\}$. Then $V = \bigcap V_i$ and $W = \bigcup W_i$ satisfies the conclusion of the Lemma.

Let C be a compact set of X, and U be an open set of X. We shall denote by U^c the set of mappings of G such that $C \to U$. Then, U^c is an open set of G.

Proof of the continuity of λ . Let W be an open set of $\lambda(g) = (g(e), g_*)$. Then there are an open set U_1 of X containing g(e), and an open set U_2^c of F containing g_* such that $U_1 \times U_2^c \subset W$. As $g_*(C) = (g(e))^{-1} \cdot g(C) \subset U_2$, there are open sets V_1 and V_2 of X such that $(g(e))^{-1} \in V_1, g(C) \subset V_2$ and $V_1 \cdot V_2 \subset U_2$ from the Lemma. Then, we see easily $\lambda((U_1 \cap V_1^{-1})^e \cap V_2^c) \subset W$, which proves the continuity of λ .

Proof of the continuity of μ . Let U^c be an open set containing $\mu(x,f) = f_x$. Then, from $f_x(C) = x \cdot f(C) \subset U$, there are an open set V_1 containing x and an open set V_2 containing f(C) such that $V_1 \cdot V_2 \subset U$. Then, we can see easily that $\mu(V_1 \times (V_2^c \cap F)) \subset U^c$, which proves the continuity of μ .

Next, for any $g \in G$, we see

$$\mu \lambda(g) = \mu(g(e), g_*)$$
$$= (g_*)_{g(e)}.$$

On the other hand, for every $x \in X$, we get

144

$$(g_*)_{g(e)}(x) = g(e) \cdot g_*(x)$$

= $g(e) \cdot ((g(e))^{-1} \cdot g(x))$
= $g(x)$ from (iv)',

which proves $\mu \lambda = 1$ in G.

For
$$x \in X$$
 and $f \in F$, we see

$$\lambda \mu(x, f) = \lambda(f_x)$$

= $(f_x(e), (f_x)_*).$

On the other hand, as f(e) = e, we see $f_x(e) = x \cdot f(e) = x$ from (ii), and for every $y \in X$, we get

$$(f_x)_*(y) = (f_x(e))^{-1} \cdot f_x(y) = (x \cdot f(e))^{-1} \cdot (x \cdot f(y)) = x^{-1} \cdot (x \cdot f(y)) = f(y) \qquad \text{from (iv),}$$

which proves $\lambda \mu = 1$ in $X \times F$. Therefore, we obtain

THEOREM 1. For an H_* -space X, G and $X \times F$ are homeomorphic.

Now, S^1 , S^3 and S^7 are H_* -spaces regarded as complex numbers, quaternions and Cayley numbers of norm 1 respectively [1, p. 108]. Therefore, we conclude

THEOREM 2. G_1, G_3 and G_7 are homeomorphic to $S^1 \times F_1, S^3 \times F_3$ and $S^7 \times F_7$ respectively.

4. S^1 , S^3 and S^7 are H_* -spaces with the 2-sided identity by the multiplications cited above. Namely, for every x, e of (ii) satisfies

 $(ii)' \qquad e \cdot x = x.$

But the following example shows that the condition (ii)' is independent with the conditions of the H_* -space.

$$H_* = \{e, x, y\},$$

$$e \cdot e = e, x \cdot e = x, y \cdot e = y, e \cdot x = y, e \cdot y = x,$$

$$x \cdot x = y, y \cdot y = x, x \cdot y = y \cdot x = e.$$

This system satisfies the conditions of H_* -space, but e is not the left identity.

I thank Prof. H. Kuniyoshi for his algebraic advice during the preparation of this note.

BIBLIOGRAPHY

[1] N.E.STEENROD, The topology of fibre bundles, Princeton 1951.

[2] H. WADA, On the space of mappings of a sphere on itself, Ann. of Math., 64(1956), 420-435.

TÔHOKU UNIVERSITY.