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1. Introduction. We say an integral has the Cauchy property, if it
satisfies the following condition (C).

(C) If fix) is defined in [a, b~\ and is integrable in each interval [α + £,
b — η], w h e r e a<a + 8<b — η < b a n d

lim Γηf(t)dt (*)

exists, then f{x) is integrable in [a, b~\ and the integral over [a, b~\ is equal
to the above limit.

Both the special and the general Denjoy integrals have this property. M.
E. Grimshaw [1] proved that the approximately continuous Perron integral
defined by J. C. Burkill [2] satisfies the condition (C) with the approximate
limit instead of the ordinary limit in (•*).

By the use of a similar method we will show that the corresponding pro-
perty is possessed by the generalized approximately continuous Perron integral
dfiened by G. Sunouchi and M. Utagawa [3],

The writer expresses his thanks to Dr. G. Sunouchi for his suggestions and
criticisms.

2. Generalized approximately continuous Perron integral.

DEFINITION 2. 1. U(x) [L(x)~] is termed upper [lower] function of a
measurable fix) in [a, b], provided that

(i) u(a) = o [L(α) = 0],

(ii) AD U(x) > - oo [AD L(x) < + °o] at each point x,

(iii) AD U(x) >f(x) (AD L(x) ^f(x)] at each point x.

DEFINITION 2. 2. If fix) has upper and lower functions in \_a9 b] and

I u. b. L(b) = g. 1. b. U(b),

then f{x) is termed integrable in AP-sense or AP-integrable. The common
value of the two bounds is called the definite AP-integral of f(x) and
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denoted by (AP) ί f(t)dt.

G. Sunouchi and M. Utagawa [3] have proved the following results.

THEOREM 2. 1. The function U(x) — L(x) is non-decreasing and non-

negative,

THEOREM 2. 2. If fix) is AP-integrable in {a, b\ then f{x) is so in
every interval [a, x] for a <^ x <= b.

THEOREM 2. 3. The indefinite integral Fix) Ξ= (AP) ί f(t)dt is ap-
proximately continuous, a

THEOREM 2. 4. The function F(x) is approximately derivable almost
everywhere and

AD Fix) = f(x\ a. e.

3. Cauchy property of .AP-integral. We shall prove the Cauchy pro-
perty of the AP-integral in the following form.

THEOREM 3. 1. If f(x) is AP-integrable in {a, β\ where a^β<b
and has the integral F(x) in the interval a <J x < b, and if

ap lim F(x) = 1,

then f(x) is AP-integrable in [a, b~\ and

(AP) ff(t)dt = 1.

PROOF. We put F(b) = 1. Then F(x) is approximately continuous at b
since ap lim F(x) = 1. Hence, there exists a certain set S which includes the

point b and has unit density on the left at b, and on which

F(x) -* 1 as x -> b.

Let I bn} (n > 1) be an increasing sequence of S converging to b9 and put
b0 = a.

For any positive number £, we can choose an upper function Un(x) for
f(x) on \bw έ n + 1 ] (w>0) , such that

0 ^ Un{x) - IFix) - F(bn)] < ~^r, (1)

and

AD Un(x)> - oo, AD Unix) > fix). (2)

We define the function U(x) for a ^ x < b as follows,
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U{x) - U0(x) (a^x<b1)
M — 1

= Σ Uk(bk+ι) + Uu{x) (bn^x< bn+1).
fc = 0

Then it follows from (1) and (2) that

0 ^ U(x) - F(x) < 2 £, (3)

and

AD U(x) > - oo, AD U(x) ^f(x) (4)

for a <: x < b.

The function U(x) — F(x) is non-decreasing for a tS .r < b by Theorem
2. 1 and is bounded in any neighbourhood of b by (3), and so tends to a
finite limit as x tends to b from below.

Since F(x) -* 1 as x ->• έ on 5, Ϊ7(x) converges to a finite limit as x-> b,
x on 5.

We define [/(£) = lim U{x) {x € 5). Then, we obtain from (3)
b

0 ^ LΓ(6) - Fib) S2S. (5)

Let %(Λ:) be a continuous, non-decreasing function in [α, έ] such that
X(«) = 0, χ(έ) = θ, χ'(ft) = + oo.

We select the integer p such that oscillation of U(x) on 5 Π \.bp-x> £] is
less than S. This is possible since U(x) tends to a finite limit as x € S tends
to b.

Let ωn be the oscillation of U(x) on S Π [έn_i, έ] for n ^> p. We define
the function φ(x) on [£n, i n + 1 ] for each n ^> p and at έ as follows,

φ(bn+Ί) = ω^+i,

9>(J:) = linear (bn ^ x ^ bn+1),

φ(b) = 0.

Finally, we set

- φ{x) (bp^X^ b).

Then, we obtain from (4)

AD U(x) >/(*), AD U(x) > - oo
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for a <: x < by since χ(x) and — φ(x) are non-decreasing functions.

To verify AD U(b\ we consider AD[U(x) + <p{bv) — φ(x)~\ at b. By the

definition of φ9 we obtain

and therefore the approximate lower derivate of [U(x) + φ(bp) — φ(x)\ at b
is not negative. Since χ\b) = ̂ , we have AD U(b) = ©o. Thus, the function
U(x) is an upper function of f(x) on \af b~\.

Finally, we have

U(b) = C7(6) + χ(b) + ̂ (έ,) < C7(6) + 2 θ

and hence by (5)

0^U(b)~ F(b)<4S.

By constructing an upper function for — f(x) in [a9 b\ we obtain a
lower function L(x) such that

0 > Fib) - L{b) > - 4 6.

We have thus proved that fix) is ΛP-integrable on [α, έ] and that

(ΛP) (fil)dt = 1.
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