THE CAUCHY PROPERTY OF THE GENERALIZED APPROXIMATELY CONTINUOUS PERRON INTEGRAL

YÔTO KUBOTA

(Received May 20, 1959)

1. Introduction. We say an integral has the Cauchy property, if it satisfies the following condition (C).

(C) If f(x) is defined in [a, b] and is integrable in each interval $[a + \varepsilon, b - \eta]$, where $a < a + \varepsilon < b - \eta < b$ and

$$\lim_{\epsilon,\eta\to 0}\int_{a+\epsilon}^{b-\eta}f(t)dt \qquad (*)$$

exists, then f(x) is integrable in [a, b] and the integral over [a, b] is equal to the above limit.

Both the special and the general Denjoy integrals have this property. M. E. Grimshaw [1] proved that the approximately continuous Perron integral defined by J. C. Burkill [2] satisfies the condition (C) with the approximate limit instead of the ordinary limit in (*).

By the use of a similar method we will show that the corresponding property is possessed by the generalized approximately continuous Perron integral dfiened by G. Sunouchi and M. Utagawa [3].

The writer expresses his thanks to Dr. G. Sunouchi for his suggestions and criticisms.

2. Generalized approximately continuous Perron integral.

DEFINITION 2. 1. U(x) [L(x)] is termed upper [lower] function of a measurable f(x) in [a, b], provided that

- (i) U(a) = 0 [L(a) = 0],
- (ii) AD $U(x) > -\infty [\overline{AD} L(x) < +\infty]$ at each point x,

(iii) AD $U(x) \ge f(x)$ [$\overline{AD} L(x) \le f(x)$] at each point x.

DEFINITION 2.2. If f(x) has upper and lower functions in [a, b] and

l. u. b.
$$L(b) = g. l. b. U(b),$$

then f(x) is termed integrable in AP-sense or AP-integrable. The common value of the two bounds is called the definite AP-integral of f(x) and

denoted by (AP) $\int_a^b f(t)dt$.

G. Sunouchi and M. Utagawa [3] have proved the following results.

THEOREM 2. 1. The function U(x) - L(x) is non-decreasing and nonnegative.

THEOREM 2. 2. If f(x) is AP-integrable in [a, b], then f(x) is so in every interval [a, x] for $a \leq x \leq b$.

THEOREM 2. 3. The indefinite integral $F(x) \equiv (AP) \int_{a}^{x} f(t)dt$ is approximately continuous.

THEOREM 2. 4. The function F(x) is approximately derivable almost everywhere and

$$AD \ F(x) = f(x), \ a. \ e.$$

3. Cauchy property of AP-integral. We shall prove the Cauchy property of the AP-integral in the following form.

THEOREM 3. 1. If f(x) is AP-integrable in $[a, \beta]$, where $a \leq \beta < b$ and has the integral F(x) in the interval $a \leq x < b$, and if

$$ap_{x\to b}\lim F(x)=1,$$

then f(x) is AP-integrable in [a, b] and

$$(AP)\int_a^b f(t)dt = 1.$$

PROOF. We put F(b) = 1. Then F(x) is approximately continuous at b since $ap \lim_{x \to b} F(x) = 1$. Hence, there exists a certain set S which includes the point b and has unit density on the left at b, and on which

$$F(x) \to 1$$
 as $x \to b$.

Let $\{b_n\}$ $(n \ge 1)$ be an increasing sequence of S converging to b, and put $b_0 = a$.

For any positive number \mathcal{E} , we can choose an upper function $U_n(x)$ for f(x) on $[b_n, b_{n+1}]$ $(n \ge 0)$, such that

$$0 \leq U_n(x) - [F(x) - F(b_n)] < \frac{\varepsilon}{2^n}, \qquad (1)$$

and

$$\underline{AD} \ U_n(x) > -\infty, \ \underline{AD} \ U_n(x) \ge f(x).$$
(2)

We define the function $\overline{U}(x)$ for $a \leq x < b$ as follows,

172

THE CAUCHY PROPERTY

$$ar{U}(x) = U_0(x)$$
 $(a \leq x < b_1)$
 $= \sum_{k=0}^{n-1} U_k(b_{k+1}) + U_n(x)$ $(b_n \leq x < b_{n+1})$

Then it follows from (1) and (2) that

$$0 \leq \overline{U}(x) - F(x) < 2 \varepsilon, \tag{3}$$

and

$$\underline{AD}\ \overline{U}(x) > -\infty,\ \underline{AD}\ \overline{U}(x) \ge f(x)$$
(4)

for $a \leq x < b$.

The function $\overline{U}(x) - F(x)$ is non-decreasing for $a \leq x < b$ by Theorem 2. 1 and is bounded in any neighbourhood of b by (3), and so tends to a finite limit as x tends to b from below.

Since $F(x) \to 1$ as $x \to b$ on S, U(x) converges to a finite limit as $x \to b$, x on S.

We define $\overline{U}(b) = \lim_{x \to \infty} \overline{U}(x) \ (x \in S)$. Then, we obtain from (3)

$$0 \leq \overline{U}(b) - F(b) \leq 2 \varepsilon.$$
⁽⁵⁾

Let $\chi(x)$ be a continuous, non-decreasing function in [a, b] such that $\chi(a) = 0$, $\chi(b) = \varepsilon$, $\chi'(b) = +\infty$.

We select the integer p such that oscillation of $\overline{U}(x)$ on $S \cap [b_{p-1}, b]$ is less than \mathcal{E} . This is possible since $\overline{U}(x)$ tends to a finite limit as $x \in S$ tends to b.

Let ω_n be the oscillation of U(x) on $S \cap [b_{n-1}, b]$ for $n \ge p$. We define the function $\varphi(x)$ on $[b_n, b_{n+1}]$ for each $n \ge p$ and at b as follows,

$$arphi(b_n) = \omega_n,$$

 $arphi(b_{n+1}) = \omega_{n+1},$
 $arphi(x) = \text{linear} \quad (b_n \leq x \leq b_{n+1}),$
 $arphi(b) = 0.$

Finally, we set

$$egin{aligned} U(x) &= oldsymbol{\chi}(x) + \overline{U}(x) & (a &\leq x < b_p) \ &= oldsymbol{\chi}(x) + \overline{U}(x) + oldsymbol{arphi}(b_p) - oldsymbol{arphi}(x) & (b_p &\leq x \leq b). \end{aligned}$$

Then, we obtain from (4)

$$AD U(x) \ge f(x), AD U(x) > -\infty$$

for $a \leq x < b$, since $\chi(x)$ and $-\varphi(x)$ are non-decreasing functions.

To verify <u>AD</u> U(b), we consider <u>AD</u>[$\overline{U}(x) + \varphi(b_p) - \varphi(x)$] at b. By the definition of φ , we obtain

$$\left\{x: \frac{\overline{U}(b) - \overline{U}(x) + \varphi(x)}{b - x} \ge 0\right\} \supset S \cap [b_p, b]$$

and therefore the approximate lower derivate of $\{U(x) + \varphi(b_p) - \varphi(x)\}$ at b is not negative. Since $\chi'(b) = \infty$, we have <u>AD</u> $U(b) = \infty$. Thus, the function U(x) is an upper function of f(x) on [a, b].

Finally, we have

$$U(b) = \overline{U}(b) + \chi(b) + \varphi(b_p) < \overline{U}(b) + 2 \varepsilon$$

and hence by (5)

$$0 \leq U(b) - F(b) < 4 \varepsilon.$$

By constructing an upper function for -f(x) in [a, b], we obtain a lower function L(x) such that

$$0 \ge F(b) - L(b) > -4 \, \mathcal{E}.$$

We have thus proved that f(x) is AP-integrable on [a, b] and that

$$(AP)\int_a^b f(t)dt = 1.$$

REFERENCES

- [1] M.E.GRIMSHAW, The Cauchy property of the generalized Perron integrals, Proc. Combridge Phil. Soc., 30(1933), 15-18.
- [2] J.C.BURKILL, The approximately continuous Perron integral, Math. Zeit., 34(1931), 270-278.
- [3] G. SUNOUCHI AND M. UTAGAWA, The generalized Perron integrals, Tôhoku Math. Jour., 1(1949), 95-99.
- [4] S. SAKS, Theory of the integral, Warszawa, (1937).

HOKKAIDO GAKUGEI UNIVERSITY, HAKODATE.

174