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Let £ be a finite algebraic number field, I the idéle group of % with
natural topology, C the idéle class group of %, D the connected component of
the neutral element of C. In this short note, we shall study characterization
of such characters of certain subgroups of I that are canonically obtained
from characters of C/D, and obtain some informations about the role of the
totally positive units in the class field theory.

In §§1-2, we shall prepare some notations, definitions and easy lemmas.
In §3, we shall state a theorem of our previous paper [3], as Theorem 1,
and obtain some applications, necessary in the following. Then, considering
Artin’s representatives” of E, we shall obtain the aimed results as Theorems

2,3 and Corollary in §§4-5.
The author is greatly indebted to the referees for many suggestions for

improving the paper.

1. Let %, I, C, and D be as stated above, throughout the present note.
As usual, we identify the multiplicative group £* of the non-zero elements of
% with the principal idéle group P of k. For each prime divisor » of %, we
identify the multiplicative group %,* of the non-zero elements of the p-com-
pletion field &, of 2 with I,, respectively, where we denote by I, the subgroup
of I that consists of all idéles @ with 1 as the g-component (@), for each
prime divisor q of % different from p. Let Y be an arbitrary, not necessarily
closed, subgroup of I. We consider Y as a topological group by the relative
topology with reference to I. Y is not necessarily locally compact, but has
sufficiently many characters. Each character ¥ (x) of C (C/D) gives canonically
a character ¢ of Y, which we call a G- (D-) character of Y, respectively. We
shall use the following well known result from the duality of locally compact
Abelian groups that we state, without proof, as

LEMMA 1. Let B be a locally compact Abelian group, and B, a closed
subgroup. Then, there exists for each character X of B, a character ¥ of B

1) Cf. [1] & [5].
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such that the restriction of X to B, coincides with .

Let ¥ and x be as stated in the above lemma. Then we call ¥ an extention
of .

COROLLARY?. Let B be a locally compact abelian group, B, a compact
subgroup, and B, a closed subgroup of B. Then, a character x of B, is exten-
sible to a character X of B, such that the restriction of X to B, is trivial, if
and only if the restriction of X to the intersectin B, N\ B, of B, and B, is
trivial.

2. Let E, denote the subgroup of I that consists of all idéles @ that
satisfy both the following conditions: (i) For every archimedean prime divisor®
p, the p-component (@), is 1. (ii) For each non-archimedean prime divisor q,
the g-component (a), is a q-unit. Let 7" be an arbitrary set of non-archimedean
prime divisors of 2 We define an endomorphism 77 of I, corresponding to
T, such that, for each prime divisor » of %, the p-component (T*(a)), of the
image of a is given by

¢)) (T*(a@)), = (a)s el

=1 & T).
Obviously, T** = T* and (T%(a)), = 1 for each archimedean prime divisor q.
Let Er denote the intersection of E, and the image T*() of I by T*: E;
= E, N T*(I). When T = {p} consits of a single prime divisor P, we use the
notation E,, for brevity, in place of E;. Let x be a character of E,, » a non-
archimedean prime divisor of 2. We say that P is ramified by %, if and only
if the restriction of x to E, is non-trivial. We denote by V(x) the set of all
non-archimedean prime divisors ramified by x. As is well known, V(x) is
always a finite set, and we can define conductor of a character of E, as usual.
The following proposition and corollary follow trivially from Lemma 1 and
Corollary to it.

PROPOSITION 1. Every character X of E, is a G-character.

COROLLARY. Let T be an arbitrary set of non-archimedean divisors and
x be a character of Er. Then, X is extensible to a G-character X of E, such
that V (x) < T.

2) This follows easily from a result in the p. 17 of [4] and the duality theorem of loclally
compact Abelian groups.

3) We use the words non-archimedean prime divisors and archimedean prime divisors in
place of finite prime divisors and infinite prime divisors.
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3. For each idéle a of %, we define Z(a) as the set of all prime divisors
p (not necessarily non-archimedian) of K with p-component (@), different
from 1, ie.,
2) Z(a) = {p;(a)y == 1}.
Let Jy be the subset of I that consists of all ideles @ that satisfy both the
following conditions; (i) Z(a) does not contain any archimedean prime divisor.

(i1) The Kronecker density of Z(a) is 0. Obviously, J, is a non-closed subgroup
of I. The following theorem was proved in our previous paper ([3]):

THEOREM 1. The natural map of Jy into C/D is injective.

We take an arbitrary one of non-empty sets of non-archimedean prime divisors
of E with 0 as its Kronecker density, denote it by 7" and fix it from now
on, throughout the rest of this note. Let A be the maximal Abelian extension
of k, G the Galois group of A over %, and ¢ the canonical homomorphism of
I onto G given by the class field theory. Then, as E; is compact, from Theo-
rem 1 follows cleary the following

PROPOSITION 2. The restriction ¢ to Er is an isomorphism.

Let o(E;) denote the image of Er by ¢ into G. From Proposition 2, there
exists the inverse o7 ' of the restriction o7 of ¢ to Er. (The defining domain
of o' is o(Er)). Let x be a character of Er. We obtain a character x; of
o(Ep) from x by o', x, is from Lemma 1 extensible to a character %, of
G which induces a character of I by o. Let ¥ denote its restriction to E,.
Obviously, X is an extension of ) to a D-character of E, Thus, we obtain

the following proposition.

PROPOSITION 3. Every character of Er is a D-character of Er.

It is not always possible to extend a character of Erto a D-character X of
E,, such that V(X)) © T. In the following, we shall study the condition for
-the extensibility under this restriction.

4. Let F denote the subgroup of P, that consists of all of the totally
positive units of & Then, we have

THEOREM 2. Let X be a character of E,. Then, ¥ is a D-character, if
and only if F* is contained in the kernel of X, where we denote (V(x))*(F)

by F* for brevity.
This is obviously equivalent with the following theorem, that we shall

prove.
THEOREM 2'. Let S be a finite set of non-archimedean prime divisors of
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k, and x be a character of Es. Then x is extensible into a D-character X
of E,, such that V(x') C S, if and only if the kernel of x contains S*(F).

PROOF OF THEOREM 2. The only-if-part of the theorem is trivial, and
we omit the proof. Let ¥ be a character of Es such that the kernel of x
contains S*(F). We denote by R the set of the non-archimedean prime divisors
of k£ not belonging to S, and by v and & the natural maps of E, into C and
C/D respectively. Lzt 85 denote the restriction of 8 to Es. Then there exists,
from Proposition 2, the inverse 8s~'. Let x¥* denote the character of o(Ey),
obtained from x by &8s '. From Corollary to Lemma 1, x* is extensible to a
character of 8(E,) = 8(Es)+8(Eg), such that the restriction to 8(Er) is trivial,
if (and only if) the kernel of x* contains the intersection &(Es) M 8(Eg) of
8(Es) and 8(Eg). Let D,* be as stated in Artin’s article [1]. As D/D, is a real
line and E; is compact and totally disconnected, the natural map of E,
into D/D, is trivial, and so, ¥(E,) lies in D,. Therefore, for a pair of idéles
e € Es and ¢ € Ex it holds 8(¢) = 8(e’™?), if and only if ee’ can be written as

3) ee = na,

where 7 is a number in P and a is one of Artin’s representatives. Applying
the endomorphisms (0)* and (c0)* to the both sides of (3), we obtain that =
is a unit and totally positive, respactively, where we denote by 0 and oo the
set of all non-archimedean prime divisors and that of all archimedean prime
divisors of k. Let p,"p,™...... p,™ with P, € S and non-negative rational inte-
gers 7; be the conductor of ). From the construction of Artin’s representa-
tives, there exists an element & of F, such that, for every one of i=1,2,...... T

it holds
(@), = ({0:}% (), mod p;™.

Then from the assumption that the kernel of x contains S*(¥) follows x(e)
= 1, accordingly x*(8(¢)) = 1. Therefore x* is, from Corollary of Lemma 1,
extensible to a character of C/D, such that the restriciion to 8(Eg) is trivial.
It certifies obviously the if-part of the theorem, q.e.d..

5. Let My be the intermediate field of A/% corresponding to o(E;). From
Theorem 1, Er == o(Er), and M7 is the intersection of the inertia-fields cor-
responding to the prime divisors contained in 7. Let L be a ray-class-field
over & such that the conductor f of L/k is divisible by a non-archimedian
prime divisor P, only if P is contained in 7. The Galois group of A/LM; is
isomorphic with a subgroup of Er. Let Kr be the union of all of such ray-

4) This is an exception of our terminology in this note to use the suffix o in order to
denote concepts concerning the totality of non-archimedean prime divisors of K.
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class-fields over k2. Then it follows easily from Theorem 2  that the Galois
group of A/K M, is isomorphic with the closure T*(F) of T*(F) in Er
which we state as

THEOREM 3°. &(A/KM;) = T*(F).

From the above theorem and the corollary to Proposition 1, we have

COROLLARY. The dual group of &(A/K.:My) is canonically isomorphic
with the totality of the restrictions to (oo)* (F) of Grossen-characters®

conductors of which have finite components divisible only by some of prime
divisors contained in T.
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