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A.Lichnerowicz” has proved that the Matsushima’s theorem” in a compact
Kihler-Einstein space holds good in a compact Kihlerian space with constant
curvature scalar. In the previous paper [4], we have shown that the Matsushima’s
theorem is valid also in a compact almost-Kihler-Einstein space. The purpose
of this paper is to show that it holds equally well in a compact Einstein
K-space.

In §1 we shall give definitions and propositions. In §2 we shall give well
known identities in a K-space. In §3 we shall prepare some lemmas on con-
travariant almost-analytic vectors in a K-space. The last §4 will be devoted .to
the proof of the main theorem. '

1. Preliminaries. We consider a 2n-dimensional almost-Hermitian space
X,, which admits an almost complex structure @, and positive definite
Riemannian metric tensor g satisfying

(1.1) P'p) =— 8§/,
(1.2) 9P P = G

By (1.1) and (1.2), we have
(1.3) Pi = — Pijy VaPsu = — VaPij

where @;;, = @, ¢,; and Vv, denotes the operator of Riemannian covariant de-
rivative.
We define the following linear operators

fi = % (Sim8n1_¢zm¢hl)’ *Oy = % (8/"8,11 * ¢im¢hl)

and a tensor is called pure (hybrid) in two indices if it is annihilated by

1) A.Lichnerowicz [1]. The number in brackets refers to Bibliography at the . end . of
this paper.

2) Y.Matsushima [2].

3) As to the notations we follow S. Sawaki [3]. Indices run over 1,2,:....,2n:
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transvection of *O(O) on these indices. From the definition, we have easily the
following

PROPOSITION 1. *Of%v,p., = 0, Ofhy,@. = 0.

PROPOSITION 2. For two tensors T, and S*, if T is pure in j,i and
S is hybrid in ji then TuS" vanishes.

A vector v' is called a contravariant almost-analytic vector if its con-
travariant components satisfy

(1. 4) %?ii =vV,9 — @/ v + @'vi = 0°
where % is the operator of Lie derivative.

From (1.4) we have

(1.5) vt + ¢;a¢tia'Ub - "’T(Vr¢jl)7’lt =0
which is equivalent to (1. 4).

Lastly multiplying (1. 5) by% PuV'®", we have
(1.6) % v(Vip)V'e" + ou(vie, )V’ = 0.
In this place, if v'v" = v/, @, v*®,' being anti-symmetric in j, 7,
we have 2:(v*e, )V’ = 0.

Thus from (1.6) we get
1.7 v'y,@ = 0.

2. Identities in a K-space. An almost-Hermitian space X, is called a
K-space? if it satisfies

2.1 VP + Vipn =0
from which we have easily

(2- 2) V.i¢ij = O:
(2.3) *ORVoPon = 0.9

Hereafter we shall consider only a K-space X,,.
Let R;;" and R;; = R,,/ be Riemannian and Ricci tensor respectively and
put

4) S. Tachibana [5].
5) S. Tachibana [5].
6) S. Sawaki [3}
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(2. 4) R*ﬁ = ‘;* ¢abRabri¢jT: R*j‘ = R*jrg"
Applying the Ricci’s identity to @;", we get
Vij¢ih - Vle#’th = Rkjrh¢ir - Rmr¢rh.
Transvecting the last equation with ¢” and using (2.2) and the Bianchi’s iden-
tity, we have

(2.5) VVe, = —;‘ #"R," + R/p,"

or using (2. 1)

(2.6) VP =— % P"Rygn — R @

If we notice the anti-symmetry w.r.t. j and 2 in (2. 6), we find that
' R}T¢1h + th¢rj =0
from which we have

Ol}l’: ab — 0’
i.e. Ry, is hybrid in j, A.

On the other hand, in a K-space we know that

2.7 R*; = R%;, (Vﬂ’ab)Vﬂ’ab = R; — R¥%,"
and transvecting (2. 5) with @, we get
(2.8) PV Ve = R*F — RF.

Since by (2. 3), (V;®a)Vi@™ is hybrid in j, i, from the last equation of (2. 7).
it follows that R*; is also hybrid in j, i.
In this place, since (2.6) can be written as

VTV1¢M = R*rh¢jr - Rjr¢rh:
we see that Vv, is hybrid in j,i.
Again by the Ricci’s identity

3§ 1 S
P V1P = R4 (VsViPis — VaVsPis)

= %¢8h( — Rshka¢a¢ - R:hla¢ka.)

7) S. Tachibana [5].
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= R*I,k + R*kt
and therefore by (2.7) we have
(2.9 PV VrPu = 0.

Moreover, making iise of (2.7) and Proposition 2, we have
V(Ry — R*;) = vV Pur Vip™)
= (V'V@2u)Vip” + (VPu)V'vip”
= (Vj¢ab)Vth¢ab
because v,@” is pure in @b and V'V;@.; is hybrid in a@,b. By the Ricci’s
identity and the Bianchi’s’ identjty the lgst equation turns to
V(R — R*;) = Vﬂ’ab(ViVj‘Pab. + Rj'9" + R\)9™)
= (Vi2u)ViV'P” + 2(V,9u)R' 9"
= % Vi(V:Pur V'P") — (V@1 R u?”,

from which we have

VjRﬂ B VjR*ﬂ - % VI(R - R*) - (Vb¢ja)Rjuix¢”: i.e

(. 10) (Vzﬂ’ja)RjaieWm = VjR*ji - _; viR* — (VjRji - —;‘ ViR)’

where R = R;g"* and R* = R*,g".
In general, since y’R;, = % wiR®, from (2. 10) we obtain

(2.11) (Vo®j)R 0™ = v'R*; — —;— v.R*.

And by the Bianchi’s identity the left hand side of (2.11) can be written as
(Vi2i)R*@” = Vi@, — R* — R,")p"™
= vi@;(— RY — R\ )p”.
But as we have by virtue of (2. 3)
(V:2:)P" = (V'Pu)p),  (V@s)p” = (V'e)Pds

the above equation becomes

8) K. Yano and S.Bochner [7], p. 19.
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(Vb¢ja)Rjats¢” = (Vb¢’a)Rsaij¢jb - (Vj¢’b)stia¢ab’ i.e
(2.12) 3(v@ia)R"@™ = 0.
Consequently from (2. 11) we have
(2.13) V'R*; = % ViR¥,
And by the Bianchi’s identity and (2. 1)

¢hr(Vk¢ﬂ)Rkjir = ¢hr(vk¢ﬂ)(Rkirj + erji)
=- ¢hT(Vk¢’j)Rktjr - ¢hT(Vj¢m)Rjum » i.e.

(2.19) 3¢ (v'@")Rir = 0.
Thus multiplying
ViVi®Pin = ViViPin =— Ry @rn — Ry @i
by v*#”", we have .
(2. 15) 2AV* P )Wivipn =— V'@ (Riy'@rn + Ry’ 91r)
=— (V'¢")Ri/®rn + (V@ )Ry, 9"
=0
because of (2. 1) (2.12) and (2. 14).
On the other hand, taking account of (2.1) and (2.7), we get
—;— VR — R¥) = (V9" ViV,
= V'@"(V;ViPr — Rkirt¢ts — R @) = 0

8 _ 7l

because of (2.1), (2. 12),(2.15) and (v'¢")¢'; = (V'@")¢’.
That is, we see that in a K-space

(2.16) R — R* = constant.”

For the Nijenhuis tensor, by (2. 1),

Nin = 9, (vieu — viou) — 2/ (V@i — ViPun)

becomes

2.17) Ny, = 4¢le1¢zn-

Finally, for any vector v; we have

(2.18) ¢zi¢abVavat = *;— ¢zi¢ab(Vqu'Ut — VoValy)

9) S. Tachibana [6].
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—_ 1 i abR 8 — R* s
= 7¢L¢ avi Us = — Usll™y.

3. Contravariant almost-analytic vectors in a K-space. In a K-space,
we know the following lemma.

LEMMA 3.1."7 In a compact K-space, a necessary and sufficient con-
dition that a contravariant vector v' be almost-analytic is that it satisfies

@) v+ R%W =0 (i) Nuvv + 20(R,, — R*,) = 0.
In general, even if v is almost-analytic, 7* = @,*v” is not necessarily almost-

analytic. Suppose that for a contravariant almost-analytic vector v* in a K-space,
?° is also almost-analytic, then we have from (1.5)

vt e ety — v(v.e el =0
or using (2. 3)

3.1 (vo)p — @/vd* + v"Q2ve. — vap) = 0.
Transvecting (3. 1) with @, it follows that
(3.2) v+ 9@l v — @0 2vie.” — vep,?) = 0.
From (1.5) and (3. 2) we have
20,0 (V2" — vap)) = 0, ie.
| V'YPn = 0,
or v'v,@; = 0.

Thus we have

LEMMA 3.2. When a contravariant vector v* in a K-space is almost-
analytic, a necessary and sufficient condition that ?° be almost-analytic is
that it satisfies

'y Pu = 0.
4. A generalization of the Matsushima’s theorem.

THEOREM. In a compact Einstein K-space X,,(R==0), any contravariant
almost-analytic vector v' is decomposed in the form

v =4+ o'q

where p' and q' are both Killing vectors and @.'q" is a gradient vector. The
decomposition stated above is unique.

10) S. Tachibana [5).
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PROOF. Let v' be a contravariant almost-analytic vector in a compact Einstein
K-space, then from Lemma 3.1 we have

(4.1) vyt + —R—v‘ =0.
2n

From this equation, we can easily deduce

r R 7
(4.2) vV'vivee v =0
and
4. 3) v'vwiy.v + %- viv,v = 0.
If we put
4.4 R
4. 4) p R

where 7" = ¢"y,v, then by (4.2) we have

(4.5) vt = v + -1"2— VvV, =0

and by (4.1) and (4.3) we have

4.6) Vvt + R p=o.
2n

But since (4.5) and (4.6) is a necessary and sufficient condition that #' in a
compact Einstein space be a Killing vector,” it follows that #' is a Killing
vector.

Next, to prove that % is almost-analytic, putting

— Py =ym + ¢jr¢llch17l - ﬂr(Vr¢jl)¢uc
and writing out the square of Pj;, we get

. . . 1 o
= (vav'n® + @/ o0V )va' — 20 (v )v.e, + -7 V:P)V P

Consequently, we have

11) K. Yano and S. Bochner [7], p. 56.
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1 -
= "[V’Pﬂc - (v:evi@” + %,-(thpa’)v“n”}
and therefore by virtue of Green’s theorem we have

(4. 8) [n"{ v'Py, + %n’(vr%b)vm"’ + %,(Vk%’)v"n”} - “;—Pﬂc '“] de =0,

Xan

where do means the volume element of the space X,,.
In this place, by using (2.1), (2.2), (2.7), (2.8), (2.17) and (2.18), we have

VP =— vV — ¢/ euv’'ven’ + 7(v'v.2, You — @ (vn)IV'Pu
+ VjﬂT(Vr¢jl)¢Uc + ﬂT(VT¢jl)V}¢llc
== V’Vﬁlc - WSR*ks + 7'(R*s — Riy) — ¢jr(Vr’7l)Vj¢zk
+ v (v.2 )ew + 7(v:2 )V Pu

and hence

1 T, a
v'Pj + -7 (v:2)Vie” + @l (vip )V

T T 3 T,
=— v'vm — 7Ry + 30,V )vipu + - (V@) vi@”

= VjVﬁ/c - ﬂTRrk + % ererﬂl + % ’TT(Rrk - R*rk)-

Thus (4. 8) turns to

R e + S N,uv'n' + -3—71’(L gre— R }

4.9 ["{—‘ -
4.9) . 7TV VT, . 5 o

Substituting 7° = R P - R ¥ in (4 9) and using (4. 3), we have
n n

3R & Tl 1 T R _ p* )

@100 [ | S5 NS = o)+ 28 = (g~ R

— LPMP"‘]da =0.
2
On the other hand v* being almost-analytic, from Lemma 3.1 we have

Gre — R*"rk'> = 0.

N,,w'v' + '211'( R
2n

Hence (4. 10) becomes



ON THE MATSUSHIMA’S THEOREM 463
w1 [ [BR Ny +25( B g R -2 PuP*|do=0.
' X - 4n 2n. 2
Furthermore (4. 11) can be written as

(4.12) L [i—lz v* {(Vt'”t)N WV P+ Z(Vl‘vl)PT <_5Rn— Gre — R*rk>}

t 3

- —;— jkij] da' = (.

In fact, taking account of (2.17), we have
V(Nuv'#) = 4V(V'H - p'veon)
= 4{(V'V e ven + (V)P V'Vl
= A(V'V )Pi vepr

because of (2.9).
Here by (2.1),(2.3) and (2. 12), we have

AV s Vepn = 49/ (Vipr)V'V' P
= 20/ XV'VE — VV'F)
= 20/(vi@)R"/F'
=0.
Consequently, we have
V(Nuv'p) = 0.
On the other hand '
v"{ﬂ(% Gri — R*m)} A (

vanishes.

Gre — ) b4 VER*H:

Because since ¢*# is anti-symmetric in k,7 and o gr — R*,; is symmetric in
n

k,r, the first term of the right hand side vanishes.
For the second term, from (2. 13) and (2. 16) we have

2VMR*H-. = VrR* = VTR = (.
Thus again by Green’s theorem from (4. 12), we have

fx 1 p.pris =

from which we have Pj, = 0, that is, we see that %' is a contravariant almost-



464 S. SAWAKI

analytic vector.
Next, we shall show that %' = @,y is also almost-analytic. Since 7' is
almost-analytic and v’n" = v'%’, from (1.7) we have

(4.13) NV Py =0

which shows by virtue of Lemma 3.2 that %' is also almost-analytic.
Accordingly if we put

4. 14 P P aha’
(4.14) ¢ =5 P

then ¢" is a contravariant almost-analytic vector and a Killing vector. In fact

thh= 2 ¢ahvh"7a =0 and

R
R
Vleq’L + — q" = (.
2n
From (4. 4) and (4.14) we have
v=F+9', o@'d=—T-7"

R

Finally we shall prove that such a decomposition is unique.
If we have

vh —_ Ph + ¢rhq’f’ vh =’Ph + ¢rll.'q‘l‘
where @,"¢" and @,"q" are both gradient vectors, then
(4.15) ="t =9/(d - q)
Since the left hand side of (4. 15) is a Killing vector and the right hand side
is a gradient vector, we have

VtEh =0

where & = p' —'p".
Hence by the Ricci’s identity we have

VthEh — Vthfn = Rjish =0

from which we get

Thus we have §' ="p" and ¢" ='¢". g.e. d
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