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S.Tachibana [3]l) has recently studied linear connections with respect to
which a tensor field φf satisfying φ* = ± I, is parallel, and got some necessary
and sufficient conditions for a linear connection to make such a structure
parallel.

In the present paper, we shall study the integrability condition of such a
structure. In case p = 2, Φι is an almost complex structure, or an almost
product structure. In case p = 3, φ? gives a structure closely related to the
almost contact structure or the so-called (F, ξ, ^-structure introduced by S.Sasaki
in [2].

The tensor calculus developed in the present paper is quite similar to that
given by M.Obata [1].

After giving some preliminaries in §1, we shall study in §2 the linear
connection with respect to which a tensor field φ/4, such that φp = ± /, is
parallel. §3 is devoted to the study of relations between linear connections
making φ? parallel and a tensor L^1 constructed only from ΦΛ In §4, we shall
discuss the properties of a tensor field φ/4 such that Φ3 = / as the simplest
example for our structures and obtain an integrability condition of such a struct-
ure. In the last section the integrability condition for the general case will be
given without proof.

1. Preliminaries. In an ^-dimensional manifold,2' a tensor field Φ4

Λ of type
(l, 1) and a tensor field Tsf of type (l, 2) are sometimes denoted respectively

by

φ = (#) and Γ = (T/)

by making use of matrix notations with respect to the indices h and z'3). Let
ty = (ψf} by an other tensor field of type (1,1). Then we shall use the follow-
ing notation :

1) See the Bibliography at the end of the paper.
2) We restrict ourselves to differentiable manifolds of class O° and we suppose for all

quantities to be of class C°°.
3) a, b, c, ht i, ./ = 1,2, ,n.
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φ.+ = (φt

aγa

h\

Tψ = (T/ψ Λ Φ T = (tf TΛ*X

Φ T ψ = (tfTΛ

βψ β*)L

The identity matrix / denotes obviously the numerical tensor field S*t such that

ίϊ = 1, if A = z, and δϊ = 0, if A 4» ί.
We suppose that on a differ en tiable manifold there is given a non- trivial

tensor field φ = (Φih) of type (l, 1) satisfying φ=^± I and

(1. 1) ΦP = 67,

for some integer X^ 2), where £ is a constant + 1 or — 1 and φp denotes

thep-ih power of the matrix φ. Such a tensor field is briefly called a (pf)- struct-

ure. Because this φ is non-singular, it has the inverse tensor φ~l> which we

denote by 'ψ1 — (ψf). Denoting φr and ψr respectively by

ϊ = (λ») and ψ = A»λ

we have easily from the definition

(1. 2) φ-1 = ψ , φ = Ϋ - 67,

where r is an arbitrary integer.

We shall now define a correspondence Φx which associates a tensor field
ΦZT of type (1. 2) to any tensor field T of the same type by the following
formula :

(1.3) Φ1τ =
r=o

The components of Φ/7* are sometimes denoted by

Φ,T = (Φ^/).

Then, taking account of (1.2), we see easily

ΦZΦZ = Φlβ

Next, defining another correspondence Φ2 by

(1. 4) Φ2T = T - ΦZT,

we obtain directly from (l. 4)

(1. 5) Φ2Φ2 - Φ2, ΦχΦ2 = Φ2Φα - 0,

where 0 means the zero correspondence assigning the zero tensor field to any
tensor of type (l. 1). Taking account of (1.4) and (1.5), we have

LEMMA 1. A tensor field T of type (1,2) satisfies the equation Φ2T=0
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if and only if there exists another tensor field S of the same type such

that T = Φ .̂

LEMMA 2. Let A be a given tensor field of type (l, 2) and

(1. 6) Φ2T = A

be a linear equation with unknown tensor field T of the same type. Then

(1.6) has at least one solution if and only if Φ1A=0 (or equivalently Φ2A=A).

If this is the case, the general solution of (1.6) is given by

where U is an arbitrary tensor field of type (1,2) satisfying Φ2U = 0.

We now give two identities for the later use. For any tensor field T of
type (l, 2) we have identities :

(1.7) Φ,r = -
P s = ir=0

(1.8) T - φ T γ = Φ,T-φ (ΦaT) γ.

Let hji be a positive definite Riemannian metric. Then, as was proved in

[3], it is easily verified that a tensor field gjt defined by

is a positive definite Riemann metric satisfying

(1. 9) φfatφ? = gH.

2. ^-connections. Let Γ be a linear connection with respect to which the

covariant derivative vX* of a contravariant vector field vh is given by

where Γjk are coefficients of the connection Γ. A linear connection Γ is called

a φ- connection if it makes a (/>, £)-structure φ parallel, i. e. if Vj^i=0- We define
a correspondence Φ associating a linear connection ΦΓ to any linear connection

Γ by the formula

(2. i) Φn = n + -j-Σ (vAα)ί .*,
Jr r=ι

where ΦΓ^ denote the coefficients of the new connection ΦΓ. Let T=(Tjf

Λ) be
a tensor field of type (132). Then Γ 4- T denotes a linear connection with
coefficients ΓJ -i- T,/. Now, by making use of the definition (2. 1) of Φ and
the definition (l. 3) of Φz, we have directly
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LEMMA 3. We have

φ(Γ + T) = ΦΓ + Φ,T

for any linear connection Γ and any tensor field T of type (1,2).

S. Tachibana [3], basing on the notion of the infinitesimal connection

defined in the principal tangent bundle, has proved

THEOREM I. A linear connection Γ is a φ connection if and only if there
exists another linear connection Γ such that

Γ = ΦΓ.

Theorem 1 shows that there exists always a ^-connection in any manifold
admitting a (/>, €)~ structure. This theorem together with (2. 1) implies that the
correspondence Φ satisfies ΦΦ — Φ and that, for any φ-connection Γ, ΦΓ — Γ
holds good.

Because of Lemmas 1 and 3, Theorem 1 implies
*

THEOREM 2. Let T be a ^-connection. Then a necessary and sufficient
condition for a linear connection T to be a ^-connection is that there exists
a tensor field U of type (1,2) such as

Γ = ΦΓ + [7, Φ2U = 0.

Next, we shall give a pro of of Theorem 1 other than that given in [3].

PROOF OF THEOREM 1. Let Γ be an arbitrary linear connection. Then a
linear connection Γ is a φ-connection if and only if

(2. 2) T/ - Φ?T3W = (vA'N vΛ
* *
V denoting the covariant differentiation with respect to Γ, where we have put

T/ = r£ ~ h.
Taking account of the identities (l. 7) and (l. 8), we see easily that the equation
(2.2) is equivalent to

(2. 3) Φ2T = A9

where the unknown tensor field Tjt

Λ is denoted by T and A = (Ajt

Λ) is the
tensor field given by

Here, if we take account of .(l. 7), we have Φ2A = A. This means that
T — A is a solution of (2. 3). Therefore, Lemma 2 implies that the general
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solution of (2.3) is given by

T = A + ΦτU,

where U is a certain tensor field of type (1,2). Thus, a linear connection Γ is
a φ-connection if and only if

Γ = Γ + A + Φ:C7,

= ΦΓ + Φ ,̂

= Φ(f + U).

This proves Theorem 1.
o

3. The tensor L^ . Let Γ be a symmetric linear connection and put
Q

Γ = ΦΓ, which is a ^-connection. Denoting by S = (S^71) the torsion tensor of
the φ-connection Γ, we have

(3.1) 5Λ*=-

where V means the covariant differentiation with respect to Γ. Since Γ is
symmetric, it follows from (3.1)

(3.2) s/=^|Σ(a^w- Σ' Vrv
P V=l r=l

o o

where Γj£

Λ denote the coefficients of Γ. Now, taking account of (3. 2) and the
o

symmetry of Γ, we see that the tensor field

(3. 3) V = S/ - (Φ A* - **?«*)

is independent of the connection Γ, i.e. LH

h is a tensor field completely deter-
mined by the given structure φ. The tensor L& can be explicitly written, down
as

Now, we consider a linear connection Γ defined by

Γ = Γ - 2ΦαS.

Then, by Theorem 2, Γ is a φ-connection. Its torsion tensor is obviously equal

to Lji . Thus, we have
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LEMMA 4. In any manifold admitting a (/>, B]-structure Φ, there always

exists a φ-connection whose torsion tensor is equal to LH

h.

Taking account of the definition (3. 3) of the tensor field LJ4

Λ, we see

that Ljt vanishes if the manifold admits a symmetric φ-connection. Then

Lemma 4 implies

THEOREM 3. In a manifold admittinga (p, £)-structure, a necessary and

sufficient condition for the corresponding tensor field LH

h to vanish identically

is that there exists a symmetric φ connection.

We shall next give simple forms of Lόi

h for some smaller values of />.

When p = 2, (3. 4) is reduced to

4έ?L/ = teA]e#e* - ΦjBnΦj, (p - 2),

which is nothing but the Nijenhuis tensor of the almost complex structure Φ (if

£ = — 1) or that of the almost product structure Φ (if £ = + 1).

When p = 3, (3. 4) is reduced to

- IΦυd^Φi* + ΦυdwΦvl (P = 3).

4. (3, + l)-structures. Let Φ be a (/>, — l) structure. If p is odd, — Φ is

obviously a (/>, + l)-structure. Then, in the case where p is odd, it is sufficient

for us to consider only (/>, -f 1)- structures.

Let φ be a (3, + l) structure. First, putting

Q = -±-(l+Φ + Φ*\
O

we have

Q2 = Q.
Hence, defining P by

P=I-Q,

we see easily that

i. e. that the pair (P, Q) defines an almost product structure if Q 4= 0. When

Q = 0,if we put

ί- = -L=α
V o
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we have

F2 = - /.

This implies that the manifold admits an almost complex structure if Q = 0.
Next, putting in general case

we obtain easily

(4.1) F2=-P, F P=P F = F,

which implies

(4.2) F.Q = Q F = O,
(4. 3) F3 = - F.

Conversely, we assume the existence of a non-zero tensor field F of type
(l, 1) which satisfies (4. 3). On putting

. ,
2 2

it is easily verified

Φ3 = I.

Summing up, we obtain

LEMMA 5. A necessary and sufficient condition for a manifold to admit

a (3, + ^-structure Φ is that it admits a non-zero tensor field F of type (1,1)

satisfying F3 = — F.

Now, let <7jf be a positive definite Riemann metric satisfying (l. 9). Then

it is easily verified

Pi'gaPt* + Q/sroQί" = g»,

F,eg«Fΐ = /YWΛ
These two relations imply together with Lemma 5

THEOREM 4. A necessary and sufficient condition for an n-dίmensional

manifold to admit a (3, + l}-structure is that the structure group of its
tangent bundle is reducible to the group O(m) x Z7(r), 'where m > 0 and

r > 0 are certain integers such that m + 2r = n.

In this theorem, we have denoted by O(m) and U(r) respectively the

orthogonal group of the w-dimensinoal Euclidean space and the unitary group
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of the unitary space of r complex dimensions.

In Theorem 4, if m = 1, the structure φ is closely related to the almost
contact structure and the so-called (F, ξ, ^-structure introduced by S.Sasaki [2],

That is, any orientable manifold with a (3, + V)- structure admits a (F, ξ, η)

structure (or equivalently an almost contact structure) if the tensor F cor-

responding to φ is of rank n — 1. In fact, at any point x of the manifold the

set of all vectors XΛ satisfying XaFa

h = 0 forms a 1 -dimensional subspace Lx

in each tangent space Tx. The set of all Lx forms obviously a differentiate

distribution of 1 dimension throughout the manifold. Let <jr# be a positive difinite
Riemann metric satisfying (l. 9). Then, it is easily verified that the tensor
FH = Fjagai is skew-symmetric.

We now assume the manifold to be orientable. There exists obviously the
skew- symmetric tensor field

V g

of type (n, 0), where g -=• \ g j t \ and &il*~tn is equal to + 1 if (ίι,i2, ,ί«) is an

even permutation; equal to —1 if (il9 22, zn) is an odd permutation; equal to
zero otherwise. Because the rank of Fit is 2r (= n — 1), the vector

is everywhere non-zero and waFa

h = 0. This means that the vector field wh is

everywhere non-zero and lying on Lx. On putting

ζh is a field of unit vectors lying on Lx at each point. Then if we put ^i — ̂ gi^

we see

Q," = %r.
This implies together with (4. 1)

A triple (F^ξ71, ηt} satisfying this relation is called a (F,ξ,^)-structure introduced

by S.Sasaki [2].

We suppose now that for the given (3, + 1)-structure Φ the tensor LH

vanishes identically. Then, by virtue of Theorem 3, the manifold admits a

symmetric φ-connection Γ. Keeping the notations for tensor fields P=(P/), Q
= (Qi*) and F = (Ff) as above, we obtain

as a consequence of VjΦ/* = 0. The first two equations show that the almost
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product structure (P, Q) is integrable, i.e. for any point of the manifold there
exists a coordinate neighbourhood (U,xh) of this point in which P and Q have
respectively the following numerical components :4)

where we have assumed that P is of rank n — m (0 ̂  m < n).
It is easily seen that in (U, x ) the φ-connection Γ has zero components

except ΓJϊγ and Γjμ. Taking account of (4. 1) and (4. 2), we see that F has the
components

/ Ff 0

(44) ^=1

\ 0 0

in (U, xh\ where (4. 1) implies

(4. 5) IW = - 8?.

In the neighbourhood (C7, .rΛ) any submanifold V" defined by xλ = const, is
an integral manifold of the (n — ra)-dimensional distribution determined by P.
Then (4.4) and (4.5) mean that F induces an almost complex structure F=(F%)

in each V. On the other hand, Tyβ define a symmetric linear connection Γ in each

V. Moreover, Vj-^i* = 0 implies VyFβ

a = 0 and d^Fβ

a = 0, where V denotes

the covariant differentiation with respect to Γ. Therefore, the almost complex

structure F is integrable in each V. This means that for any point of V there

exists in V a coordinated neighbourhood (U,xa) of this point, in which F=(Fβ

a)
has the following numerical components

0 - Ir

Ir 0

where n — m = 2r and Ir is the unit (r, r)-matrix. This fact implies together
with dλFβ

a = 0 that for any point of the manifold there exists a coordinated
neighbourhood (JJ,xh) of this point, in which the tensor field F has the nu-
merical components

4) «, β, y= 1,2, ,n — m; λ, μ, v — n — m + 1, n — m Λ- 2, ,n.
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Summing up. we have proved that if L j t

Λ = 0, φ is integrable, i.e. for any
point of the manifold there exists a coordinated neighbourhood (U,xh) of this
point, in which the tensor field φ has the numerical components

0

vΊΓ

0 0

Conversely, it is obvious that when φ is integrable, the tensor field Ljf

Λ

vanishes identically. Then we have

THEOREM 5. In a manifold admitting a (3, + 1)- structure φ, a necessary
and sufficient condition for φ to be integrable is that the tensor field L^
vanishes identically.

As is proved above, if φ is integrable, there exist two systems of integral
submanifolds in the manifold, corresponding respectively to P and to Q, and
each integral submanif old corresponding to P admits an integrable almose complex
structure defined by F.

5. The integrability conditions of (/>, £)-structures. Corresponding to
Theorem 5, we shall give without proof a theorem explaining the integrability
condition of (/>, £)-structures. The (p, £)-structure is by definition integrable
when for any point of the manifold there exists a coordinated neighbourhood
(17, xh) of this point, in which the structure has numerical components.

THEOREM 6. A (p, έ)-structure φ is integrable if and only if the cor-
responding tensor field L^ vanishes identically.

Next, corresponding to Theorem 4, we shall state without proof

THEOREM 7. A necessary and sufficient condition for a manifold to
admit a (pβ)- structure is that the structue group of its tangent bundle is reducible

0) if P is odd, say p — 2q + 1, to the group

0(m)x U(rτ) x . - . x C7(rβ),

where n > m ̂  0, r1? r2, . . }rq > 0,

m = n;
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(ii) if p is even, p> 2, say p = 2q + 2, and 8 = + 1, to the group

0(m) X 0(m} X U(rτ) x ... X U(rq\

where n > m, m Ξ> 0, rί9 ..9rq 2^ 0,

w + m + 2(^ + r2 + ... 4- rα) = n;

(iii) if p is even, say p = 2q, and £ = -- 1, to the group

U(rτ)x [7(r2)x x U(rq\

where r1} r2y ..,rq ^> 0, 2(rα + r2 + ... 4- rα) = w.

Corresponding to each case given in Theorem 7, we have the following
result. For each case, the integers m>m \ 9 rI?r2, 5rα are restricted within the
same ranges as in Theorem 7.

In the case (i), where p ( = 2q + 1) is odd and 6 = + 1, ίΛere e πsί m
the manifold q + I tensor fields E,Fl,...,Fq of type (1,1) satisfying

E* = E, F3

U = - Fu, E FU = Fw-£ = 0, (« == l,2,...,ff),

where the rank of E is m and the rank of Fu is ru. The structure Φ has the
following decomposition :

where Eu = -- Fl.
In the case (ii), where ρ(= 2q + 2) is even, p > 2 αrcJ £ = + 1, there

exist in the manifold q + 2 tensor fields E9E\F1)...,FQ of type (l, 1) satisfy-

ing

E2 = E9 E'2 = £', E £' = £'- £ = 0,

Fl = - F,, £• Ftt = FUΈ = 0, £'• Fu = F. £' = 0, U = l,2,-,g),

F. F,, = F, FW = 0, («Φv; «, v = 1,2,...^),

where the rank of E is m, the rank of E' is m and the rank of Fu is ru.
The structuer φ has the following decomposition :

where Eu — — Fl.

In the case (iii), where p( = 2q) is even and £ — — 1, there exist in the
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manifold q tensor fields F1,Fz,...Fq of type (1,1) satisfying

Fl=-Fu, (w= 1,2,.. .,<?),

FU FV = Fυ Fu = 0,(u = v;u1v = l,2,... ,q\

where the rank ofFu is ru. The structure Φ has the following decomposition:

2(u + 1 V \ / . 2(u + 1 V

— — sm
\ /

r» + (s p
Eu = — Fl:

When the structure <£ is integrable,in every case the projection tensor fields

E,E',EU are all integrable and Fu determines an integrable almost complex

structure in each integral submanifold corresponding to the projection tensor

field Eu.
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