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Introduction. Let M be a difierentiable manifold. If M admits % almost
complex structures ®@;, @,,... &, (P! = ®; =---= P; =— E)”, then we say that
they are linearly independent with respect to real constant coefficients if
a,®, + a,®, +...+ a,®, =0 (@, &,...a;: real constants) always implies
a, =a,=..=a, = 0. If a differentiable manifold M admits £ almost complex
structures linearly independent in real constant coeffiecients and any other
almost complex structure (if it exists) is given by a linear combination (with
respect to real constant coefficients) of the % independent almost complex struc-
tures, then we say that the dimension of the set of almost complex structures
in the sense of linear combination in real constant coefficients is equal to k.
We remark that a linear combination of almost complex structures does not in
general give an almost complex structure, but the number 2 has an invariant
meaning.

The purpose of this paper is to clearify the structure of the manifold M
whose dimension of the set of almost complex structures in the above sense is
equal to 2 or 3 and put in order all such manifolds.

1. Case where the dimension of almost complex structures is equal
to 2. With respect to almost complex structures in a differentiable manifold M
we have already known the following remarkable structures®:

1) E(= 8 3, 7 =1,...,m) denotes the unit matrix of degree m, where m is the dimension

of M, We omxt eventually to indicate the degree of a unit matrix £ or the dimension of
the manifold M.

2) ThlS equatxon is written in tensor forms such that aldnf + azd>1‘+ -+ ambj‘ =0, where

&= (qS;),‘ B = (¢;t) @&, j=1,...,m). In this paper, since we only deal with tensor fields
of type (1,1), we do not use tensor calculations as far as possible, making use of matrix-

operations. The meanings of #12 or ;%2 is of course &% = (¢,a¢fa) or #%,= (¢1adna), and
so on. In general, capital letters &, ¥, T, A, B, C,... will denote matrices given by the
components of respective tensor fields.

3) With respect to almost quaternions structure, see for instance, C.Ehresmann [1];
P.Libermann [2]; M.Obata [3], [4]; C.J.Hsu [7]; H.Wakakuwa [5], [6]. The stryctural
group of the tangent bundle of such a manifold is reducible to Sp(zn), the unitary symplectic
group.

The almost complex-product structure ot the first kind is the same as Ltbermann’s
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(I) Almost quaternion structure (®,¥.T): ®*'=V?= T?’=—E; ®¥V=-~¥dP=T,
VT =—TV =0, TO =— OT = V..
(1) Almost complex-product structure of the first kind (®,¥,T):
P’=—E, V*'=T'=E; ®¥V=—VYP=T, ¥T=-TV=—-P, T®O=—-OT="P.
(III) Almost complex-product structure of the second kind (®,¥,T):
P'=V:=—F T'=E; ®¥V=0¥=—T, VT=TV=0, T¢=0T="7.

Now, we set forth the following new structure :
(V). structure (&, ¥, T): ' =V =T =— E;

OV + VO =2E (@==—¥), T=E -V — (= VYD - E— D).

We can easily verify that the three almost complex structures ®,¥ and
T in (IV) satisfy
(1.1) OV + VP = 2E(D ==~ V), ®T + T® = 2E, YT + TV =— 2E.

The above three structures are characterized by the following simple forms,

for the existence of the remaining structure T necessarily follows by means of
® and V.

1) D=V =—FE; OF=— VO,

(1) @ =—F V' =E; O¥ =— VO,

(IIT) P =V =—FE; OV = VO,

av’y P =V =— E;®F + Vb = 2E (®=+=— T).

The verifications are easy for the cases (I'), (I') and (III) by puiting
PV =— VP =T or PV = ¥® =7. We only prove for the case (IV'). If there
exist two almost complex structure ® and ¥ satisfying the above relation (IV’),
then we have E — @V — & = Y® — E — ®. If we put these common tensor
field by T then we see that

T = (E — ®¥ — & ¥P — E — ®) = — E,
making use of (IV')..
We will state several lemmas with respect to the above four structures
(D), (D), (I1I), (IV).

LEMMA 1.1. The three almost complex structures ®,¥Y and T in the
struciure (I) or (IV) are linearly independent with respect to real constant

quaternion structure of the second kind”.

The ¥ and T in (II) and the T in (III) are almost product structures. When we speak
of almost product structures, we omit of course the trivial almost product structure
+=E(= +3).
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coe fficients.

PROOF. For the structure (I), the linear independence of ®, ¥ and T easily
follows from the quaternic relations. We will prove the lemma for the struct-

ure (IV).

In the structure (IV), assume that there is a linear relation such that
ad + BY + T = 0.

Taking account of the equations obtained by multiplying ® from the left
and from the right to the above equation and making use of (1.1), we get
a=8+r. And since T=E—®¥—®, we have (8 + y)®+ LY +y(E—DP¥Y—- D)
=0 or

B®+ V) + y(E—dV)=0
By multiplying ® from the left to the last equation, we get
— B(E — @P) + y(® + ¥) =0.
From the last two equations, we have (8%+y*)(® +¥)=0. Since ®+—"7,
we get 8 =« =0 and hence a = 0. Q.E.D.

The two almost complex structures @ and ¥ in (III) are linealy indepen-
dent with respect to real constant coefficients, since T=== E.

The structure (II) admits apparently only one almost complex structure
but we can state the following lemma.

LEMMA 1.2. The structure (I1) admits two almost complex structures
linearly independent with respect to real constant coefficients.

PROOF. If we put ®,= a® 4+ BY, where @ and B are non zero real con-
stants satisfying a’—@8?=1, then we see that ®, is an almost complex structure
linearly independent with ®. Q.E.D.

Summing up the Lemmas 1.1 and 1.2, we can state

LEMMA 1.3. In the structures (1) and (IV), there are three almost
complex structures linearly independent with respect to real constant coef-
Sficients. In the structures (11) and (I11), there are two almost complex stru-
ctures linearly independent with respect to real constant coefficients.

LEMMA. 1.4. Let M be a differentiable manifold. And assume that M
admits two linearly independent (with respect to real constant coefficients)
almost complex structures A = (a)), B = (b)) satisfying

AB + BA = cE (c: real constant).

Then we can necessarily find in M one of the three structures (1), (II),
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av).

PPOOF. If ¢ = 0, we can find in M the structure (I) (see (I")). If |c|<2,
we put ‘

Y ra
® = A, T=(%A+B)/\/l_% )

Then we see that ®* =— E and ¥*'=—E, ®¥ + ¥® = 0. Hence we
can also find the structure (I) (see (I")).

If || > 2, we put

®= A4, T=<—;%A+B)/\/—f:——1.

Then, we see that ®* =— E and ¥? = E, ®¥ + ¥® = 0. Hence, we can
find the structure (II) (see (II")).

Lastly, if |c| = 2, we can assume without any loss of generality that

¢ = 2. For, if ¢ =— 2, we consider —B instead of B. Hence A and B satisfy
AB + BA = 2E(A==— B) and by putting ® = A, ¥ = B we can find the
structure (IV) (see (IV")).

LEMMA 1.5. Let A = (a;), B = (b)') be two almost complex structures
linearly independent with respect to real constant coefficients in a differenti-

able manifold M. If
aA + BB (a,B: real constants; aB == 0)

gives again an almost complex structure, then we can find in M one of the
three structures (I),(ID), (IV),
PEOOF. Since aA + BB (aB == 0) gives an almost complex structure, we

2 2 __
have (@A+BB)* =— E or AB + BA = 3%83—1 E. Hence, by virtue of

the above Lemma 1.4, we can find in M one of the structures (I), (IL), (IV).
Q.E.D.

LEMMA 1.6. Let A = (a)), B = (b)") be two almost complex structures
linearly independent with respect to real constant coefficients in a differenti-
able manifold M. If A and B satisfy

ABA = aA + BB (a, B: real constants; a* + 82 == 0),
then we can find in M one of the four structures (1), (II), (III), AV).
PROOF. If B=0(a=0), we have ABA = aA, from which we get
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B = — aA. But this contradicts to the assumption that A and B are linearly
independent. Hence we see that 84 0. If & = 0(8=<0), we have ABA = 8B
and we see that ABA = *B. If ABA = B, we have AB + BA = 0. Hence
we can find the structure (I). If ABA = — B, we have AB = BA. Hence we
can find the structure (III) (see (III')).

Lastly, if aB<0, we see that M admits one of the steuctures (I),(II),(IV)
by virtue of Lemma 1. 5. Q.E.D.

THEOREM. Let M be a differentiable manifold. If the dimension of
almost complex structures of M in the sense of linear combination in real
constant coef ficients is equal to 2 (see the definition in the Introduction), then
M admits the structure (II) or the structure (III).

PROOF. By virtue of the definition, there are two almost complex struc-
tures A = (a;*), B = (b;") linearly independent with respect to real constant
coefficients and any other almost complex structure is a linear combination of
A and B with respect to real constant coefficients. Since ABA is an almost
complex structure, we can write

ABA = aA + BB (a,B: real; a® + 82==0).

Hence, by virtue of Lemma 1.6, we can find in M one of the structures
D), A1), (I11), (IV). But, the structures (I) and (IV) admits three almost complex
structures linearly independent with respect to real constant coefficients (Lemma
1.3), which contradicts to the assumption. Therefore, we find the structure (II)
or (III) in M. Q.E.D.

COROLLARY 1.1. Let M be a differentiable manifold which does not

admit any almost product structure. Then the dimension of the set of almost
complex structures in the sense of linear combination in real constant coef-
Sficients is = 0,1 or = 3.
» PROOF. If the dimension of the set of almost complex structures is just
equal to 2, then we find in M the structure (II) or (III) by virtue of the
Theorem. But these structures admits one or two almost product structures con-
tradictorily to the assumption.

2. The structure (IV). Since the structures (I), (I) and (III) are already
treated ([1]~{7]), we state here several remarks on the new structure (IV).

LEMMA 2. 1. The structure (IV) is equivalent to
(IV), strurture (,5): ®* =—E, £ = 0?(Z = 0), &L + =P = 0.

4) R.S.Clark and M.R.Bruckheimer ([8]) have treated a tensor field J in a 2n-dimen-
sional manifold Man such that J2 =0 and rank J = 2z all over the Mzn.
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PROOF. If we are given the structure (IV) in M, we put &£ =& + ¥,
Then we can verify that £ = 0, &~ + Z® = 0 by virtue of the relations in
(IV). Conversely, if we are given the structure (IV), in the present lemma,
then we can find the structure (IV) by putting ¥ =5 — P, T = E — OV — P,

~ In the structure (IV) or (IV),, if Z=®+¥ is of constant rank r(< dim M)
over the. whole manifold M, then we say that (IV) or (IV), is of requlr
type. If otherwise, we say that (IV) or (IV), is of singular type.

LEMMA 2. 2. If the structure (IV) or (IV), in M is of regular type, then
we can find in M an almost product structure.

PROOF. By the definition, & = ®@ + ¥ is of constant rank r all over the
M. The characteristic roots of % are all zero and there corresponds a subspace
of dimension s = dim M — r. These define a distribution D of dimension s
throughout the M. Since there exists always a distribution D’ complementary
to D, M admits an almost product structure. Q.E.D.

We will here introduce the normal forms of the structure (IV) or
(IV), at the tangent space of a point P of M. Since the structures (IV) and
(IV), are equivalent (Lemma 2. 1), we consider only the structure (IV),:

(2.1) @ =—F, 5*=0, P + 5P = 0.

The dimension of M is even: dim M = 2n, since M admits an almost
complex stlucture ®. It is well known that at the tangent space of P we can
‘choose a complex frame such that the almost complex structure @ takes the
form

iE, 0
(2.2 ® = ( )
2.2) 0 —:iE,
where E, denotes the unit matrix of degree n. In this case, the last equation of

0 A) here A and
A, O,Were an

A" are (n X n)-matrices. And since T has a real representation together with
®, it must be self-adjoint: A = A, that is

(2.3) z=(% ‘3).

(2.1) implies that £ is necessarily of the form £ =(

From the second equation of (2.1), we have AA =0, and the (# x n)-
matrix A is degenerate. Hence there exists at least a non zero vector 2 such
that Az = 0. Hereby the vector z should be in general complex. Let (21.25,-.-,20)
be the components of = and consider a regular (# x 7)-matrix of the form
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Xx=[7 = ,

where the elements in the part % are arbitrary except the condition that X is
regular. Then, we can see that X 'AX is of the form

(=]

(2.4) X 14X =

o

‘
!
i
!
i *
|
!
]
;

taking account of Az = 0. We write this X 'AX anew by A. We can see that
there exists a complex (#z x n)-matrix Y such that (see Appendix)

0 e

T .. 0
(2.5) YAy = . o |

M e €n-1

0 eoveeesd

where ey,...,6,_; are equal to 0 or 1. But since AA = 0 and Y 'AY is real, the
square of the last matrix is 0. Hence we see that at least one of the neighboring
e and ¢4, (7 = 1,..., » — 2) must be zero. If we consider a trans-formation

Y O
by a matrix of the form( 07 ) for the Y satisfying (2.5), then we obtain

the ﬁhal form of £ suéh that

( 0 e \
¢, 0
0 s
. ..e'n—l
6...‘....0
2= ,
0 e
: .'.. 0
i 0
. o €n-1
(‘)oooo.-o.() )

where e,,...,e,_, are equal to 0 or 1 and at least one of the neighboring e
and ¢; ; (i=1,...,n — 2) is ‘equal to zero. Hence we know that the rank of X is
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even and it is <z And furthermore, we can transform £ to the form

[ 5 o]
E, 0
Z_

E, 0;

where E, is a unit matrrix of degree p(é —g—)

It is easily seen that under the above normalization of T the form (2.2)
of @ is unchanged. Consequently, with respect to a complex frame, the normal
forms of the structure (IV), are given by

iE, 0 0 igo 0
: | E, 0

o |

where E, and E, are unit matrices of degree n and p(é —’21—) respectively.

o 0

0 —iE, E, 0]

Making use of a matrix

co =55 ) (o5 B)

where E, is the unit matrix of degree 7, we have I"'®I and I ' which give
the normal forms of ® and £ with respect to a real frame.
These are as follows:

LT R — i— ---------- . = i ’
i i 0 0
i—E, 0

where E, and E, are unit matrices of degree n and p<;§ —g—) respectively.

3. Two new structures. We introduce in this section, two new structures
and their normal norms.

(V) structure (&, ¥, T): ®* = V2 =T? =— E;
OV = ¥P, IT = TV, T® = &T,
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where @, ¥ and T are linearly independent with respect to real constant coef-
ficients.

If M admits such a structure (V), the dimension of M is of course even:
M = M,,. The normal forms of this structure at the tangent space of a point
P of M,, is introduced as follows.

With respect to a suitable complex frame, one of the ®,¥ and T, for
iE, 0
0 —iE,
the relations ®¥ =¥® and T® = ®T, we see that ¥ and T take the forms
such that ¥ =( OP I(’) ),T =( OQ 3 ), where P,Q,P and Q are (n X n)-
matrices. Since ¥ and T have their real representation together with ® we
must have P' = P,Q" = Q, that is,

P 0
ve(D2) 1=(22)
0 P 0 Q
Furthermore, we see that P? = PP=—E, Q*= @2 = — E,, since ¥ and
T are almost complex structures. Hence the characteristic roots of P and Q
(P and Q) are ==i. Making use of a suitable complex (z X 7n)-matrix X, we
can get

instance @ takes the form: @ =( ) And in this case, by virtue of

X'PX = : - , (r+s=n),
-7 e
.. .. 0
0 .
o. . e'—l

0 -1
where e,,...€r-1, e1,--., €s_1 are equal to 1 or 0. But we can easily see that
€31,--- €11, €1,.--,6s_1 all vanish by virtue of P? = — E,. Therefore. making use

_ X 0

of a (2n X 2n)-matrix ¥ such that ¥ =< 0 X ), we get

eo=(09) P=(F_2) wemm



402 H. WAKAKUWA

where E. and E; are unit matrices of degree r and s respectively. Under such
a transformation, the form of @ is unchanged: ¥-'®X = ®. Now, in this case,
by virtue of YT = TP, we have

rme(2 ) 0-(2 1)

Q 0 Q,
where Q, and Q, are matrices of degree r and s respectively. Let Y be a
) Y, O

complex (n# X n)-matrix such that' Y =< 01 y ), where the degrees of Y,

, .
and Y, are r and s respectively. If we choose Y, and Y, suitably, then we have

Q0
vy =( =),
N0 Q,
iE,, 0 iE;, 0
Q =( 0 ) —'iEr,>, (ry+r=r); Q, =< 0o - iExz), (51 + s, = s)

where E,, E,, E, and E, are unit matrices of degree 7,7, s; and s, res-
pectively. '
S o Y o0
If we consider a (27 X 27)-matrix 9 such that ) =( 0 Y ), then we see

that

vmo=(2 0} a=( 2)

0 Q 0 Q.

Q. and Q. being given by the preceding diagonal forms. Under such a trans-

formation, the already obtained forms of ® and W are unchanged.
Consequently, with respect to a complex frame, the normal forms of the

structure (V) are given by

(I)—( iE, 0 )
"\ 0 —iE,/

PO iE, 0
‘I'=( —), P=( " ) + s =n),

0o P 0 —iE, (r+s=mn)

iE, .0 o

Q0 0 —iE,| :
T=< —>’ Q=7 __________________ ; ___________________ (7'1+r2=7',31+82=s).

0 Q o B O

| 0 —iE,

Making use of a matrix I of (2.6), we obtain their normal forms I~'®I, I-'¥I]
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and I7'TTI with respect to a real frame. These are as follows.

oe(y %)
“\E, o7/

0 —-P, E. 0
\I,_(Pl 0 )’ P1_<O —Es>’ (T'I‘S—n),

E,, 0 0

0 0 —E,!
T=< Ql), Q,=| st ry=mr s +s,=35),

Ql 0 EEh 0

© o -E

where the indices of the unit matrices E’s denote their degrees.
Now, the other new structure is given as follows :

(VD) structuree (®,%,T): ®* =¥2 =T? =— E;
PV = TP, YOV = a® + a¥ + T, (a: real constant; s=— 1),

®, ¥, T being linearly independent in real constant coefficients.

The normal forms of this structure are introduced as follows. Of course
the dimension of the manifold M is even: M = M,,. First we consider the case
@ ==— 1,3. With respect to a suitable complex frame, we can take normal

iE, 0
form of ® such that ® =( .
0 —iE,

of ¥ and T and the relation ®¥ = T®, we have
P P —
ve(5 2) (5 2)
Q P -Q P

where P and Q are of degree z.
Since ¥ and T are almost complex structures, we get

). And by virtue of the self-adjointness

(3.1) P+ QQ=—E, PQ + QP =0;
furthermore the last relation of (VI) implies that
(3.2) ~P*+QQ=ia+1)P—aE, —PQ+ QP = ia — 1)Q.

From the first equation of (3.1) and (3.2) we have

(3.3) Pr=— i(“gl) p+ 2-LE,

and from the last equations of (3.1) and (3.2) we have

(3.4) PO = —QP:-J@‘Z;QQ.
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By virtue of (3.3) we can see that the characteristic roots of P is — i

and — ;ja—1

. As in the preceding cases, we see that for a suitable complex
(n X n)-matrix X, the new form X 'PX of P is given by”

r S

P= e nneanes , r+s=n),

where ey,...er_1, €1,...,es-1 are equal to 1 or 0. But, since a@==3 we know that
these are all zero by virtue of (3.3), that is the new form of P is given by

r s
—1
" O
.. 0 r
0 .—z
P=|—--- - , r+s=n.
—21
2
0 .'. s
0 21
2

Now, if we put

5) It is allowable to consider a transformation of ¥, T by a matrix of the from
(52

0 7() , since it has a real meaning. Hereby the form of & is unchanged.
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A S
Q, E Q, }7’
Q= : ,
Qs Q, }S

then by virtue of the equations of (3.4) we know that Q, = Q, = Q; =0, that
is,

r s
/_A__\,AA——-\ \
0 0 }r
Q= , (r+s=n).
0 Q, }s

From the first equations of (3. 1), we see that Q,Q, = oE,, where E, is

a unit matrix of degree s and o = (@ + 1Ya — 3)/4=50. If ¢ >0, we get

—Q—‘_. —QL_= E,, and we can take a complex (sXs)-matrix Y, such that Y
’\/0' ’\/0"

Q Y,=E, ([4], Lemma 1 and 2") or Y:'Q.Y, = ~/ ¢ E,. If 6<0, we get

o
—Q—4ﬁ. Q __ E, and we can take a complex (s X s)-matrix Y; such that
v —a ' =0

Y;_l Q‘ ?3 B Js/z, Js[z = O _ES/Z ([4:], lbld.) or Y;_1Q47; ':’\/ —a JSIZ-
N/ -0 Es/z 0

In this case, s must be even. In each case, we put

(F Y52
o v,/ " “\o vy /

where E, is a unit matrix of degree . Then making use of a matrix
Y 0 , Y 0

9 =( o7 ) or 9 =< 0 7 ), we get the normal forms 9'¥), 9 'T)

(or 9'7"¥Y, 9'TY) of ¥ and T, whereas the form of @ is unchanged. These

are as follows.

o=(s ) ¥=(5 %) (5 7)

where
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r S
—1 0
.. O r
" r s
0 C o | o0 }r
Pl A ,Q= — ,
. 2
0 5 i — _
. Q4=~/0'Es(o'>0)or'\/—0'
a— 1 0 “Es/z>
L0 - < <0).
i ’ 2 X E;, 0 (o<0)

With respect to a real frame, these normal forms are given by

=8 E L v=(S )2 D)

where

r s
1
.. O
o -, 0 r
. r__5
, 1 | ) 0 0 }r
P = "'"“"'"""""“""'"’,: """""""""""""""" s Q =\ ST ’
a—1 0 0 Q" %
L2
0 .‘, s
0 a—1
2
\/:Es (e >0)
Q; — or
«/T( 0 _E&’) < 0).
“\g, o0 )OO
If @ =—1 in the present structure, then it gives rise the structure (IV).
For, in such a case, we have V®¥ =—- & — ¥ + T, from which we get

— PV =—VYP + E+ YT and — VP =— &YV + E +TV. Hence YT+ TV =



ON LINEARLY INDEPENDENT ALMOST COMPLEX STRUCTURES 407

— 2E holds true and ¥, — T give rise the structure (IV).
In the case @ = 3, the relation (3.1) also holds true and (3.3), (3.4)
become

(3.5) P*=— 2P+ E,; PQ =- QP =— {Q,

respectively. We know that the characteristic roots of P are all — 7 and we
can take ®, ¥, T such that

o=(7 ) v=(g 5 (55

0 —ik, —0
where
i e
.. .. O
P = e , (ey--en-1 =0 or 1; all of them are not zero).
€n—-1
0 L]

From the first relation of (3.5), we see that at least one of the neighbor-
ing ¢; and e;1,(i = 1,...,n — 2) is zero. An example of normal forms of this
structure is set forth as follows:

3

N
It
Q
I
Qeeccceccceee O
|
A
Seeee O NI (=Nl
Ceecoeosccsccce

all relations of (3.1) and (3.5) are satisfied and hence all properties of (VI)
hold true.

We remark that in case of @ =3, £ =2® + ¥ + T is a tensor field such
that £* = 0 which is verified making use of the relations in (VI) (a = 3).
And this tensor field £ also satisfies @ = ZP.

In the case a==— 1, there does not exist a relation such that
®Y¥ + PO = pE. 1t is verified by taking account of the forms of P.

4. The last new structure. The last structure is set forth as follows:
(VID) structure (®,¥,T): ®* =¥’ =T =— E;
YT + TV = 2fE,
T® + &T = 2¢E, (f, g, h: real constants; |f1|, |gl, |k] > 1),
OV + VO = 2hE
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®, ¥, T being linearly independent in real constant coefficients .

The normal forms of this structure are introduced as follows. The dimen-
sion of the manifold M is even: M = M,,. First we take ® such that ® =
(zOEn —i(l)§n>and we put ¥ =< ;: ;j ), T=( % %: >,’ taking account of
the self-adjointness of ¥ and T. From the last two relations of (VII), we see
that P, = — ihE,, Q =— igE,, that is,

. =< —ihE, P, > T=< —igE, Q, >

P, ihE, Q. igE,
Since ¥ and T are almost complex structures, we have
(4.1) P,P, = (i — DE,, Q.Q, =(¢" — 1)E,,
where h* — 1>0, 9_2 — 1> 0. Now, the first equation of (4.1) is written such
that x/hf}—l . /\/hr;g—l = E,. We can take a complex (n# X n)-matrix X such
that X"‘Jﬁ X =E, or X'P,X =+/h"—1 E, ([4], Lemma 1 and 2).
Hence if we consider a transformation by a matrix X =< é{ YO > (see the fo-

otnote 5)), the new forms X'WX, X~'TX of ¥ and T are as follows:
\F=< —ihE, ~ hR*—1E, ) T_( —igE, Q,
~ h*—1 E. ihE, ’ Q, igE,/
whereas the form of ® is unchanged. By virtue of the relation ¥T + TV
= 2fE, we get
=~ _ 2Af+ gh
4.2) Q+Q =211 E,

Now we decompose the matrix Q, such that Q, = R + iS, where R and
S are real (n X n)-matrices. Then from (4.2) we see that R is a diagonal form:

R = if—;;gi;—) E,. And from the second equation of (4.1) we have
4.3) R®* + 8* = (¢* — 1)E,, RS = SR,
the second equation necessarily holds true since R is proportional to E,.
Taking account of the first equation of (4.3) and R = (—j‘—;g”hll E,, we have
A 1 —-h —g
St = E, where A=|_—p 1 —f|- If A>0, we can choose a real
ham 1 ~g —f 1
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matrix Y such that Y'SY = \/ A a 1 E, and if A < 0 we can also choose

a real matrix Y’ such that Y 'SY' = \/ =2 Jupy o =( 0 —Eu )
1 Eyi 0

In the last case # must be even. If A =0, we can choose a real matrix Y~

such that Y''SY" = oo o ), where E, is a unit matrix of degree

P(é —721—) (see §2, the normalization of £ such that £2 = 0). Under a trans-

Y 0 , Y 0 ”
fomation by a real (27 x 2xn)-matrix 9 =< 0 Y ), 9 =( oY ) or 9§ =

Y’ 0
( o v ), the already obtained normal forms of ® and ¥ are unchanged.

Consequently, with respect to a suitable complex frame, the normal forms

1 —h —g
of the present structure are as follows, where we have put A =| —-h 1 — f|
-9 —f 1

(i) structure (VII) of the first type (A > 0):
7E" 0 —1 2 _ —1 En
¢=<z | >, =( ihE, ~ h 1E">,T=< ig Q>,
0 —iE, v h*—1E, ihE, Q Q.
where
(f + gh) E, +i A
VR -1 NS
(ii) structure (VII) of the second type (& < 0):

o= L (e s 0 )

Q= E.,.

0 - lEn lhE,, /7 Q lgEn
where
_ —E,
Q=—(Lt_l—}i E,,+i—“/—A— iz, J,,,z=< 0 . )
N ht-1 ~ hi—1 E,; 0

(n: even).

(iii) strucutre (VII) of the third type (A = 0):

E., 0 —3 7__ —iqE,
o=(" 0 ) wo( R VRULEN g (TR Q)
0 —iE, ~ h*—1 E, thE, Q igE,
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where

Y R B I n
Q=1 E, + iK,, K, "(: “““““““ (P = 7)

With respect to a real frame these respective normal forms are:

—E, 1
\ W:(“/h 1E, hE, >,

2

6 @>0:e=("

E, 0 —hE, -~R—1E,
f+gh ; A >
ST, g+ X,
SR =1 ;(g NS
T = ;: )
A i f+gh l
—g+-—Y_— g, - 1T g
l(g )R i
0 -E, ~ B—1E hE,
.o A 0 :¢= >, -\I,= n 4 ,
Gi) (A <0) (E,, . (*hEn —Mhz—lEn>
f+ gh | . A=A
—_— En 1 En+ :—*an
N2 {7 SRE—1 "
T = .’
A L ftgh J
- E,,‘l‘h—‘-!]nﬂf s En
o L M T R =1
0 '_'En,/z
Iz = } , n: even |,
Eup 0
cee A= :¢= X — n n )’
(iii) (4 = 0) (E 0 ) <—hE,, —VR<1E,
St g . gE, + K,
A R —1 i
T = S SO
| f+ gh
—gE.+K, | -L1X% g
l g VT

If a differentiable manifold M admits the structure (VII), we can find
in M almost product structures. For, since |2f| > 2, |29] > 2, |2h]| >2,M
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admits the complex-product structures (II) (see the proof of Lemma 1.4), which
contain almost product structures.

5. “Distributions” of almost complex structures. Let M be a differen-
tiable manifold and suppose that the dimension of the set of almost complex
structures linearly independent in real constants is equal to 2. Then there are
just 2 almost complex structures ®,,...,®; linearly independent in real constant
coefficients and any other almost complex structure (if it exists) is given by a
linear combination of them with respect to real constant coefficients. Let
Zi,---5%; be E real numbers such that z,®;+ ... +x,P, gives again an almost
complex structure in M. The set of all such real numbers (zi,...,x;) gives a
subset in a k-dimensional affine space R*. We call the subset in R® the “distri-
bution” of almost complex structures of (®,,...,®,) and call ®,,...,.®; the bases
of the distribution.

We can consider the other bases ®; = Zi ad,,.... o, = Zi ai®,;, where a’s
are real constants and there are some relations among them to make ®” s be
almost complex structures and det|a]| 5=0. Hence the “distribution” has a
meaning in affine geometry with some affine transformations leaving invariant
the origin.

In this section, we will consider the “distribution” of almost complex
structures of (®,¥,T) of the structures (I), (IV),(V),(VI) and (VII) (or briefly
“distributions” of almost complex structures of the structures (I)~ (VII)) in
the above sense. They are subsets in a 3-dimensional affine space R®.

1°. The “distribution” of almost complex structures of the structure (I). Let
(®, ¥, T) give the structure (I) (almost quaternion structure), then the necessary
and sufficient condition that a linear combination ® + y¥ + 2T (x,y, z: real
constants) is again an almost complex structure is that a* + y* + 2> = 1.
Hence the distribution of almost complex structures of the structure (I) a
sphere with respect to a natural metric in R® (bases ®,'¥,T). With respect is to
general bases ® =a,®+a,¥ +a,T, ¥ =b®+ b,V +b,T, T = ¢, ®+c,¥V+¢;T,
(ay,-..,c5 are real constants;the sum of squares of a’s, b’s, or ¢’s is equal to
1; @, ¥, T are independent) the distribution is an ellipsoid.

2°. The “distribution” of almost complex structures of the structure (IV).
If (®, ¥, T)gives the structure (IV), then the necessary and sufficient consition
that a linear combination ax® + y¥ + 2T (x,y, 2: real constants) is again an
almost complex structure is that £ —y — 2z == 1. Hence the distribution of
almost complex structures of the structure (IV) is two parallel planes in R®.

3°. The “distribution” of almost complex structures of the structure (V).
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Let (®,7,T) give the structure (V). At first we remark that if we put ®¥(="Yd)
=T, YT(=TV¥Y) =®,, T®(= ®T) = ¥,, then ®,, ¥,, T, give almost product
structures and they satisfy &, ¥, =¥v,®, =— T,V T, =T,¥,=— &, TP,
= @ T, = — ¥,. These almost product structures are not identical with = E,
because ®,¥ and T are linearly independent. Suppose that 2® + y¥ + 2T
(z,y, z: real constants) gives an almost complex structure. Then, from (z® +
y¥ + 2T) =—E, we have 2yz®; + 22z2%, + 2z2yT, = (2* + y* +2* — 1)E or
222V, + 2xyT, = (x* + y* + 2 — 1)E — 2y2®,. If we consider the squares
of both sides and take account of ®, === E, we have 42°z® + 4z%* = (2* +
y2+2?—1) + 4y°2* and 2z2yz = yz(x® + y® + 2? — 1). The equations obtained
by cyclically changing x,y, 2 in the last two equations are also hold true. If
one of the z,y, 2 is equal to zero, then the other one is also equal to zero,
which is the trivial case. If x =0, y==0, 2=5=0, then we have x ==*1,y==%1,
z == 1. This is the necessary condition. In some cases, these values of z,y,2
make ® + y¥ + 2T be an almost complex structure and in other cases, they
does not (for instance, in the normal forms in §3, if s, =0 such a case
occurs and if 77, =0, 5,5, +=0 such a case does not cocur.) But in any cases,
the distribution of almost complex structures of the structure (V) is isolated.

4°. The “distribution” of almost complex structures of the structure (VI).
Let (&, ¥, T) be the structure (VI) and we remark that ®¥ + V& =T + TP
which is obtained from ®¥ = T® (VP = ®T).

Now, from the relation ¥Y®¥ = a® + a¥ + T (a==— 1), we have

(5.1) (a + 1X®Y¥ + ¥P) + (YT + TY) — 2aE = 0.
On the other hand we consider in R® a curve C such that
(5.2) c. Hy+z) _ yx _ 2tyte—
' a+1 1 2a ’

then we can easily see that C is a plane curve defined by

(5.3) (y+tz)—(@+ Dyz=0,z -y —z==x1

C is composed of two branches which are conics on the plane x —y—z=1
and £ —y — 2 = — 1 respectively. Let (x,y,2) be on C and we put

3 =2 + y¥ + 2T.

Then, we see that 2 gives an almost complex structure for each (x,y, 2) €
C. For, by virtue of ®¥ + ¥® = ®T+T® and (5.1),(5.2) we have 2* = — E,
Assume that there exists an almost complex structure % of the form
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2 ®+y¥+2'T, where (z',y,2) is not on C. Then, from Z*?= —E we have
(5.4) 2'(y + ZXPY + YD) + y2' (YT + T¥) - (£? + y? + 2% — DE = 0,

where (2,5, 2) does not satisfy (5.2). Taking account of (5.1) and (5. 4), the

’ ’ ’ ’ ’ /z ) ’9 - ’ ’ ’
z(y +2) == == Tty tz 1 can not occur, hence ._r(_yﬁ_)
a+ 1. 1 2a at+1

= le— . And in this case, by virtue of (5. 1) and (5. 4) we have ®V+ ¥®=pE,

case

where p is a real constant (depending on z,y’,2"). But since the structure (VI)
does not satisty this relation (see the remark at the end of §3), the distribut-
ion is the curve C itself.

That is, the distribution of almost complex structures of the structure
(VD) is a curve C whose two branches are conics on two parallel planes
in R3,

5°. The “distribution” of almost complex structures of the structure (VII)
(of the first, the second and the third type). Let (®, ¥, T) be the structure
(VII) (of the first, the second or the third type). If 2® + y¥ + =T (z,y, 2: real
constants) gives an almost complex structure, we have by virtue of (VII),

2+ y* + 2 — 2 fyz — 29zx — 2hzy = 1 (|f1,lg],|h] > 1).

1 -h —yg
Now, we put A=|—h 1 —f|. Then, according to A > 0 (the first type
-9 —f 1

(1)) or A < 0 (the second type (ii)) the distribution is a hyperboloid of two or
one sheets respectively. If A = 0 (the third type (iii)), the distribution is a
hyperbolic cylinder.

The “distributions” of the structures (I),(IV),(V),(VI) and (VII) are dif-
ferent in the sense of affine geometry with affine transformations leaving
invariant the origin, we can easily get the following lemma.

LEMMA 5. 1. The five structures (1), (IV),(V), (VI) and (VII) are linearly
independnent in real constant coefficients. That is, any one of them can not
be obtained from the other one by a linear combination with respect to real

constants.

6. Case where the dimension of the set of almost complex structures
is equal to 3. '

LEMMA 6.1. Let A= (a}), B=(b) and C=(c;}) be three almost complex
structures in a differentiable manifold M. Assume that A, B,C satisfy

(6.1) AB + BA = pE, AC + CA = p'E, BC = CB,
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where p,p’ are real constants such that |p|,|p’| > 2. Then, A,B and C are
linearly dependent in real constant coefficients.

PROOF. We will prove by normalizations of A, B and C. The dimension of
M is even: M = M,,. At the tangent space of P, we choose a complex frame such
iE, 0
7 0 —iE,
first two equations of (6.1), we see that B and C are of the form

that A takes the form A =< ) And in this case, by virtue of the

—i—g—En B, —z'—';—En C,
B = y C= ’

1
Since B and C are almost complex structures, we have

®6.2) BB, = (2_2 - 1) E, CC, = (_P4— ~1)E,

2 ‘2
where—%— —-1> O’pT — 1 >0, because |p|,|p'| > 2. As in the normalization

of the structure (VII), we can choose a unitary matrix X such that X 'B,X

= p,E,, where p, = \/ —Z_i — 1. And under a transformation by the matrix

. X 0\
X =( 0 X >, the form of A is unchanged and the form of B becomes
—1 g En PlEn -
B= V)
p.E, i%En

The third equation of (6.1) implies that C, = p,E,, where p, = p,p/p.
Hence, the normal forms of A, B and C are as follows

’

—iPE E -iP E E
z.Eﬂ 0 Z 2 n Pl n l 2 n P2 n
a=(‘r ) B= , C= )
0~k Pl i-t-E, Pk it-E,

where p, = \/ i? — 1., P = pP/p. Accordingly there exists a linear relation
‘in real constant c efficients such that

(__sz _F ,L) A+pB—pC=0,(p,=0, p,=0).
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Since P is an arbitrary point of M,,, this equation is a tensor equation

all over the M,,. Q. E. D.

LEMMA 6.2. Let A = (a}), B= (b)) be two almost complex structures
linearly independent in real constant coefficients in a differentiable manifold
M. And suppose that A, B satisfy

(6.2) ABA = AA + uB,

where A, u are real constants. Then, we get w=0, and if A==0 we have
p=1.

PROOF. If uw = 0, we see that A == 1 and in this case ABA==%*A or
A == B. But this contradicts to the assumption. Hence w == 0. Suppose that
A==0. Since ABA is an almost complex structure, we have Au(AB + BA)
= (A* + u* — 1)E. On the other hand, by multiplying A from the left and
from the right to (6. 2), we get —BA=—AE + wAB and —AB=—AE+uBA
respectively. Hence we have (u + 1XAB + B A) = 2AE. Consequently we see
that w =1 or w + 1 == A\ by a simple calculation. If g + 1 == AM==0), we
get AB + BA == 2E from which we have ABA==+2A + B. Taking account
of (6.2) we get MA + uB==+=2A + B and hence u = 1, because A and B
are linearly independent. In any cases, we know that u = 1. Q.E.D.

LEMMA 6.3. Suppose that the dimension of almost complex structures
of a differentiable manifold M in the sense of linear combination in real
constant coefficients is equal to 3 (see the definition in the Introduction). Let
A =(a)), B= (b)), C=(cS') be three almost complex structures linearly
independent in real constant coefficients satisfying

(6.3) ABA = MA + w,B,
(6.4) CAC = MC + u,A,
(6- 5) BCB = X;B + ILgC,

where Ny, py, Mo, fho, N3, s are real constants and N + pi=<=0, A\ + ui =<0,
A+ s ==0.
Then only one of following cases can occur:

1° M=EN=2=0 p=pu=ps=1,

2° M=A=A=0 gy=pg =u=—1,

3° 0< M) €2, Ay Mg =09 g = pp = g = 1,

4° O<|7\'1]<2’ 0< [, <2, As=0%; M=pe=pg =1,
5° A=A = As] =2, A0 <0; M=y =3 =1,
6° 0 < Il [Ael, [Ae] <25 M= p = pg =1,

6) Of course the cases obtained by cyclically changing A, Ay, A; are contained.
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7° lxll:lx2',1x3J>2; B = g = pg = 1.
In any case, we can find one of the structures (I),(IV),(V), (VII).

PROOF. At first as in the Lemma 6.2, any one of u;, s, u; can not vanish.
Because, if for instance u; = 0, then A and B are linearly dependent which
contradicts to the assumption.

We classify several cases following to the values of A, Az As and consider
their possibilities.

Case (i) A; =A,=2A3=0. In this case we see that u,==1, u,=1, u==*1.
If all of the mymqpus are equal to 1, we have ABA=B, CAC=A, BCB=C or
AB+BA=0, AC+CA=0, BC+CB=0. And A,B,C give rise the structure (I)
(case 1°). The case u;=1,u,=pu;= —1 or the case u;=u,=1, us=—1 can not
occur. For instance assume that w; =1, po=ps=—1. Then we have AB+BA=0
and AC=CA. A and B give rise the structure (I) by putting ®= A, ¥ = B,T
=@V (= --V®d). Any other almost complex structure for instance C is a linear
combination of these ®, ¥, T,ie., C = a® + BY + oT (a® + B2 + v*=1).Since
PC(=AC=CA)=Cd, we must have BT —y¥ =0 taking account of the relations
in (I). But since ¥ and T are linearly independent, we get 8=9=0 and hence
C=ad == ®d ==+ A. This contradicts to the assumption that A and C are
linearly independent. It is similar for the case pu; = s = 1, us = — 1.

If all of py,pme,pus are equal to —1, we have AB=BA, AC=CA, BC=CB.
And these A,B,C give rise the structure (V) (case 2°).

Case (ii) A, == 0, Ay = A; = 0. In this case, u, ==+ 1, u3 ==+ 1.

If pu, = ps = 1, we have AC+CA=0, BC+CB=0. We put ®=4, ¥=_,
T=®V¥ (= — VYP), then ®, ¥, T give rise the almost quaternion structure (I). The
almost complex structure B is given as a linear combination of ®, ¥ and T:
B=a®+BY +vT. From BC+CB=0, we get 8=0, i.e., B=a®+yT(a®+ ¢*=
1,y == 0) taking account of the quaternic relations among ®,¥ and T. Now,
consider the relation ABA = N\, A + u,B. By virtue of Lemma 6.2, we know
that w;=1 since A,==0. Substituting A=®, B=a® + 4T (a* + y* =1, v ==0),
we get A; + 2a = 0 since ® and T are linearly independent. Conversely, we
can verify that the present case can occur if u, =1, |\ =|—2a] <2, where
@, ¥, T give give the structure (I) (case 3°).

If w, =1,u3=—1, we have AC+CA=0, BC=CB. As in the above case,
d=A, ¥=C, T=0dV(=—TVd) give rise the structure (I) and B=a® + BY +
9T (a*+B*+7y?=1). From the relation BC=CB and from the quaternic relations
among ®, ¥V, T, we have @« =y =0 since ® and T are linearly independent.
Hence B = = ¥ == C, which contradicts to the assumption that B and C are
linearly independent. That is, the case w; = 1, ug=—1 (also the case p,=—1,
Mz = 1) can not occur.
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The case py = u3 = - 1 also can not occur, which is proved as follows.
If po = ps =— 1, we have AC = CA, BC=CB and since A,=+=0 we know that
w;=1 (Lemma 6.2). Hence, we have from (6.3), AB+BA=\E. If |A,] <2, we
obtain the structure (I) by putting ®=A, Y=pA+¢B, T=0V(= - ¥®), where
p, o are suitable real constants (see the proof of Lemma 1.4). The almost complex
structure C is a linear combination of ®, V¥, T: C=a®+BY¥ ++T. By virtue of
AC=CA, we get 8=7=0 as in the preceding cases. Hence C=a®d=+®d==*A,
which contradicts to the assumption. If |A;|>2, we obtain the structure (II) by
putting ® = A, ¥=pA+0oB (p,o: suitable real constants) T=®¥(= —V®) (see
also the proof of Lemma 1.4), where ¥ and T are almost product structures.
We remark the relation ®¥ =— ¥® and ®C(= AC = CA) = CP. Since AC
= CA, BC = CB, we have YC = CV¥. If we put ¥C = C¥ = V', then ¥ is
an almost complex structure and W'C = C¥’. We can easily verify that ®¥’
=®VC)=—VOC =— VCP =— VP or V' + ¥ & = 0. Hence ®, V', T
= V(= — ¥'®) give rise the structure (I). In this case C=a® + BY" + T’
and from the relation ¥'C = C¥" we get C == V', Therefore ¥ ==+ E, but
this is a contradiction. Lastly, consider the case |A;| = 2. In this case we have
AB + BA =+ 2E. We can assume that AB + BA = 2E without any loss of
generality. Because, if otherwise we consider — A instead of A, the form of
(6.3),(6.4),(6.5) are however unchanged. If we put ® = A, ¥ ==+ B, T=E
- ®¥ — @, we obtain the structure (IV) and C = a® + BY + oT. From the
relation AC = CA we have B®Y + v®T = BYP + yTd. Since DV + VD= 2E,
DT +T® =2E, we get (DY — E) + y(®T — E) = 0. By multiplying ® from
the left and taking account of the linear independence of ®,¥,T, We get
B =& =0. Hence C = a® ==+ A, which is also a contradiction. We remark
that in the proofs for the cases |A;] =< 2, we have used only one of the
relations AC = CA, BC = CB.

Case (iii) A= 0, A, =5=0, A; = 0. In this case, us == 1. Since A;==0,
A,=$=0, we have p;=1, u,=1 and AB + BA = \E, AC + CA = \,E (Lemma
6.2). If u3 =1, then ® =B, ¥=C,T =PV(=— ¥P) give rise the structure
(I). And A is a linear combination of ®, ¥, T: A=a®d+ LY ++T (a®+B*+y*=1).
From the relations AB 4+ BA=ME, AC+CA=M\,E, we see that A, + 2a =0,
A2 + 2a¢ = 0. Hence [A,| < 2, |A.| < 2. Therefore the present case can occur
if and only if 0 <|A 1< 2,0 < |Ay| < 2; puy = pp = ps = 1, where ®,¥,T give
the structure (I) (case 4°). Consider the case u3 =— 1, where we see that
BC = CB. the relations AB + BA = \E, AC + CA = \,E also hold true. But
the case |A;] <2 or |A,] =<2 can not occur, which is verified as in the case
(ii) (see the remark at the end of case (ii)). The case A, > 2 or |A;] >2
also can not occur, for, in this case the structures A, B,C are not linearly in-
dependent by virtue of Lemma 6. 1.
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Case (iv)A;==0, A, =5=0, A; &=0. By virtue of Lemma 6.2, we know that
p1=p,=us=1. In this case we have AB+BA=\E, AC+CA=N,E, BC + CB
=NE. If any one of |A;],|N2]|,|Ns! is equal to 2, then the case 5° occurs,
where the structure (IV) is admitted. For instance assume that |A;] = 2.
Without any loss of generality we can take A, = 2, if otherwise we consider
—A instead of A (—\,;,—\, instead of A ;). If we put ® =A, ¥=B, T =E—
Y — @, we get the structure (IV). The almost complex structure C is given
by a linear combination of ®¥,T: C=a®+ B8V +¢T, where a— 8 — y = *1
(see §5). Hence we can easily see that AC+CA ==%2E, BC+CB=F2E. This
case can occur if and only if |A;] = |A;] = |As] =2 and A A <O (case 5°).
If any one of IA,],|N.],IAs] is <2, then the remaining two are also <{2. For
instance assume that |A;| < 2. Then we can find the structure (I) by putting
D= A, ¥=pA+ cB(p,o: suitable real constants), T=Y®(= — ¥P). Hereby
C=ad+BY+9T (a’+ B2+ o*=1). From the relations AC + CA=2\,E, we can
easily get 2a+A,=0 or |A,|=|—2a| <2. Similarly we have |As] <2. Hence
if 0< N ], IN],INs| <25 py=m,= s = 1, the present case can occur, where the
structure (I) is admitted (case 6°).

Lastly if any one of |A;|,|A:],]As] is >2, then the remaining two are also
> 2. For instance assume that |[A;] > 2. If IA,] < 2, we must have |A,] <2
by virtue of the above considerations. But this is a contradiction. Hence if
Al, N2l INgl > 25 py = pe = pz = 1, the present case occurs (case 7°) and
we can find the structure (VII). Q.E.D.

THEOREM 6. 1. Let M be a differentiable manifold. If the dimension
of the set of almost complex structures of M in the sense of linear combination
in real constant coefficients is just equal to 3 (see the definition in the Intro-

duction), then M admits one of the structures (I), (IV),(V),(VI),(VII).

PROOF. According to the definition, M admits three and just three almost
complex structures A, B, C linearly independent with respect to real constant
coefficients and any other almost complex structure is given by a linear combi-
nation of the three in real constant coefficients. Now, if all of the three almost
complex structures ABA, CAC, BCB are linearly dependent with A, B; C, A;
B, C respectively, then the proof is complete by virtue of Lemma 6. 3.

We cosider the other case, for instance, ABA is linearly independent with
A and B. Put

(6.6) C =— ABA,

then A, B and C’ are linearly independent and other almost complex structure
is expressed by a linear combination of A, B and C’ in real constant coefficients.
We remark that
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6.7) AB =CA, BA = AC..
Now, since BAB is also an almost complex structure, we can write
(6. 8) BAB = aA + BB + ¢C,

where .8 and ¢ are real constants all of which are not zero.

If y =0 in (6.8), then from BAB = a@A + BB we have ABA=aB+BA,
i.e.,, C'= — aB — BA. But this is a contradiction since A,B,C  are linearly
independent. Therefore trom now on, we consider v == 0 in (6.8). Without any
loss of generality, we can assume that y> 0. For, if ¥ <0, we put A" =— A.
Then the equation (6.6) is unchanged for A’, and (6.8) becomes BA'B = aA
+8B—qC’, where 8 = —f. This is no other than the case of ¥> 0 in (6.8).

By multiplying A from the left and B from the right to (6.8), we get
—ABA=—aB— BA + yAC'B. Since - ABA=C" and AC'B= BAB by virtue
of (6.7), we have

(6.9) BAB=SB a4+ %p+ 1,
. y ¥ y

From (6.8) and (6.9). we have @ = —'—8;, =% , ¥*=1, and hence a =20,
Y Y

v =1, since A, B,C’ are linearly independent and ¢ > 0. In this case (6.8)
becomes

(6.10) BAB =aA + aB + C.

If «a=—1 in (6.10), we can easily get BC' + C' B=— 2E. Hence ® = B,
¥ = — C’ gives the structure (IV) (see the later Remark).

If a=%—1 in (6.10), we can find the structure (VI) taking account of
(6.7), (6.10) and the linear independence of A, B,C'. Q.E.D.

REMARK. In the case & =— 1, if we put 4 = % o — % V¥, then A is

an almost complex structure lying on the distribution of the structure (IV). This
A satisfies (6.7) and (6. 10).

APPENDIX
The ordinary normalization of a complex (z X n)-matrix A is such that

Aoeg
L]
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where Aq....,\, are characteristic roots of A and e, =0 or 1 (¢ = 1,...,n — 1).
But the normalization in §2 (p. 7) is such that A—Y'AY. In this normalization
the property AA = 0 plays an important role. The trasformations considered in
this Appendix are always such that A—>Y'AY. As has been already shown, we
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0
can transform A such that A>X"'AX = E *
' 0

Next, we can find a matrix Z such that

Such a Z is composed of the matrices of the following types:

(1)

where E is the unit matrix of degree n and E;; = §,; (Kronecker’s delta). We
write the Z7'AZ anew by A. If ¢, = 0, we can advance to the next step since

(.
1

eeee®oice0000 Oeoscooe N,

S
Q
o
(=)
.
.
.
.
(=]

Qeeeeee O

J
. \
o ¢ 0
. 1
o.o.o.l...... B
1 . 1
‘e ¢ 0 |, EtaE,
1.
....'.O...... 0
o1
o : °.
. 1/

(a, B: complex)

A is a direct sum. To consider the case e; = 1, we put

If at least one of as,,...

a22ooooooooa2n

a3200-oo-.oa3n

A=

anzaoooo-.oann

a,, is not zero, we can transform A such that
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0 (1 00020
0 fa,
L] : ))

A= 1 ,
R R
00

which is done by the matrices of the former two types of (1) (7, 7= 3).

Furhtermore, if we consider a transformation by a matrix E + %Ew we can

take A of the form . In this case we can also advance to the next

If all of asg,,...,a,; are equal to zero,we see that

011 OQesss0
0 {ag @yt cas
A=] {10 ,
R
010
and since AA = 0, we have @y, = @ys=...=ay,=0. That is, A is transformed
into the form
01|
00 %
A=
0 | *

In any cases, we can reduce to the normalization of a matrix of degree

n—1or n— 2. And we get the final form of A:

0 e 0
A= ..
E .c.oen—l

Qeeeeees0

We remark that at least one of the neighboring ¢; and e,(i=1,....,n — 2)
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is zero.
I express many thanks to Prof. S.Sasaki to his kind advices.
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