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JW.Gray [3], W. M. Boothby and H.C.-Wang [1] introduced the notion
of contact and almost contact structures and investigated it from the global view-
point. An almost contact structure is one of an odd-dimensional manifold such
that the structural group of its tangent bundle is reducible to the product of
a unitary group with the one-dimensional identity group. It is comparable to
almost complex structure of even-dimensional manifolds. S.Sasaki and Y.Ha-
takeyama [8, 9] proved that an almost contact structure can be represented as
a totality of a tensor field and two vector fields satisfying certain conditions.
It enables us to research properties of almost contact structures by use of tensor
calculus.

In this paper we shall always assume that treated hypersurfaces are orien-
table. We shall show that a hypersurface in an almost complex manifold has
an almost contact structure and that a hypersurface in an almost Hermitian
manifold has an almost contact metric structure. Next we shall seek for a
condition in order that a hypersurface in a K#hlerian manifold has a contact
structure. As a consequence we shall be able to obtain an extensive class of
contact manifolds, which includes odd-dimensional spheres known as the
simplest examples of contact manifolds. Finally we shall investigate the con-
verse problem of imbedding of an almost contact or contact manifolds into an
almost complex or complex manifold.

I should like to express my hearty thanks to Professor S.Sasaki who gave
me many valuable criticisms in the course of preparation of this paper.

1. Almost complex structure and almost contact structure. Let M be
a 2p-dimensional differentiable manifold covered with local coordinate systems
(z¥)V. An almost complex structure in M is by definition a (1, 1)-tensor field
F = (Fy) satisfying the equation

a. 1) FF=—E: F Fr= — &,

where E = (&%) is the unit tensor field in M. A manifold M with such a
structure F is called an almost complex manifold. Improving the operators of
J.A.Schouten and K.Yano [10], M. Obata [ 6] defined the following operators,

1) In this paper, Geeek indices run on the range 1,--,2p, and small Latin indices on the
range 1,--+, 2p—1. Capital Latin indices run on the range 1,--,2p—1 of small ones and an
additional symbol oo,
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illustrated here for a quantity P = (P,*):

1
O,(F)Py- = o (P — F¥PP,g"F, ),
Dy(F)P = ; (P + FyPPs*F.),
OHF)Put = % (P — F.YPp*F,"),
(1. 2) 1
(D;(F)P/ulx = E (P,LAK + F,LYP-y)L“FmK),

1
D(F)Pa< = 0} (Pa* — FFyPPyg"),

B (FYPut = 5 (Pt + FLUFPPy).

These operators will be used later.

In an almost complex manifold, there always exists an affine connection,
called an F-connection, transposing the structure F parallelly [2, 6]. Further, in
an almost complex manifold, there exists a Riemannian metric G = (Gu),
called an almost Hermitian metric, satisfying the condition

1. 3) G = FGF': G = F,)F\*Gyy,

F' denoting the transpose of F. A manifold with such a metric is called an
almost Hermitian manifold, and there exists a connection, called a metric
F-connection, which transposes both F' and G parallelly [4, 6].

The covariant tensor field Fy, = (F..) given by

1. 4 Fy=FG: Fi\=F/Ga
is skew symmetric. We put
1. 5) ® = Fadx' N\ dot

and call it the fundamental 2-form of the almost Hermitian manifold. If ® is
closed, then the manifold is said to be almost Kihlerian.

The (1, 2)-tensor field N = (N.*) defined by
(1. 6) Nu* = Fo(0,F — O\ F,%) — F(0.FC — O.F,%)

is called the Nijenhuis tensor or torsion tensor of an almost complex structure
F. Tt possesses the properties

a7 ®(F)N = ¢¥(F)N = &, (F)N =0
or the equivalent ones
(1. 8) O,(F)N = ¢¥(F)N = &,(F)N= N
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[6]. An almost complex manifold M is complex analytic if and only if its
Nijenhuis tensor vanishes [ 5 ], or if and only if there is a symmetric F-connection
[6, 7]. Moreover, if the manifold is analytic, an almost Hermitian or almost
Kihlerian manifold is reduced to a Hermitian or Kéihlerian one respectively.
An almost Hermitian manifold is K#hlerian if and only if its Riemannian
connection is an F-connection [ 7 ].

Next let us speak of almost contact structure®. Let M be a (2p — 1)-dimen-
sional manifold covered with local coordinate systems (y"). An almost contact

structure in M is defined by the totality (f, n;, €*) of a (1, 1)-tensor field £ = (fi"),
a covariant vector field » = (»,) and a contravariant vector field & = (¢*), which
satisfy the conditions

1.9 rank f= 2p— 2
and
(1.10) f{ifth = -3 + W:‘h,. fi*m =0,
flfth =0, Ez’h‘ =1

Putting
(1.11) fio =, fl=—&
and

it o

— (fA) —

(112) F= =70
we can put the conditions (1.10) into one equation
(113) ff = - E: ‘fan‘zﬁf1 = — 83

Accordingly we may call such a matrix field f in M an almost contact structure
or simply an f-structure, and the manifold M an almost contact manifold.
Quantities in M with capital Latin indices such like f = (f%) will be called

with prefix “C-”, for instance, f is an C-tensor in M.

In an almost contact manifold, there always exists an affine connection
transposing parallelly the almost contact structure, that is, the tensor field f;"
and the vector fields f;™ and f.* [9]. It will be called an f-connection. Fur-
thermore, in an almost contact manifold, there exists a Riemannian metric

9 = (g,) satisfying the equations
95— 1 =[5 9w,
ni = Ehgin’
by use of S.Sasaki’s notations [ 8 ]. Putting

1.14)

2) Concerning almost contact structure, see S.Sasaki and Y.Hatakeyama [8, 9].
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gi O ),

(1.15) g = (9o8) = ( o 1

the equations (1.13) are put into
(1.16) g =591 gon = fe"f 5" Gmv.

Such a metric § or ¢ is called an associated metric tensor or C-tensor with
the structure f, respectively. Moreover, the structure (f,g) consisting of an
almost complex structure f and its associated metric C-tensor ¢ will be called
an almost Grayan structure, and a manifold with such a structure an almost
Grayan manifold.

The covariant almost contact C-tensor fi defined by

fjtfioo)

(117) fe=fo=( o

is skew symmetric. Putting
(1.18) 0, = fiudy', 6, = fidy’ A\ dy’,

we call ¢, and 6, the fundamental 1-form and 2-form of the almost Grayan
structure respectively.

On the other hand, following J.W.Gray [3], a contact structure in M is
given by two forms 6, and 4, with conditions 6, = df, and ¢, A 6,"' 0.
Then there exists an almost Grayan structure (f, 9) whose fundamental forms
coincide with the given forms. We shall call the structure an almost Sasakian
structure. The condition 6, = d#, is written in

(1.19) fi = % (Oifse — Oiffic).

Returning to an almost contact structure f, we define Obata’s operators ®(f)
for C-quantities by similar expressions to (1. 2). Then algebraic relations among
the operators ®(F) carry over among the operators ®(f).

Similarly to (1. 6), the Nijenhuis C-tensor n = (n¢s*) of an f-structure is
defined by

(1.20) nei' = [ @ufs' — Ouf5") — f5"(Orfec" — Dofi'),

where O.. is interpreted as a null-operator. The Nijenhuis C-tensor n satisfies
the equations (1. 6) and (1. 7) with f in place of F. The sets (n;"), (n;>),

(n;=") and (n;..") of the components of n define tensor fields in M separately,
and it is known that the vanishing of the first tensor 7 = (7,") implies those
of the other tensors, i.e., the vanishing of the C-tensor n itself.

An almost contact structure f with condition n = 0 is said to be normal.
We shall call an almost Grayan or almost Sasakian structure (f, 9) with n =0
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a Grayan or Sasakian structure respectively. An almost Grayan structure is
Sasakian if and only if the relations

ﬁi = Vjﬁm
Vifin = fieGin — fr=Gsi
are satisfied, where v denotes the covariant differentiation with respect to the

Riemannian connection of g.
Our terminologies are compared with those for complex structure as follows:

(1.21) {

Complex structures

(N=0)
(4 F) — almost complex — complex
|@o |
(H ®: ) almost Hermitian — Hermitian
de =0
l (d® = 0) 1
. @o , .
symplectic ———— almost Kghlerian — Kihlerian
Contact structures
(n=0) normal
(d f) — almost contact > almost
contact
| @ o
(301,02: ) almost Grayan — Grayan
02 = dﬁl
| @.=an |
@ G)
contact — almost Sasakian — Sasakian

2. Almost contact structure of a hypersurface in an almost complex
manifold. We consider a 2p-dimensional almost complex manifold M with

structure F and an orientable differentiable hypersurface M. Let M be represented
by x* = x*(y") by using local coordinate systems in M and in M. We put
(2. 1) B(K = aix",

which span the tangent hyperplane of M at each point, and choose a vector
field C* which is complementary to the tangent hyperplane of M at each point.

The vector field C* is called a pseudo-normal to M and will be sometimes

L3
1

denoted by B.*. The matrix B = (Bs*) = (C"

)is of rank 2p, and its inverse
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will be denoted by B~' = (By) = (B:*, By") = (B\*, C,). Then we have the

equations

B!B* = 8, BC, =0,

@ 2) BB =% Gpa—0, ocC, = 1,

and the equivalent equation

2. 3) B\*B.* = B{'B;* + C,C* = &.
Now we put

2. 9 f = BFB':f3* = Bs'F)*B*,

which is a C-tensor in M. The sets (i), (fi"), (f~*) and (f.~) of the four
kinds of the components

{ﬁh o BilFAKBK'L, ﬁwo — BiAFAKCx,
fmh — CR.FAKBKIL, fwoo — CLFAKCK

define a (1, 1)-tensor field, a covariant vector field, a contravariant vector field

(2. 5)

and a scalar field in M respectively. The C-tensor f is obviously of rank 2p
and satisfies the equations

2. 6) fB = BF
and
2.7 ff=—EFE.
A pseudo-normal vector field C* can be chosen such as
2. 8 foo=CFC.= 0.

Indeed, since there is an almost Hermitian metric in M and the covariant
almost complex structure F) is skew symmetric, the unit normal vector field

of the hypersurface M with respect to the almost Hermitian metric always
satisfies (2. 8). A vector field complementary to the tangent plane and lying in

the hyperplane represented by Fy*C, at each point of M may be chosen as a
pseudo-normal vector field satisfying (2. 8).
Once such a choice is fixed, the equation (2. 7) is written separately as

HfE+fift = =8, fifi=0,
fl:fih:O’ fffi:—l

Here and hereafter we drop the index symbol o from f;* and f."* unless
confusions give arise. Since f is of rank 2p, the vectors f; and f* do not
vanish. The second and third equations mean that rank of the matrix (f;") is
less than 2p — 1. We can see that the rank is in fact equal to 2p — 2. For, if

2. 9)
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there is a vector v, satisfying
(2.10) fi'v, =0,

then, by contracting (2.10) with f}', we have v; = — f;f"v,. This means that
the equation (2.10) admits solutions proportional to f; only. Thus we have the
following

THEOREM 1. A hypersurface M in an almast complex manifold M has
an almost contact structure.

We shall call the structure the induced almost contact structureof M by a
pseudo-normal vector field C*.
Interpreting .. as a null-operator®, we put

(211) Q(/"BA - (aCBBK - aBBCK)BKA,
whose components are given by
QﬂA = Qoqu = 0,

(2.12) Q. = — Q. = (9,C)B,

Q5" = — Qo™ = (0,C9C.
Then, by the substitution of (2.4) into (1.20) and a straightforward and

pretty long computation, the Nijenhuis C-tensor 7 of the induced almost contact
structure f is related to the Nijenhuis tensor N of the almost complex stru-

cture F of M by
(2.13) nes* = Bo"Bs*Nu*Be* + Qos* + f57Qesfp*
+ fCFQFBDfDA — 5" Qre?

+ [— feBs + fsBs* — & fis"Bg* + 8%f"B*1CH(0,F2*) B
and, in particular,
(2.14) ni" = B#BMN B — fHfiQ" — fifiQ”

+ Qe+ [

— [iB}CHOFy*)B* + fiBMCH(O.F %)Bi.

Let T' = (I%1) be an affine connection in M and define y = (yzs) by

(2.15) vés = (B"BaT", + 9:Bs)B.*,
which will be called the induced C-connection in M. The sets (v3), (v/) and

(ys2) of the components define tensor fields in M, but ¥ = (y}) given by
(2.16) v = (Bj“BilI‘;l + 9,B")B.*

is the so-called induced affine connection in M from I'. We put

3) We shall use technical calculus of the non-holonomic theory with this understanding.
See K. Yano and E.T.Davies [11].
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(217) v = hs, 'Y’J‘m =1 v = my
and sometimes use the notation /;” for m; From (2.15), we have
(218) ang“ + Bg"'BBlP,fA - 'YC%BAK = O,
and in particular
(2 19) { VJB,;K = ajBix + B_,-"'B}F,ﬁ —_ 'Yj’:BhK = hﬁCx’
' VjCK = ajC“ + Bjucll'"a = lthhK + ijK.

The left hand sides of these equations are the so-called van der Waerden co-
variant derivatives. Then we have also

{ V;B* = — 1"C,,
VjCl = — hﬂB}Lt -_ ijA.

Denoting the torsion tensor of I' and the torsion C-tensor of v by S = (S,.)
and s = (sgs?) respectively, it follows from (2.11) and (2.15) that

(2.20)

(2.21) 2s05* = 2B¢"Bi S §Bc* + Qes?,
or, putting S = (B;*B#' S *Bs%),
(2.22) 2 = 25 + Q.

Now let I' be an F-connection in M. Then we have the equation
(2.23) VI = 0. + Fifys — TiaF, =0
and the Nijenhuis tensor N is related to the torsion tensor S of I" by
(2.24) N = 80,D,(F)S

[ 6]. Substituting (2.23) into the last term of (2.13), using the commutativity
(2. 6) and putting

(2.25) Tos* = (8;Bs* — 83BMC T /B,
we have the equation

[feBs* — fsB3* + 8% f’Bs* — 83 fFB#1C*(2.Fy*)B
(2.26) = Tes* + fFTes"fo" + [T 0" — [T ri®
= 4@2@3(f>TgBA.
Hence, by (1.8), (2.13), (2.21), (2.24) and (2.26), we have

2.27) n = ®,0,( (N + 4Q — 4T)
= 40,025+ - T) ,
= 40,Dy(f)(2s — T),
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where N denotes the C-tensor (B£Bz*N,.1*B,*). We notice that
(2.28) 2505 — T = i — i — 8535 + 8Fv.e
= S — Sl
= SISFL — S5O, + 208hsi,
and its non:trivial components are only
2554 — T'y* = 2537,
{ 255% — Tyt = — (25 — Twi) = 1%
From (2.8) we have also

(2.30) l;if;; = hjifi.

3. Structure of a hypersurface of a complex manifold. Let M be a
complex manifold, N = 0. Now we seek for a condition that the induced almost

(2.29)

contact structure f of a hypersurface M is normal, that is, » = 0. By means
of the notice at the end of §1, we need only to consider the vanishing of
n = (ni").

In a complex manifold, there exists a symmetric F-connection, and it will
be adopted in this paragraph. As is seen from (2.16), the induced connection v

in M is also symmetric and so is v5 = h;. Hence we know that s;* =0 and
the non-trivial components of (2.28) are only ones given by the second of (2.29).
Substituting the components into the expression of ;" given by (2.27), we
have

3. 1) ny" = flifa — filAfd — [P + fiA0L"
In order that # vanishs, we have the equation
(3. 2) JG fa" = L") = fAfat — oY),

This equation is equivalent to the fact that the expressions in parentheses for
each value of & are proportional to f;:

(3. 3) LAfa — fiL = fia,

a" being proportional factors. Contracting f7, we see that a* = — fi;* f," and
the above equation becomes

(3. 4) LAfa + fifafd — fPL = 0,

or, by the first equation of (2.9),

(3. 5) SIS + 1) = 0.

From this equation, we may put

@. 6 SISt + Lt = fish
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After contracting this equation with f* and obtaining the expression of 8", we
see that the above equation is equivalent to

lih +ﬁblefAh +ﬁfblbh
@D = FAUS — fold + maf) = 0.
Further, by contracting f,, we have
(3. 8) Sl fu + fi'my = 0

and the equation (3. 7) yields
SIS — L0l — Sl f) =0
or
(3.9 fillls® + flfe) fa" = 0.
Thus we have established the following
THEOREM 2. If we denote by f the induced almost contact structure of
a hypersurface in a complex manifold, then, in order that the Nijenhuis

C-tensor n of f vanishes, it is necessary and sufficient that the tensors L and
my satisfy the equations (3. 8) and (3. 9).

4. Induced f-connection. Returning to considerations of a hypersurface
in an almost complex manifold M, let us seek for a condition in order that the

induced connection 7 in M from an F-connection I' in M is an f-connection.
The covariant derivatives of the tensors of f are given by

Vifit = huf* = 1/fi =0,
(4. 1) Vifi= — huf" — mifi =0,
v, f"r ="+ mft = 0.
The first equation implies that 4, and /;* should be of the form

4. 2) hy =N fi, LY =N f"
N\; being a vector field, and the second implies that
(4. 3) m; = 0.

Then the third equation is satisfied. Thus we have

THEOREM 3. The induced connection of a hypersurface from an F-con-
nection is an f-connection if and only if the tensors hy and l" are of the
form (4. 2) and the vector m; vanishes.

If M is a complex manifold, T' is a symmetric F-connection in M and the
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condition of Theorem 3 is satisfied, then %; is symmetric and hence A; in
(4. 2) should be proportional to f;:

4. 4) N = M
A being a factor. Hence the tensors Ay and [;* are given in the forms
(4. 5) hy=Nfifis L=\

Thus we have

THEOREM 4. In order that the induced connection in M from a sym-
metric F-connection in a complex manifold M is an f-connection, it is neces-
sary and sufficient that the tensors hj; and lj" are of the forms (4. 5) and the
vector m; vanishes.

5. Metric structure of hypersurfaces. Let M be an almost Hermitian
manifold with metric tensor G = (G,;). The unit normal vector C* of a hy-

persurface M satisfies the equation (2. 8) together with its covariant vector C,,

and hence it induces an almost contact structure in M, with which we shall
confine ourselves in this paragraph.

We put
6.1 =(9)=(9j‘ 0>=BGB‘- = B#Bi/'G
. g ¢B 0 1 tY9cs ¢ D Gy
and
gih 0
—1 BAY —
6. 2) ==, )

The minor matrix g = (9;) defines the induced Riemannian metric of the

hypersurface M. We see that the inverse matrix of B is given by

(5. 3) B~ = GB'g~': B\* = GunBg* g™,

that is,

(5. 4) B\* = GuB*g'", Cy = GuC~.

By the skew symmetry of the covariant almost complex structure Fy, we have
(5. 5) f'=CF*B" = — fig'"

Moreover, substituting the Hermitian condition (1. 3) into (5. 1), we have

5. 6) g=r91*"

These equations (5. 5) and (5. 6) show that

THEOREM 5. The induced Riemannian metric of a hypersurface in an
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almost Hermitian manifold is an associated metric with the induced almost
contact structure of the hypersurface, that is to say, a hypersurface in an
almost Hermitian manifold has an almost Grayan structure.

If we put
6.7 Se =19 = (fen),
then
(5- 8) f*:BF*BtZ —f*ta

that is, fy is skew symmetric and the components are given by

_fji = BquulBix,
(5- 9) fjoc = —fooJ = B* uACA :f},
Srew = 0.

From the definition (1.18) of the fundamental forms and (5. 9), we see that

the 2-form 6, of the induced almost Grayan structure in M is induced from
the fundamental form ® of the almost Hermitian manifold M by the inclusion

map of M into M. If M is almost Kihlerian, d® = 0, then we have d#, = 0.
Thus we have the following

THEOREM 6. If M is an almost Kihlerian manifold and M a hy-

persurface in M, then the induced almost Grayan structure in M has the
closed fundamental 2-form.

Now let us investigate a condition in order that, in an almost Hermitian

manifold M, the induced almost Grayan structure in a hypersurface M reduces
to an almost Sasakian structure. Using a metric F-connection I' in M and its

induced connection ¥ in M, we have [, = — h;9" and m; =0 in (2.19). The
equation (1.19) of the almost Sasakian structure is now written in
2fy = O{BIF*C,) — (B Fy*C,)

= B{BMou.(FyC,) — o(F,CJ)]

= B{BMV(F¥C,) — VA(FC,) + 2S5 FC]

= BFyv,;C, — B}Fy* v .C, + 2B/ B*Sa*B."B,*FgCx

= — hufi* + hinfi" + 25,
If we put
(56.10) hjy = g5 + ky

and substitute it into the above equation, then we see that k; has to satisfy
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the equation
(5-11) kjh,_fih - kihf}h = Zgji’ffn-

Therefore we can state that

THEOREM 7. In order that the induced almost Grayan strucure of a

hypersurface M in an almost Hermitian manifold M reduces to an almost
Sasakian structure, it is necessary and sufficient that the second fundamental

tensor hy of M is given by (5.10) with a solution k; of (5.11).

In particular, if M is Kihlerian and the induced structure in M is Sasakian,
then the Riemannian connection in M is a metric F-connection, its induced
connection is symmetric, so are h; and k;;, and in addition the equations (3. 8)
and (3. 9) should be satisfied by [, = — h;,g"* and m; = 0. From (5.11), it
follows that
(5.12) kjhﬁh = kihf;h
and we see that (3. 8) is fulfilled. Substituting (5.10) into (3. 9), we have

fid(kaa +fdckc%a)fah =0,
and by use of (5.12) it is verified that this equation reduces to

ﬁdkaafan :fidfaakan = 0.
Moreover it follows easily that k; should be of the form k; = pf;fi, w being
a scalar field in M. Thus we have the following

THEOREM 8. In order that the induced almost Grayan structure in a

hypersurface M in a Kihlerian manifold M is a Sasakian structure, it is
necessary and sufficient that the second fundamental tensor h; of M is of the
form

(6.13) hy = gy + pfifi
As the most special case, we have

COROLLARY. A totally wumbilical hypersurface with positive constant
mean curvature in a Kdahlerian manifold has a Sasakian structure by means
of the induced metric.

This corallary says that an odd-dimensional sphere has a Sasakian st-
ructure. Moreover it is to be noticed that, if M is a hypersurface with Sasakian
structure stated in Theorem 8 and M’ a hypersurface diffeomorphic to M

by a map =, then M’ has also a contact structure given by the induced forms
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7*0, and #*@,, but its associated metric is not in general the same as the
induced metric in M’ from the metric of M.
6. Imbedding of Grayan and Sasakian manifolds. Let M be an almost

Grayan manifold with metric tensor g = (g;) and almost contact structure f,
and I a straight line parametrized by ¢ € (— oo, + o). Consider the direct

product M = M x I and denote its metic tensor by g. Further we define a
metric tensor G in M by

g 0
. Gopomp(? ).
6. 1) PI=r\y 1
where p is a non-vanishing scalar field in M such that p(y,0) =1 for any

point y of M, and it will be determined later. Since G is conformal to g, the
Christoffel symbol I" of G is related to v of ¢ by

(6. 2) I‘:A = ’Y:A + 8;’71 + Sipp —_ gulpx;
where we have put
6.3 pr = 9i(log p), p* = prg™.

In a local coordinate system (y*,¢) of M, the equation (6. 2) is written se-
parately in the forms

Il = ok + 8p + 8p; — 950",
s = — o0s
(6 4) J: .%zP
FJ'°° = S?Pm, PJ: = Pj
I't. = — p", '3 = Puy
Since B = & and C* = 8% on M and we have
Vthm = BjnBiAF:i - 'Y}:B’Lm = = 9P

the second fundamental tensor of M as a hypersurface of M is equal to

(6. 5) his = — §5iPss
that is, M is totally geodesic if p.. = 0 identically on M or totally umbilical if
p.#0 on M.
Next, if we put
St ﬁ)
6. 6) F= (fh .

with respect to a local coordinate system (y* ¢) in M, then F defines a (1,1)-
tensor field in M. It is obvious that the tensor field F is an almost complex
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structure in M and the metric tensor G is almost Hermitian for any choice of

p with condition p(y,0)=1 for any y € M. Therefore we can state that

THEOREM 9. An almost Grayan manifold can be imbedded in an almost
Hermitian manifold as a totally geodesic or umbilical hypersurface.

From the definitions of the Nijenhuis tensor and C-tensor, it is obvious
that

THEOREM 10. A Grayan manifold can be imbedded in a Hermitian
manifold as a totally geodesic or umbilical hypersurface.

The covariant almost complex structure of M is given by

Ju S

6. 7 F7\ - FG = p? % = 2( >
( ) 3 PJle =P\ _ £ 0
and the fundamental form ® by
(6. 8) ® = Fadx* A\ dx* = p*fosdy® N\ dy®.
Therefore the 3-tensor F,y. of the derived form d® has the following inde-
pendent components :

Fin = p*©;fin + 9 fos + OnSu) + 20°(ps fin + PiSrs + PuS)s

Fji = P05 fi — 0. f3) + 20%(psfs — i S3) + 2P°Pu [ e
If M is almost Sasakian, then we have the equation (1.19) and make the
derived form d® vanish by choosing p as

(6.10) p=e"

(6. 9)

and M has a positive constant mean curvature A = h,g’ = (2p — 1) as a hy-
persurface of M. Thus we have

THEOREM 11. An almost Sasakian manifold can be imbedded in an
almost Kdihlerian manifold as a totally umbilical hypersurface with positive
constant mean curvature.

Finally let us show that a Sasakian manifold can be imbedded in a
Kidhlerian manifold. Since a Hermitian manifold is Kéhlerian if and only if
the Riemannian connection is an F-connection, it follows from (6. 4) and (6. 6)
that the conditions for M to be Kihlerian are

ViFin = p°(Vifin — PiSfin + Pufu + 91Pfan
— 9inPfar — 9P Sr + Ginp=Jfi) = 0,
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VoFiun = ppifr — prfi) = 0,

ViFiw = pX(V, fi — pif; + 9iP"fo + f1) = 0,

Vol = P2thm =0,
V denoting the covariant differentiation with respect to v in M. The last
equation implies that p should satisfy

(6.11) P, = fi,

7 being a scalar function in M, and then the second equation is fulfilled. The
first and the third equations are reduced to

{ Vifi = 1(fifi — g1) + s

Vifun = v(fifin — o) — pLfiGin — Sfugi)-

Substituting these equations into the identity V,(ffi,) =0, we have 1 + p.. =0
and hence

(6.13) p = Ae™,

A being a function of y*. However, since p is identically equal to one for
t = 0, we should choose A = 1. Therefore p does not depend on the variables
y" and p, vanishes. Then the equations (6.12) are reduced to

Vifi = fi
Vifin = figm — fuliss
which are just the same as (1.21). Thus we have established the following

THEOREM 12. A Sasakian manifold M can be imbedded into a Kihlerian
manifold as a totally umbilical hypersurface.

(6.12)

(6.14)
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