ON A THEOREM OF MAILLET

H.Rотн

(Received September 4, 1962)

A consequence of the theorem of K.F.Roth on "Rational approximations to algebraic numbers" [1] is the

THEOREM (a). If

- 1) p_n/q_n , $n = 1,2,\dots$, with $(p_n, q_n) = 1$, $q_{n+1} > q_n > 0$ is an infinite sequence of quotients of integers, and if
- 2) there exists a sequence of real numbers s_n , $n = 1,2,\cdots$ such that $\tau = \overline{\lim} s_n > 2$, and if
 - $\stackrel{\text{\tiny n-n}}{3}$) for an irrational number ρ the inequalities

(1)
$$|\rho - (p_n/q_n)| \leq q_n^{-s_n}, n = 1, 2, \dots$$

are satisfied, then ρ is a transcendental number.

Briefly, we shall refer to such numbers as ρ -numbers. The conditions of theorem (a) are sufficient ones. We shall give a necessary and sufficient condition for a subset of ρ -numbers, a subset containing numbers ρ_0 , for which the sequences $\{p_n/q_n\}$, $q_1 > 1$, represent convergents to the simple continued fraction expansions for ρ_0 -numbers.

THEOREM. An irrational number $[b_0, b_1, b_2 \cdots]$ with convergents p_n/q_n , $q_1 > 1$, is a ρ_0 -number if and only if infinitely many partial denominators

$$b_{n+1} > q_n^{s'_{n-2}},$$

where $\{s'_n\}$ is a sequence of real numbers with $\tau = \overline{\lim_{n \to \infty}} s'_n > 2$.

PROOF. We observe, since ρ , and therefore ρ_0 , satisfy 1.), 2.), 3.) of theorem (a), we can extract a subsequence from $\{s_n\}$, $\{s'_n\}$ say, which also tends to τ . Now, if $s'_n \leq s_n$, $n = 1, 2, \ldots$, the inequalities (1) remain valid; and replacing s_n by $\inf_{k \geq n} (s_k)$, we may always assume that $\{s_n\}$ is non-decreasing. Also, since $\tau = \overline{\lim_{n \to \infty} s_n} > 2$, we may assume without loss of generality that $s_1 > 2$.

- (a) NECESSITY. The ρ_0 -numbers have the property of being limits of sequences of the form $\{p_n/q_n\}, q_1 > 1, (p_n, q_n) = 1$, where according to (1)
 - (1') $|\rho_0 (p_n/q_n)| \leq q_n^{-s_n}, n = 1, 2, \dots, s_1 > 2.$

Now, since ρ_0 is an irrational number, hence not an integer, and since (p_n, q_n)

= 1, for $n = 1, 2, \dots$, p_n/q_n is a convergent to ρ_0 by the approximation theorem for simple continued fractions [2], if $|\rho_0 - (p_n/q_n)| < q_n^{-2}$. But then, every p_n/q_n of (1') is necessarily a convergent to ρ_0 , since $q_n^{s_n} > q_n^2$.

Using the fact, that the (n + 1)-st complete quotient of ρ_0 , $\rho_{n+1} < b_{n+1} + 1$, we obtain according to [2] without difficulty a lower bound for the left hand side of (1')

$$|
ho_0-(p_n/q_n)|>[2q_n^2(b_{n+1}+1)]^{-1},\ n\geqq 1.$$
 Now $4b_{n+1}\geqq 2(b_{n+1}+1)>q_n^{s_n'-2},\ n\geqq 1\,;$

putting $s_n' = s_n - (\log 4/\log q_n)$, $q_1 > 1$; $\tau = \overline{\lim_{n \to \infty}} s_n' > 2$, $s_n' > 0$, for $n = 1, 2, \cdots$

and
$$b_{n+1} > (1/4) q_n^{s_n-2} = q_n^{s'-2}$$
.

(b) SUFFICIENCY. We assume that for infinitely many values of n an irrational number ρ_0 is such that

$$b_{n+1} > q_n^{s_{n-2}}$$
.

Again by the approximation theorem [2] for simple continued fractions, we have at once that

$$|\rho_0 - (p_n/q_n)| < q_n^{-2}b_{n+1}^{-1} < q_n^{-s_{n}}, \quad n = 1, 2, \cdots,$$

and hence by theorem (a), ρ_0 is a ρ -number with $q_{n+1} > q_n > 1$, $(p_n, q_n) = 1$, $n = 1, 2, \dots$ q.e.d.

This theorem is a generalization of an earlier theorem by E.Maillet [3] for Liouville numbers and as such contains the case where ρ_0 is a Liouville number.

REFERENCES

- [1] TH. SCHNEIDER, Einführung in die transzendenten Zahlen, Berlin (1957), 34.
- [2] O. PERRON, Die Lehre von den Kettenbrüchen I, Stuttgart (1954), 37.
- [3] E. MAILLET, Théorie des nombres transcendants, Paris (1906), 124.

LOS ANGELES STATE COLLEGE.