THE LAW OF THE ITERATED LOGARITHM FOR A GAP SEQUENCE WITH INFINITE GAPS

Shigeru Takahashi

(Received June 4,1963)

1. In the present note let $f(t)$ satisfy the following conditions

$$
f(t+1)=f(t), \quad \int_{0}^{1} f(t) d t=0 \text { and } \quad \int_{0}^{1} f^{2}(t) d t<+\infty,
$$

and let $\left\{n_{k}\right\}$ be a lacunary sequence of positive integers, that is,

$$
n_{k+1} / n_{k}>q>1 .
$$

Then the sequence of functions $\left\{f\left(n_{k} t\right)\right\}$, although themselves not independent, exhibits the properties of independent random variables (c.f. [2]). In [1] S.Izumi proved that under certain smoothness condition of $f(t),\left\{f\left(2^{k} t\right)\right\}$ obeys the law of the iterated logarithm. Further M. Weiss proved that this law holds for lacunary trigonometric series.

Theorem of Weiss ([4]). Let $\left\{n_{k}\right\}$ satisfy (1.1) and $\left\{a_{k}\right\}$ be an arbitrary sequence of real numbers for which

$$
B_{N}=\left(\frac{1}{2} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2} \rightarrow+\infty \text { and } a_{N}=o\left(\sqrt{B_{N}^{2} / \log \log B_{N}}\right) \text {, as } N \rightarrow+\infty \text {. }
$$

Then we have, for almost all t,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{2 B_{N}^{2} \log \log \mathbb{Z}_{N}}} \sum_{k=1}^{N} a_{k} \cos 2 \pi n_{k}\left(t+\alpha_{k}\right)=1 .
$$

However, there exist a sequence $\left\{n_{k}\right\}$ satisfying (1.1) and a trigonometric polynomial $f(t)$ such that $\left\{f\left(n_{k} t\right)\right\}$ does not obey the law of the iterated logarithm. In [3] it is shown that if $\left\{n_{k}\right\}$ satisfies (1.1) and $f(t)$ is a function of $\operatorname{Lip} \alpha, 0<\alpha \leqq 1$, then there exists a constant C such that

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{N \log \log N}}\left|\sum_{k=1}^{N} f\left(n_{k} t\right)\right| \leqq C, \quad \text { a.e. in } t .
$$

The purpose of this note is to prove the following
Theorem. Let $f(t)$ be a function of $\operatorname{Lip} \alpha, 0<\alpha \leqq 1$, and $\left\{n_{k}\right\}$ satisfy

$$
\begin{equation*}
n_{k+1} / n_{k} \rightarrow+\infty, \quad \text { as } k \rightarrow+\infty \text {. } \tag{1.2}
\end{equation*}
$$

Then we have, for almost all t,

$$
\left.\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{2 N \log \log N}} \sum_{k=1}^{N} f\left(n_{k} t\right)=\|f\| . *\right)
$$

2. From now on let $f(t)$ and $\left\{n_{k}\right\}$ satisfy the conditions of the theorem. Further, without loss of generality we may assume that the Fourier series of $f(t)$ contains cosine terms only and

$$
\begin{equation*}
n_{k+1} / n_{k}>3, \quad \text { for } k \geqq 1 \tag{2.1}
\end{equation*}
$$

These assumptions are introduced solely for the purpose of shortening the formulas. Let us put

$$
\begin{equation*}
f(t) \sim \sum_{k=1}^{\infty} a_{k} \cos 2 \pi k t \quad \text { and } \quad S_{N}(t)=\sum_{k=1}^{N} a_{k} \cos 2 \pi k t \tag{2.2}
\end{equation*}
$$

Since $f(t)$ is a function of $\operatorname{Lip} \alpha$, we have for some constant A

$$
\begin{equation*}
\left|f(t)-S_{N}(t)\right|<A N^{-\alpha} \log N \tag{2.3}
\end{equation*}
$$

$$
\sum_{k=N}^{\infty} a_{k}^{2}<A^{2} N^{-2 \alpha}
$$

LEMMA 1. If a positive number λ satisfies the condition

$$
\begin{equation*}
\lambda \sqrt{M}<\log M \tag{2.4}
\end{equation*}
$$

then there exists an integer M_{0}, not depending on N, such that

$$
\int_{0}^{1} \exp \left\{\lambda \sum_{k=N+1}^{N+M} f\left(n_{k} t\right)\right\} d t<2 \exp \left\{2(\lambda\|f\|)^{2} M\right\}, \quad \text { for } M>M_{0}
$$

Proof. We define m, L and $U_{l}(t)$ as follows;

$$
\begin{gather*}
m^{6} \leqq M<(m+1)^{6} \tag{2.5}\\
m(2 L+2) \leqq M<m(2 L+4)
\end{gather*}
$$

and

$$
U_{l}(t)=\sum_{k=l m+1}^{(2+1) m} S_{M^{1 / \alpha}}\left(n_{N+k} t\right)
$$

Then we can easily see that

$$
{ }^{*} \text {) We put }\left|\mid f \|=\left\{\int_{0}^{1} f^{2}(t) d t\right\}^{1 / 2}\right. \text {. }
$$

$$
\begin{gathered}
\lambda\left|\sum_{k=N+1}^{N+\mu} f\left(n_{k} t\right)-\sum_{l=0}^{(2 L+1)} U_{l}(t)\right| \\
\leqq \lambda\left|\sum_{k=(2 L+2) m+N+1}^{N+\mu} f\left(n_{k} t\right)\right|+\lambda \sum_{k=1}^{(2 L+2) m} \mid f\left(n_{N+K} t\right) \\
\leqq-S_{M^{1 / \alpha}}\left(n_{N+K} t\right) \mid \\
\leqq A \lambda\left(2 m+\log M^{1 / \alpha}\right)=O\left(M^{-1 / 3} \log M\right)=o(1), \quad \text { as } M \rightarrow+\infty .
\end{gathered}
$$

Hence if $M>M_{0}$ for some M_{0}, it is seen that

$$
\begin{align*}
& \int_{0}^{1} \exp \left\{\lambda \sum_{k=N+1}^{N+M} f\left(n_{k} t\right)\right\} d t<\sqrt{2} \int_{0}^{1} \exp \left\{\lambda \sum_{l=0}^{2 L+1} U_{l}(t)\right\} d t \tag{2.6}\\
\leqq & \sqrt{2}\left[\int_{0}^{1} \exp \left\{2 \lambda \sum_{l=0}^{L} U_{2 l}(t)\right\} d t\right]^{1 / 2}\left[\int_{0}^{1} \exp \left\{2 \lambda \sum_{l=0}^{L} U_{2 l+1}(t)\right\} d t\right]^{1 / 2} .
\end{align*}
$$

From (2. 3") and (2. 4) we obtain

$$
\begin{aligned}
& \lambda \operatorname{Max}_{l \leqq L}^{\operatorname{Li}}\left|U_{2 l}(t)\right|<\lambda A m=O\left(M^{-1 / 3} \log M\right)=o(1), \\
& \lambda^{3} \sum_{l=0}^{L}\left|U_{2 l}(t)\right|^{3}<\lambda^{3} A^{3} m^{3} L=O\left(M^{-1 / 6} \log ^{3} M\right)=o(1), \text { as } M \rightarrow \infty .
\end{aligned}
$$

By the above relations and the inequality $e^{z} \leqq\left(1+z+z^{2} / 2\right) e^{|z|^{3}}$ for $|z|<\frac{1}{2}$, we have, for $M>M_{0}$,

$$
\begin{equation*}
\exp \left\{2 \lambda \sum_{l=0}^{L} U_{2 l}(t)\right\}<\sqrt{2} \prod_{l=0}^{L}\left\{1+2 \lambda U_{2 l}(t)+2 \lambda^{2} U_{2 l}^{2}(t)\right\} . \tag{2.7}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
W_{l}(t)=\sum_{k=l m+2}^{(l+1) m} \sum_{j=l m+1}^{k-1} \sum_{(r, s)} a_{r} a_{s} \cos 2 \pi\left(n_{k+N} s-n_{j+N} r\right) t, \tag{2.8}
\end{equation*}
$$

and

$$
V_{l}(t)=2 \lambda U_{l}(t)+\lambda^{2}\left\{2 U_{l}^{2}(t)-m \sum_{k=1}^{m^{1 / \alpha}} a_{k}^{2}-2 W_{l}(t)\right\},
$$

where $\sum_{(r, s)}$ denotes the summation over all (r, s) which belong to

$$
\left\{(r, s) ;\left|n_{k+N} s-n_{j+N} r\right| \leqq n_{l m+N}, 0<s, r \leqq M^{1 / \alpha}\right\} .
$$

Then $V_{l}(t)$ is a sum of cosine terms whose frequencies are in the interval $\left[n_{l m+N}+1,2 M^{1 / \alpha} n_{(l+1) m+N}\right]$. By (2.1) and (2.5) we can find an integer M_{0} such that $M>M_{0}$ implies

$$
\frac{n_{2 l m+N}}{2 M^{1 / \alpha} n_{(2 j+1) m+N}}>\frac{3^{m(2 l-2 j-1)}}{2 M^{1 / \alpha}}>3^{l-j}, \quad \text { for } l>j
$$

Hence if $u_{l} \in\left[n_{l m+N}+1,2 M^{1 / \alpha} n_{(l+1) m+N}\right]$ and $1 \leqq l_{1}<l_{2}<\ldots<l_{s}<l$, then we have

$$
\begin{aligned}
& u_{2 l}-\sum_{j=1}^{s} u_{2 l}>u_{2 l}-\sum_{j=1}^{l-1} u_{2 j}>n_{2 l m+N}-2 M^{1 / \alpha} \sum_{j=1}^{l-1} n_{(2 j+1) m+N} \\
& >n_{2 l m+N}\left(1-\sum_{j=1}^{l-1} 3^{j-l}\right)>2^{-1} n_{2 l m+N}>0, \quad \text { for } M>M_{0} .
\end{aligned}
$$

If u_{l} 's are integers, then the above relation implies

$$
\int_{0}^{1} \cos 2 \pi u_{2 l} t \prod_{j=1}^{s} \cos 2 \pi u_{2 l,} t d t=0, \quad \text { for } M>M_{0}
$$

Therefore, we have

$$
\begin{equation*}
\int_{0}^{1} V_{2 l}(t) \prod_{j=1}^{s} V_{2 l_{j}}(t) d t=0, \quad \text { for } M>M_{0} \tag{2.9}
\end{equation*}
$$

On the other hand if $k>j>l m$, then (2.1) implies that the (r, s)-set in (2.8") is contained in $\left\{(r, s) ;\left|s n_{k+N} / n_{j+N}-r\right|<3^{-1}, 1 \leqq s\right\}$. Therefore we have, by (2. 3') and (2. 1),

$$
\begin{aligned}
\sum_{(r, s)}\left|a_{l} a_{s}\right| & \leqq\left\{\sum_{s=1}^{\infty} a_{s}^{2}\right\}^{1 / 2}\left\{\sum_{r \geqq\left[n_{k+N^{/ / n_{j+N}}}\right.} a_{r}^{2}\right\}^{1 / 2} \leqq \sqrt{2}\|f\| A\left(\frac{2 n_{j+N}}{n_{k+N}}\right)^{\alpha} \\
& \leqq 2^{1 / 2+\alpha}\|f\| A\left(\frac{n_{k-1+N}}{n_{k+N}}\right)^{\alpha} 3^{\alpha(j-k+1)}
\end{aligned}
$$

Therefore if we put

$$
\begin{equation*}
B_{l}=\sup _{t}\left|W_{l}(t)\right| \tag{2.10}
\end{equation*}
$$

then we have

$$
\begin{align*}
B_{l} & \leqq 2^{1 / 2+\alpha}\|f\| A \operatorname{Max}_{k>l m}\left(n_{k-1} / n_{k}\right)^{\alpha} \sum_{k=l m+2}^{(l+1) m} \sum_{j=l m+1}^{k-1} 3^{\alpha(j-k+1)} \\
& \leqq B m \operatorname{Max}_{k>l m}^{k+}\left(n_{k-1} / n_{k}\right)^{\alpha}, \quad \text { for some constant } B>0 .
\end{align*}
$$

Since $m \sum_{k=1}^{M^{1 / \alpha}} a_{k}^{2} \leqq 2 m\|f\|^{2}$, we obtain from (2.8') and (2.10)

$$
\left\{1+2 \lambda U_{l}(t)+2 \lambda^{2} U_{l}^{2}(t)\right\} \leqq\left\{1+V_{l}(t)+2 \lambda^{2} m\left(\|f\|^{2}+B_{l}\right)\right\}
$$

By (2. 7), (2. 9) and the above relation we have, for $M>M_{0}$,

$$
\int_{0}^{1} \exp \left\{2 \lambda \sum_{l=0}^{L} U_{2 l}(t)\right\} d t<\sqrt{2} \int_{0}^{1} \prod_{l=0}^{L}\left\{1+V_{2 l}(t)+2 \lambda^{2} m\left(\|f\|^{2}+B_{2 l}\right)\right\} d t
$$

$$
=\sqrt{2} \prod_{l=0}^{L}\left\{1+2 \lambda^{2} m\left(\|f\|^{2}+B_{2 l}\right)\right\} \leqq \sqrt{2} \exp \left\{\sum_{l=0}^{L} 2 \lambda^{2} m\left(\|f\|^{2}+B_{2 l}\right)\right\}
$$

and in the same way

$$
\int_{0}^{1} \exp \left\{2 \lambda \sum_{l=0}^{L} U_{2 l+1}(t)\right\} d t<\sqrt{2} \exp \left\{\sum_{l=0}^{L} 2 \lambda^{2} m\left(\|f\|^{2}+B_{2 l+1}\right)\right\}
$$

From the above relations and (2.6) we can see that for $M>M_{0}$

$$
\int_{0}^{1} \exp \left\{\lambda \sum_{k=N+1}^{N+M} f\left(n_{k} t\right)\right\} d t<2 \exp \left\{\sum_{l=0}^{2 L+1} \lambda^{2} m\left(\|f\|^{2}+B_{l}\right)\right\} .
$$

On the other hand (2. 5'), (1.2) and (2.10') imply that if $M>M_{0}$ for some M_{0}, then

$$
\begin{gathered}
m \sum_{l=0}^{2 L+1}\left(\|f\|^{2}+B_{l}\right) \\
\leqq M\|f\|^{2}+B m \sum_{l=0}^{2 L+1} \operatorname{Max}_{k>l m}\left(n_{k-1} / n_{k}\right)^{\alpha}<2 M\|f\|^{2},
\end{gathered}
$$

The last two relations prove the lemma.
3. Lemma 2. If a positive number $\psi(M)$ satisfies

$$
\begin{equation*}
\psi(M)<(2\|f\| \log M)^{2} \tag{3.1}
\end{equation*}
$$

then for $M>M_{0}, M_{0}$ is the same as in Lemma 1, we have

$$
\left.\left|\left\{t ; \sum_{k=N+1}^{N+\Delta r} f\left(n_{k} t\right) \geqq 2\|f\| \sqrt{M \psi(M)}\right\}\right| \leqq 2 e^{-\psi(\Delta r) / 2} \cdot *\right)
$$

Proof. If we put $\lambda=(2\|f\|)^{-1} \psi^{1 / 2}(M) M^{-1 / 2}$, then λ satisfies the condition (2. 4). Hence by Lemma 1 and Tchebyschev's inequality we have

$$
\begin{gathered}
\left|\left\{t ; \sum_{k=N+1}^{N+נ r} f\left(n_{k} t\right) \geqq 2\|f\| \sqrt{M \psi(M)}\right\}\right| \\
\leqq 2 \exp \left\{2\left(\lambda\|f\|^{2}\right) M-2 \lambda\|f\| \sqrt{M} \overline{\psi(M)}\right\}=2 e^{-\psi(r r) / 2} .
\end{gathered}
$$

Lemma 3. We have, for almost all t

$$
\varlimsup_{m \rightarrow \infty} \frac{1}{\sqrt{2^{m+1} \log m}} \sum_{k=1}^{2^{m}} f\left(n_{k} t\right) \leqq 2\|f\| .
$$

PROOF. If $m>m_{0}$ for some m_{0}, then $2^{m}>M_{0}$ and $\psi\left(2^{m}\right)=2(1+\varepsilon) \log m$

[^0]satisfies (3.1) for any fixed $\varepsilon>0$. Therefore we have, by Lemma 2, $\sum_{m>m_{0}}\left|\left\{t: \sum_{k=1}^{2^{m}} f\left(n_{k} t\right) \geqq 2\|f\| \sqrt{2^{m+1}(1+\varepsilon) \log m}\right\}\right| \leqq 2 \sum_{m>m_{0}} m^{-(1+\varepsilon)}<+\infty$.

Since ε is arbitrary, Borel-Cantelli's lemma completes the proof.
Lemma 4. We have, for almost all t,

$$
\varlimsup_{m \rightarrow \infty} \operatorname{Max}_{N<2^{m}} \frac{1}{\sqrt{ } 2^{m+1} \log m} \sum_{k=2^{n+1}}^{2^{m+N}} f\left(n_{k} t\right) \leqq 6\|f\| .
$$

Proof. Let m be a positive integer such that

$$
\begin{equation*}
2^{\{m / 2]}>M_{0}, \quad \frac{1}{2}\left\{1+\frac{1}{(\log m)}\right\}<\frac{9}{16} \tag{3.2}
\end{equation*}
$$

and, for any fixed $\varepsilon>0$,
(3. 3) $\quad 2(m-l)+2(1+\varepsilon) \log m<\left(2\|f\| \log 2^{l}\right)^{2}, m>l \geqq[m / 2]$.

Further let $X_{l}(t)$ be the positive part of the function

$$
\begin{equation*}
X_{l}(t)=\operatorname{Max}_{N}\left[\sum_{k=N+1}^{N+2^{l}} f\left(n_{k} t\right) ; N \in\left\{r 2^{l}+2^{m}, r=0,1, \ldots, 2^{m-l}-1\right\}\right] . \tag{3.4}
\end{equation*}
$$

Then we have, by (2. $3^{\prime \prime}$),

$$
\begin{equation*}
\operatorname{Max}_{N<2^{m}} \sum_{k=2^{m}+1}^{2^{m+N}} f\left(n_{k} t\right) \leqq \sum_{l=0}^{m-1} X_{l}(t)<A 2^{[m / 2]}+\sum_{l=[m / 2]}^{m-1} X_{l}(t) . \tag{3.5}
\end{equation*}
$$

Putting

$$
\psi\left(2^{l}\right)=2(m-l)+2(1+\varepsilon) \log m, \quad \text { for } m>l \geqq[m / 2],
$$

then (3.2), (3.3) and Lemma 2 imply, for any positive integer N,

$$
\begin{equation*}
\left|\left\{t ; \sum_{k=N+1}^{N+2 l} f\left(n_{k} t\right) \geqq 2\|f\| \sqrt{2^{l} \Psi\left(2^{l}\right)}\right\}\right| \leqq 2 e^{-(m-l)} m^{-(1+\varepsilon)} . \tag{3.6}
\end{equation*}
$$

Therefore if we put

$$
E_{l}=\left\{t ; X_{l}(t) \geqq 2\|f\| \sqrt{2^{l} \psi\left(2^{l}\right)}\right\},
$$

then we have, by (3. 4) and (3. 6),

$$
\left|E_{l}\right| \leqq 2^{(m-l+1)} m^{-(1+\varepsilon)} e^{-(m-l)}
$$

and

$$
\begin{equation*}
\sum_{m>m_{0}} \sum_{l=[m / 2]}^{m-1}\left|E_{l}\right|<+\infty . \tag{3.7}
\end{equation*}
$$

Further if $t \bar{\epsilon} \bigcup_{l=[m / 2]}^{m-1} E_{l}$, then we have

$$
\sum_{l=[m / 2]}^{m-1} X_{l}(t) \leqq 2\|f\| \sum_{l=[m / 2]}^{m-1} \sqrt{2^{l} \psi\left(2^{l}\right)} .
$$

Since (3. 2) implies

$$
\sqrt{\frac{2^{l} \psi\left(2^{l}\right)}{2^{l+1} \psi\left(2^{l+1}\right)}}<\sqrt{\frac{1}{2}\left(1+\frac{1}{\log m}\right)}<\frac{3}{4}, \quad \text { for } l<m
$$

we have

$$
\sum_{l=[m / 2]}^{m-1} \sqrt{2^{l} \psi\left(2^{l}\right)}<4 \sqrt{2^{m-1} \psi\left(2^{m-1}\right)}<3 \sqrt{2^{m+1}\{1+(1+\varepsilon) \log m\}} .
$$

From the last two relations and (3.5) it is seen that
$\operatorname{Max}_{N<2^{m}} \sum_{k=2^{m}+1}^{2^{m+N}} f\left(n_{k} t\right)<A 2^{[m / 2]}+6\|f\| \sqrt{2^{m+1}\{1+(1+\varepsilon) \log m\}}$, for $t \bar{\epsilon} \bigcup_{l=[m / 2]}^{m-1} E_{l}$.
The above relation and (3.7) complete the proof.
From Lemma 3 and Lemma 4 we have, for almost all t,

$$
\begin{equation*}
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{2 N \log \log N}} \sum_{k=1}^{N} f\left(n_{k} t\right) \leqq 8\|f\| . \tag{3.8}
\end{equation*}
$$

4. Since (3. 8) can be proved under the conditions (1.2), (2.3), (2. 3') and (2. $3^{\prime \prime}$), we can also prove that for any fixed $M>0$ and almost all t

$$
\begin{equation*}
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{2 N \log \log N}} \sum_{k=1}^{N}\left\{f\left(n_{k} t\right)-S_{u r}\left(n_{k} t\right)\right\} \leqq 8\left\|f(t)-S_{3 r}(t)\right\| \tag{4.1}
\end{equation*}
$$

Considering - $\left\{f(t)-S_{m r}(t)\right\}$, we have for almost all t

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \frac{1}{\sqrt{2 N \log \log N} \sum_{k=1}^{N}\left\{f\left(n_{k} t\right)-S_{m r}\left(n_{k} t\right)\right\}} \tag{4.2}\\
& =-\varlimsup_{n \rightarrow \infty} \frac{-1}{\sqrt{2 N \log \log N}} \sum_{k=1}^{N}\left\{f\left(n_{k} t\right)-S_{M r}\left(n_{k} t\right)\right\} \\
& \quad \geqq-8\left\|f(t)-S_{M r}(t)\right\| .
\end{align*}
$$

On the other hand from (1.2) we can take $N_{0}=N_{0}(M)$ such that

$$
n_{k+1} / M n_{k}>(M+1) / M, \quad \text { for } k \geqq N_{0} .
$$

Hence $\sum_{k \geq N_{0}} S_{m}\left(n_{k} t\right)$ is a lacunary trigonometric series and it is easily seen that if
$a_{m} \neq 0$ for some $m \leqq M$, then this series satisfies the conditions of the theorem of Weiss stated in §1. Therefore we obtain, for almost all t,

$$
\begin{equation*}
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{2} N \log \log N} \sum_{k=1}^{N} S_{n r}\left(n_{k} t\right)=\left\|S_{N r}(t)\right\| . \tag{4.3}
\end{equation*}
$$

From (4. 1), (4. 2) and (4.3) we have, for almost all t,

$$
\begin{equation*}
\left|\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{2 N \log \log N}} \sum_{k=1}^{N} f\left(n_{k} t\right)-\left\|S_{n r}(t)\right\|\right| \leqq 8\left\|f(t)-S_{s r}(t)\right\| . \tag{4.4}
\end{equation*}
$$

Since $\left\|f(t)-S_{u r}(t)\right\| \rightarrow 0$ as $M \rightarrow+\infty$, (4. 4) proves the theorem.

References

[1] S.Izumi, Notes on Fourier Analysis (XLIV) ; On the law of the iterated logarithm of some sequence of functions, Journ. of Math., I(1952), 1-22.
[2] M. KAC, Probablity method in analysis and number theory, Bull. Amer. Math. Soc., 55(1949), 641-665
[3] S. TAKAHASHI : An asymptotic property of a gap sequence, Proc. Japan Acad., 38, 101-104(1962)
[4] M. Weiss, The law of the iterated logarithm for lacunary trigonometric series, Trans. Amer. Math. Soc., 91 (1959), 444-469.

Department of Mathematics, Kanazawa University.

[^0]: *) We consider t 's within the interval $[0,1]$.

