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1. Introduction. In the present paper we shall consider an integral of
Denjoy's type whose indefinite integral is approximately continuous. The integral
is defined descriptively by the method of S.Saks [ 5 ]. We call this integral the
approximately continuous Denjoy integral or AZMntegral. G.Sunouchi and
M.Utagawa [ 4 ] have introduced the approximately continuous Perron integral
or AP-integral which is more general than BurkilΓs approximately continuous
Perron integral [ 1 ]. It will be proved that the AD-integral includes the AP-
integral.

In §2 we shall define the AP-integral with the notion ACG_(defined below)
and prove its fundamental properties. In §4 the relation between the AD-integral
and the AP-integral will be discussed by the method of J.Ridder [ 3 ].

The author expresses his thanks to Dr. G.Sunouchi and Dr. T.Tsuchikura
for their kind suggestions and criticisms.

2. The approximately continuous Denjoy integral.
DEFINITION 2.1. The finite function fix) is said to be AC below [AC

above] on a set E if to each positive number £, there corresponds a number δ

Σ iAh) - A**)} > - « [ Σ (Ah) - Aa*)} <

such that for all finite sequence of non-overlapping intervals {(ak9 bk)} with end
points on E and such that

£ φk - ak) < 8.

If f{x) is both AC below and AC above on E, then we say that fix) is AC
on E.

DEFINITION 2. 2. If the set E is the sum of a countable number of sets
Ek on each of which fix) is AC below [AC above], then fix) is termed ACG
below [ACG above] on E. If fix) is both ACG below and ACG above on E,
then we say that fix) is ACG- on E.

The notion ACG- is more general than that of ACG stated in [5, p.223],
for the continuity is not assumed in the definition of ACG-,
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DEFINITION 2.3. Let f(x) be a function defined in [a, b] and suppose
there exists a function Fix) such that

( i ) F(x) is approximately continuous on [α, b\

(ii) 2 ^ ) is ACG- on [α,H

(iii) AD F(x)=f(x) a.e.,

then /(x) is said to be integrable in the approximately continuous Denjoy sense
or AD-integrable on [a, b] and write

(AD) ff(t)dt = F(b)-F(a).

The function F(x) is said to be an indefinite AD-integral of f(x) in [α, b].

Definition 2. 3 requires a uniqueness theorem, namely, that, if Fx(x) and F2ix)
both satisfy the conditions of Definition 2. 3, then

- F,{a) = Ft(b) - F2{a)

this is supplied by the following theorem.

THEOREM 2.1. If F(x) is approximately continuous, ACG- on [a, b] and

D+ F{x) ^ 0 a. e. , CO

then F(x) is non-decreasing on [a,b].

Suppose that Theorem 2. 1 is true, then it also holds under the condition

AD F(x) ^ 0

instead of the condition (*), for AD F(x) ^ D+F{x). If we put, in this case,

G{x) = F^x) - Fix),

then G(x) is approximately continuous, ACG- and

AD G(x) = 0 a. e.

Hence G(x) is constant, that is,

Fx(b) - Fx{ά) = F2(b) - Fla).

For the proof of Theorem 2. 1. we need some lemmas.

LEMMA 2.1. A function F(x) which is ACG- on [a, b] necessarily fulfils
the condition (N), that is, \ F(H) \ = 0 for every set H c [a, b] of measure
zero where we put

{F(x): x <ε II}.
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PROOF. This lemma is an extension of the theorem concering the notion
ACG stated in [5, p 225], but the proof is done by the same method.

Since [a, b] is expressible as the sum of a sequence of sets Ek on each of
which F(x) is AC, it is sufficient to prove that | F(H) \ = 0 for any set H of
measure zero and F a function AC on H.

We denote by M(E) and m(E) respectively the upper and lower bounds of
F on E, when E is any subset of H, and we write M(E) = m(E) = 0 in the
case in which E is empty set.

Since F{x) is AC on H, for a given £ > 0, there exists a number δ > 0
such that

{F{bk) - F(ak)} <ε

for every sequence of non-overlapping intervals {/*} (Jk = (ak, bk)) with end
points on 77 and

By the definition of M,m, we can find <xk9 βk € H Ik (k = 1,2,. . .) such that

M(H Ik) - ^ < F(βk\

m{H-Ik) + fk > F(ak).

Hence we obtain

£ [M(H-Ik) - m(H-Ik)} < Σ { F(βk) - F{ak) + -~ \ < 36.

Since |JFί| = 0 , we can determine a sequence of non-overlapping intervals {7̂ }
with end points on 77 which satisfies

and H c U h
Therefore, since

\F{HΊk)\ ^

it follows that

\ { ) \ Σ \ { k ) \ <3€.

Hence \F(H)\ = 0 .

LEMMA 2. 2. If F(x) satisfies the following conditions
( i ) F(x) is approximately continuous on [a, b],
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(ii) F(E) contains no interval where we put E = {x : D+F(x) :g 0},
then F(x) is non-decreasing on [a, b].

PROOF. Suppose that there exist two points c and d such that c < d and
that F(d) < F(c). Then by (ii) we can determine a value y0 not belonging to
F(E) and such that F{d) <yo< F(c).

We put

x0 = sup [x : F(x) ^y0, x z [c, d]}.

Then we have c^xo^d, but we can prove that c < x0 < d. If xQ = c, then
it holds that for any t > c

F(t)<yQ<F(c\

and hence

lim F(x) < F(c).

It follows from the relation lim ap F(x) ίg lim F(x) that
XC + 0 0

lim ap F(x) < F(c)
X-+C+0

which is a contradiction to the fact that F(x) is approximately continuous at c.
If x0 = d and d is an isolated point of the set A = {x : Fix) ̂ zyo,χ € [c, d]}
then F(d) ^ y0 which contradicts the relation F(d) < y0. Ii x0 = d and d is a
limiting point of A, then there exists an increasing sequence {tn} which
converges to d and

Let 8 be an arbitrary positive number such that

y0 - β > F(d).

Since F{x) is approximately continuous at tn, there exists, for each tn, a
measurable set E(tn) whose density at tn is one and F{x) —> F(tn) as x tends to
tn on E(tn). Therefore we can find a positive sequence {hn},

hx > Λ2 > > hn > . . .,

converging to 0, such that for each n, E(tn)I(hn) 5 x implies

F(x) > F(tn) -S^yQ-8>F(d)

and such that

\E{tn)I{hn)\^hJ2,

where we denote by I(hn) the interval containing tn in its interior and its
length is hn.
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W e put

Let h be any positive number sufficiently small. Then we can find hn

and hn+ι such that

hn+i Sh^hn.

Hence we have for I(h) = [d — hy d]

\E(d).I(h)\ ^1
h =2

and therefore the left-hand density of the set E(d) at d is not zero. Since we

have for x £ E{d)

F(x)>yo-e>F(d)

it follows that

{x : F(x) >yo-€] => E(d).

Hence the left-hand density of the set {x: F{x) > y0 — £} at d is not zero,

and we obtain from the definition of lim ap F(x) that

ίϊϊn ap F(x)^y0 - S > F(d)

which is in contradiction with the approximate continuity of F(x) at d. Thus

we have proved that c < xQ < d.

Next we shall prove by the same method described above that

F(χ0) = y0.

Suppose that F(x0) > 3;. Then for any t > x0 we have

F(t)<yo<F(xo)

and therefore

lim ap F(x) < F(x0).
x->xo+0

If F(x0) < 3>0 and xQ is an isolated point of A then by the definition of xQ,

F{xQ) ^ y. Also if F(x0) < yQ and x0 is a limiting point of A then we can

choose a sequence {tn} which converges to x0 and tn £ [c, d] such that
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which implies

lim ap F(x) > F(x0).
x^x0

Since we have arrived at a contradiction in each three cases above, we obtain
that F(x0) = y0. Hence we have x0 ~e E.

On the other hand, we have for x0 < x < d

F(x)-F(x0) _ F(x)-y0

X XQ X XQ

and hence

that is, x0 £ E, which is a contradiction.

PROOF OF THEOREM 2.1. Let £ be any positive number and let

G(x) = F(x) + βx.

The function G(x) is approximately continuous and ACG- on [α, b]. Moreover
we have

D+G(x) = D+F(x) + β > 0 a. e.

Therefore the set

E= [x: D+G(x) ^ 0}

is of measure zero. By Lemma 2.1 we have | G(E) | = 0, and hence the set
G(E) can not contain any interval. It follows from Lemma 2. 2 that G(x) is
non-decreasing on [a, b]. For any xλ < x2

G(x2) - G{xλ) = Fix,) - F(x2) + 8(x2 - Xι) ^ 0.

By making ε —> 0 we have proved that the function F(x) is itself non-decreasing.

T H E O R E M 2.2.

( i ) If f(x) is AD-integrable on [ayb] and f(x) = g(x) a. e. then g(x) is
also AD-integrable and

b

(AD) ί f(t)dt = (AD) f g(t)dt.

(ii) Iff(x) and g{x) are both AD-integrable on [a,b]9 then af{x) + βg(x)
is AD-integrable and

b b b

(AD) f (af + βg)dt = a(AD) \ f(t)dt + β(AD) f g(t)dt.

PROOF. The proof follows immediately from Definition 2.1.
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THEOREM 2.3. A function f(x) which is AD-integrable on [α, b] and
f(x) ^ 0 is L-integrable on [α, b] and

b

(AD) f f(t) dt = (L) (f(t)dt.
Ja Ja

PROOF. Since f(x) is AD-integrable on [a,b], there exists a function F(x)
which is approximately continuous and ACG_ on [a, b] and such that

AD F(x)=f(x) a.e.

Since f(x) ̂  0, we have

AD F(x) ^ 0 a. e.

It follows from Theorem 2.1 that F(x) is non-decreasing on [a, b], and hence

ADF(x) = F'(x)=f(x) a.e.

Therefore f(x) is L-integrable and

(L) (f{t) dt = (AD) ff(i) dt = Fφ) - F{a).
Ja Ja

THEOREM 2.4. Given a non-decreasing sequence {fn} of functions which
are AD-integrable on [a,b] and whose AD-integral over [a,b] constitute a
sequence bounded above, the function

f(x) = lim fn(x)

is itself AD-integrable on [a, b] and we have

(AD) (f(t)dt = lim (AD) (fn(t)dt.
Ja »->~ Ja

PROOF. The sequence of functions fn — fλ is non-decreasing, bounded
above and

lim (fn-Λ)=f-A.

Since fn — f ^ 0, it follows from Theorem 2. 3 that fn — f is L-integrable
for each n. Therefore by Lebesgue's theorem, the limit function / — fλ is
L-integrable and

lim (L) f (fn -f)dt = (L) fif-^dt,
n-*°° Ja Ja

that is,

lim (AD) I fn(t) dt = (AD) I f(t) dt.
n-*™ Ja Ja
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3. The approximately continuous Perron integral. G.Sunouchi and

M.Utagawa [ 4 ] have introduced the approximately continuous Perron integral

or AP-integral using the following upper and lower functions.

DEFINITION 3.1. Uix) [Lix)] is termed upper [lower] function of a

measurable function fix) in [a, b]9 provided that

( i ) U(a) = 0

(ii) AD U(x) > - oo [AD Lix) < + oo] at each point x,

(iii) ADU(x)^f(x) [AD L(x)^f(x)] at each point x.

DEFINITION 3. 2. If f{x) has upper and lower functions in [a, b] and

inf U(b) = sup L(b),
U L

then f{x) is termed integrable in AP-sense or AP-integrable. The common

value of the two bounds is called the definite AP-integral of fix) and is

denoted by

(AP) (f{t)dt.

The following theorems have been proved by G.Sunouchi and M.Utagawa

[4].

THEOREM 3.1. The function Uix) — Lix) is non-decreasing on [a, b].

THEOREM 3.2. If fix) is AP-integrable on [a,b] then fix) is also so in

every interval [a, x] for a < x < b.

THEOREM 3. 3. The indefinite AP-integral

F{x) = iAP) \ fit)dt

is approximately continuous on [a, b] and the functions Uix) — Fix) and

Fix) — Lix) are non-decreasing.

THEOREM 3.4. The indefinite AP-integral Fix) is approximately dif

ferentiable almost everywhere and

AD Fix) = fix) a. e.

4. The relation between the AZMntegral and the AP-integral. In this

section we shall prove that the ΛD-integral includes the AP-integral. For the
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proof we need a lemma.

LEMMA 4.1. If ADF(x) > - oo [AD F(x) < + oo ] at each point x

of [a, b], then F(x) is ACG below [ACG above] on [α, b].

PROOF. We prove the first case, the other case being similar. Since

AD F(x) > — oo 9 to each point x we can make correspond a positive integer

n such that the set

{t:{F{t)-F{x))/(t-x)^-n}

has the point x as a point of dispersion. Therefore, denoting by An the set of

the points x such that the inequality

0 ^ h ̂  1/tt

implies both the inequalities,

( 1) I {t: F(f) - F(x) ̂  - n(t - x\ x ̂  t ̂  x + h } \ ̂  h/3,

and

(2) \{t: F(x)~ F(t)^-n(x-t\ x-h^t^x}\ ^

we have

If we put Ai = A Π [ί'/n, (ί + l)/w] for each integer ί, then

[a,b]= Σ Σ^«-
i=-oo 71=1

To prove the lemma it is sufficient to show that F(x) is AC below on Ai.

For this purpose, let xl9 x2 be any pair of points of Aι

n, and let xx < x2. We

have 0 < x2 — xx ̂  1/w, so that by writing x = xl9 h — x2 — xx in (1), we

obtain

(3) |{ί: F(t) - Fix,) ̂  - nit - Xί), x ^ t ^ x 2 } \ ^ (xt

Similarly, from (2 ) with x = x2, and h = x2 — X\, we have

(4) |{ί: F^xι)-mp)^-n{.x%-t),xι-^t^xi}\ ^{x,

I t follows from ( 3 ) a n d ( 4 ) t h a t t h e r e exists a p o i n t t0 e [xux^\ such t h a t

Fit,) - Fix,) > - n(ί, - a;,),

and

Fix,) - F(ί0) > - nix, - ίo)
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Adding these we have

(5) F(x2) - Fix,) > - n(x, - x,).

Let {{ak, bk)} be a sequence of non-overlapping intervals with end points on
An. Then we have from (5)

Σ, {F(bk) - F(ak)} >-n^{bk- ak).

If

Σ (bk - ak) < B/n,

then we have

Σ [F(h) - F(ak)} >-€.

This completes the proof.

THEOREM 4.1. The AD-integral includes the AP-integral.

PROOF. Suppose that f(x) is AP-integrable on [a, b] and such that

F(x) = (AP) \ f(t)dt.

Then by Theorem 3.3 and Theorem 3.4, F(x) is approximately continuous
on \a,b] and

AD F(x)=f(r) a.e.

Since f(x) is AJP-integrable, there exists a sequence of upper functions {Uk(x)}
and a sequence of lower functions {Lk(x)} such that

lim Uk(b) = lim Lk(b) - F(b).

The function Uk(x) — F(x) and F{x) — Lk(x) are non-decreasing, so that we
have for x £ [a, b]

(1 ) lim Uk(x) = lim Lk(x) = F{x).
λ;-»oo Ar̂ -oo

Since AD Uk(x) > — oo [AD Lk(x) < + °o]? it follows from Lemma 4.1 that

£Λ [Ĵ A ] is ACG below [ACG above] on [a, b]. Then [a, b] is expressible as the
sum of a countable number of sets Ek,

[a,b] =Σ,E*

such that any Uk is AC below on any Ek and at the same time any Lk is AC
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above on any Ek.
Next we shall show that Fix) is ACG- on [a, b\. It is sufficient to prove

that F(x) is AC on Ek. For this purpose we shall show that Fix) is both AC
below and AC above on Ek.

Suppose that F(x) is not AC below on Ek. Then there exists an 8 > 0
such that for any small δ>0 we can find finite, non-overlapping intervals
(av, bv) with end points on Ek satisfying

Σ, Φv - α,)< δ

but

( 2 ) £ {F(bv)- F(av)} ^ - £.

Since we can find a natural number p by (1) such that

Up(x) - F(x) < 6/2,

and since Uv(x) — F(x) is non-decreasing on [α, b] by Theorem 3. 3, we have

( 3 ) Σ, &*(!>*) ~ uMv)} - Σ ί W - Kov)}

= Σ l(VP(bv) - F{bv)) - (Up(av) - F(av))]

^ Up(b) - F(b) < 8/2.

I t f o l l o w s f r o m ( 2 ) a n d ( 3 ) t h a t

Σ ίUp(bv) - Up(av)} < Σ ί W - F(av)} + 8/2

^ - 8/2.

This contradicts the fact that Up(x) is AC below on Ek, and therefore F(x) is
AC below on Ek.

Similarly we can prove that F(x) is AC above on Ek. Thus F(x) is AC
on each Ek and also ACG- on [a, b\. Since we have shown that F(x) is
approximately continuous and

AD F(x)=f(x) a.e.

it follows that fix) is AD-integrable on [α, b] and that

(AD) / fit) dt = (AP) I fit) dt = Fib).
Ja Ja
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