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Introduction. Atiyah and Hirzebruch provided us with a very useful mean
dealing with the non-imbeddability problem and clarified the relations between
the divisibility of A-genus and the differentiable imbedding of a compact
orientable differentiable 4z-manifold ([ 21). Furthermore they exactly computed
the index of a 4n-manifold imbedded in the (4n+4)-euclidean space ([11]).

In this paper we shall improve our previous paper ([5]) by means of
above theorem and we shall clarify the divisibility of the cobordism coefficients
in the case of dimension 8, 12, and 16.

1. Let M,, be a compact orientable differentiable 4z-manifold and let

11 M~ > A% i Pu(c) * *Pu(c) mod torsion

4. +i=n
be its cobordism decomposition, where P,(c) denotes the complex projective
space of complex dimension 27 and A’s denote some rational numbers. It is known
that A2, A%, A3 A}, Al, 3AL Aj, A Al 3Al, are integers ([4][6]).
Let p, or p; be the Pontryagin class or dual-Pontryagin class of dimension 4i
respectively. Then these cobordism coefficients are expressed as follows ([ 5 ]):

1. 2) T=index= . A" .,

i+ +ig=n

@ A = % (—2p+ MM = + @ FIM),

1 — _
L3 () Ak =5 (5p — 26)M) = 5 (—5p,+3p)IM,
1 ) 1
© T = 15 (Tp, — PIM;] = 5 (= 7p, + 6p)[M;],
1 — _ —
() Al = (3 — 3pupy + P)Mal = & (3, — i+ BMis),

(b) Ab= 15(~ 21p,+ 19pp, — 6p)IMis] = 1= (— 215, + 235,
(L4 — 8D M.,
© Al = 5728, — 23p,p, + THIM) = 5 (285, — 33,5,
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1. 5)

(d) =

(a) At

+
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12D M,;,),
1
- 33_5.7 (62P3 - 13P2P1 =+ 2??)[M12]
1 b, Y 3
= gu.g.7 (6285 — 111pupy + 1) M),

(b) Ay =

(¢)

4
22

(d) A2‘}1=

(e) Aty =

(f)

T

= (= 4p+ 4pp + 208 — dpup+ M)

& UP—4pipy — 2t + 45,51 — BIMy),
o (36p, — 33p,p, — 1883 + 33pupt — 8p)IMio)

= 2= (— 36p, + 3951+ 187 — 395,51 -+ 105) [Mi],

o5 (189, — 18p,py — Tp} + 169,91 — 4p)[M,i)
1

= 52 (— 18p, + 18p,p, +11p5 — 20,5} + 5p)[ M),

25
£ (= 180p, + 159p,, + 80p} — 150p,p1 + 36 M)

45 (1805, — 20155, — 1003} + 2125, — 5550 Mo,

ox (165p, — 137p,py — T0p3 + 127pyp} — 30p) M ]

— % (— 1655, + 19355, -+ 955} — 208p,5} + 555 M),

There exists a r

(1. 6)
where

a7

and

1. 8)

1
3t.52.7 (381P4 - 71P3P1 - 191’% + 221’2?% - BP?)[Mm]
34.512.7 (= 3817, + 6917,5, + 36253 — 9855, + 31059 Mi].

elation such that

pr=1

p= 2 (—Dp
k=0

5‘—‘ Z ﬁc-
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We have from (1.6)

Pl = El’— _
L 9) b=t B
b= ps : 2p: ‘t P?,_ _ i
b= — P+ 2pp + P — 3pupt + Pl
The A-genus is defined by

_ N
where
(1.11) p= l;[ 1—r)

and it is known that ([3]p.14)
() AM)=— ZpiM]=— 2pIM),
(b) AMY) = 2 (~ dp, + TH)IM,] = 2 (45, + 3FDIM,],

(¢) A(My) = — 5= (16p, — 44ppy + 31pYIM,.]

— 4 A s 3
- 33.5.7 (16P3 + 121—"2?1 + 3?1)[M12],

?Wlw (384 p, + 256p:p, + 3295 + 80p.pt + 10pD[M,].

(1.12)

(d ) A(Mle) =

2. Let M,, be a compact orientable differentiable 4z-manifold. If M,, is diffe-
rentiably imbedded in the (47 + g)-euclidean space E,,.q, it holds that

2.1 P =0, 2k=q+1.
When g = 2k we have, moreover,
because in this case

2. 3) = E,

where E denotes the Euler class of the normal bundle and
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2. 4 E=0
in such a case. The following theorem is fundamental for our purpose:

THEOREM 1 (Atiyah-Hirzebruch [21])

Let M,, be a compact orientable differentiable 4dn-manifold differentiably
imbedded in the Ey_s. Then A(M,,) is divisible by 2°*' and if moreover g=2
mod 4, A(M,,) is divisible by 2%,

Hereafter M,,C E,,., means the differentiable imbedding and M,, denotes
a compact orientable differentiable 47-manifold. Let us investigate the individual
cases of differentiable imbedding.

MyC E,,. In this case we have from (2.1) and (2.2)

2. 5) p.=0.
Hence we have from (1.12b)
(2 6) A = L pIML,
Meanwhile we have from Theorem 1
@ 7) AM)=0 mod 16.
We have from (2.6) and (2.7)
2. 8) PIM]=0 mod 120.
Hence we have from (1.3), (2.5) and (2.8)

A=0 mod 24
@ 9) A2 =0 mod 40,

M;c E,,. In this case we have from Theorem 1
(2.10) AM)=0 mod 4.
Hence we have from (1.12)

(2.11) PIM,]=0 mod 2.
We have from (2.11) and (1.3a)

(2.12) Ai=0 mod 2.
Moreover we have from (1.3c)

(2.13) pIMl=7+ mod 2.
Meanwhile we have from (1.3b) and (2.11)

(2.14) A= p[M,] mod 2.

We have from (2.13) and (2.14)
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(2.15) =7 mod 2.
Thus we have the following table:
M,cE,, MycEy,
Al =0 mod 24 =0 mod 2
Az =0 mod 40 =7 mod 2
A =0 mod 16 =0 mod 4
T =0 mod 16

3. In this paragraph we shall deal with the case where M,,C M,,,,.
M,,C E,;. In this case we have from (2.1), (2.2) and Theorem 1

B 1) 1;2 = ?3 =0

and

3.2 A(M;;)=0 mod 2%
Hence we have from (1.12c)

(3. 3) 20 (M,]=0 mod 7!.

We have from (3.1), (3.3) and (1.4)

(A}=0 mod 2%:3%5,
(3 4) A231 =0 mod 26‘3'7,
Al?l = 0 mOd 25°5'7.

M,,C E,5. In this case we have from (2.1), (2.2) and Theorem 1

(3. 5) ;=0

and

3. 6) A(M;;)=0 mod 16.
Hence we have from (1.12¢c)

3.7 piIM;,] =0 mod 4.

If =0 mod 4, we have from (3.5), (3.7) and (1.4d)

(3. 8) 22 IM,1=0 mod 4
We have from (1.4), (3.7) and (3.8)
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A3=0 mod 4
3. 9) A3=0 mod 4 (=0 mod 4).
A =0 mod 4
Moreover we have from (1.4d), (3.5)and (3.7)
(3.10) L IM,=7 mod 2.
Hence we have from (1.4), (3.5) and (3.10)
Ai=7 mod 2,
(3.11) A231 =T mod 2,

A =7 mod 2.

M,,Cc E,,. In this case we have from Theorem 1

(3.12) A(M;;)=0 mod 16.
Hence we have from (1.12c)
(3.13) PIM;;1=0 mod 4.
We have from (1.4d) and (3.13)
(3.14) 13215_1[1\412] =7 mod 2.
Hence we have from (1.4c)
(3.15) A =7 mod 2.
Thus we have the following table:
M, ,CEy M,CEys M,CEy
A3 |1 _ = d 2
s | =0 mod 23%5 =0 mod 4 (r=0 mod 4)
A3 _ = d 2
" =0 mod 2%3.7 =0 Egd 4 (r=0 mod 4)
Ad | =0 mod 25:5.7 =p mod 2 (r=0 mod 4y | =7 mod 2
A =0 mod 28 =0 mod 16 =0 mod 16
T =0 mod 2317

4. In this paragraph we shall deal with the case where M,C E 4.q.
M,,C E,,. In this case we have from (2.1),(2.2) and Theorem 1
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(4-1) }_ZZESZEZO
and
4. 2) A(M,;s)=0 mod 2%
Hence we have from (1.12d)
(4. 3) PIM,1=0 mod 9!.
We have from (1.5), (4.1) and (4.3)

At=0 mod 8!,

Ai =0 mod 28.3%.52,
4. 4) A% =0 mod 27.3%.7,

Aglgl = 0 mOd 11'8! >
A11411 = O mod 27'52‘7‘11.

M,, C E,,. In this case we have from (2.1), (2.2) and Theorem 1

(4' 5) }3 = ;4 =0

and

(4. 6) AM,g)=0 mod 2%
Hence we have from (1.12d)

4.7 PIM =0 mod 8.

Meanwhile we have from (1.5) and (4.5)

() At= (=25 + GBupi — PIM],

(b) Ad= - (187 — 3957 + 105 M),
(4. 8) (c) Ab= 3= (117} — 2055 + SFMial,

(d) Ag = 2115 (= 1005, + 2125, — 5550 M),

(e) A= g; (955 — 208531 + 555 M)

We have from (4.7) and (4.8a)

4.9 3A1=0 mod 2.
Next we have from (4.7) and (4.8d)
(4.10) AL=0 mod 4.

Meanwhile we have from (4.8d) or (4.8¢c)
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(4.11) 2:PIM;]=0 mod 5
or
(4.12) PIM=0 mod 5
respectively. Hence we have from (4.8b), (4.11) and (4.12)
(4.13) AL=0 mod 5.
Moreover we have from (4.8¢) and (4.11)
(4.14) 3A1§11 = 0 mOd 5.
In this case we have from (1.5f) and (4.5)
1 _ - _
(415) T = 3—4:527 (362[)5 — 985P2P% + 310P§)[M6]

Hence we have

(4.16) T= 13213?[Mm] mod 2.
We have from (4.8b) and (4.16)
(4.17) Aji=7r mod 2.
Moreover we have from (4.7), (4.8¢c) and (4.8e)
(4.18) 5 = }%[MIG] =3A5 mod 2.
M,;C E;,. In this case we have from Theorem 1
(4.19) A(M,5)=0 mod 4.
Hence we have from (1.12d)
(4.20) PIM=0 mod 2.
We have from (1.5a) and (4.20)
(4.21) 3A1=0 mod 2.
Thus we have the following table:
Mg Ey Mg Eoy MecEy MgCEy Mg Ey ACEqg
_ 3A4=0 3A44=0 344=0 ‘| 344=0 344=0
Aﬁ =0 mod 8! ‘mod 2 “mod 2 ‘mod 2 “mod 2 ‘mod 2
A4 | =0 mod 2n.3.589 =0 mod 5
A;z =0 mod 27.34.7| EsAlﬁlmodZ
Ap | =0 mod 11.81 | =0 mod 4
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=0 mod 27.52.7| 34, ¢ =0
A1i411 x11 “umod 5
A =0 mod 28 =0 mod 26 | =0 mod 25 | =0 mod 2¢ | =0 mod 2¢ | =0 mod 22
T =0 mod 28.31

5. It is known that

.1 'T(Mzo) =

1

35.5%7.11

When M,,C E,; we have

5. 2)
and

(5. 3)

(5. 4)

T —

— 83ppi + 10??)[M20] ([3]P-13)-

ps=3pipy — Apupt + Pl
Hence we have from (5.1), (5.2) and (5.3)

5.5

Therefore 7(M,,) is even, if M,,C E,,.
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