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§1. Introduction. Roughly speaking the purpose of the present paper is

to present a sufficient condition that a system of partial differential equations

of the first order in many dependent variables and independent variables be

complete.

A complete system is defined as follows.

Let

FA(βt uκ;uκ;xh) = 0 (A = 1, , N)
(1. 1)

Gκ(u";xh) = 0 (K = 19 -.,P)

be a system of partial differential equations in m dependent variables0 u1,

• , um and n independent variables x\ , xn, indices being used as follows,

A # , C , . . . = l, . . . , iV; J,2ξZ,,.-. = l , . . - , P ;

K, ρy σ, = 1, , m h, i,j, = 1, , n .

Assuming that (1.1) admits a solution

uκ = uκ (x\ - * - , x n )

we obtain

GE\κdίu
κ + Gκ\ί = 02>

where

Gκ\κ = 3Gκ/duκ, Gκ\t = dGκ/dxι.

We find that (1.1) is equivalent to the system (1.2) of partial differential

equations composed of

(1.2.1) Gκ(uκ;xh)=0,

(1.2.2) F'ipiur tf a*) = 0,

(1.2.3) GK\K3iu!e + GK\t = 0.

1) Some of u may eventually become independent variables.
2) We adopt the summation convention.
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The system (1.1) is a complete system if and only if the following con-
ditions are fulfilled.50

( i ) No equation in x\ , xn only is obtained by eliminating uκ from
(1.2.1).

(ii) Any equation obtained by eliminating 2>ιUκ from (1.2.2) and (1.2.3)
is not independent of (1. 2.1).

(iii) Equations obtained by differentiating (1. 2.1) and (1. 2. 2) partially
v times (y = 1, 2, ) with respect to x (u being considered as functions of x)
will be denoted by (1.2. l)v and (1.2.2)υ respectively. Then any equation
obtained by eliminating div+1 dhu

κ from (1.2. l) υ + 1 and (1.2.2)υ is not
independent of (1.2.1), (1.2.1)1? . . . , (1.2.1), and (1.2.2), (1.2.2)l9 , (1.2.2)^.

In general it is not possible to distinguish a system (1.1) or (1. 2) to be
complete or not by examining only the first derivatives (1.2)x. The purpose
of the present paper is to give a sufficient condition that this be possible.

Before defining a complete system of partial differential equations an
equivalent exterior differential system and its prolongations are explained in
§2, together with some symbols to be used. No unknown result is contained
there. In §3 a complete system is defined. In §4 a tool for discerning
completeness of a system is introduced. But a necessary and sufficient con-
dition for a system to be complete contains an infinite sequence of equations.

Now, there are some systems of partial differential equations for which
a necessary and sufficient condition to be complete is given by equations in
which only the first or the second derivatives of the functions appearing in
the given equations are concerned. We call them E-si?nple systems. These
are treated in §5 and §6 which are the essential part of the present paper.

In §7 systems with superfluous equations are treated. In §8 an example
of E-simple systems is given.

§2. A system of partial differential equations and an exterior differ-
ential system. Let

Gκ(uκ;xh)y FA(ui

κ;uκ;xh)

be Cω functions of m(n + l) + n variables u*y u
κ, xh in some domain D containing

a point Po = ((^0,(^)0,(^)0) satisfying Gκ = 0, Gκ\κuf + GK\t = 0, FA = 0.
We introduce an infinite sequence of new variables

and an operation V&, which is defined as follows.

3) A more precise definition is given in § 3.
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Let

F(uip..Λl

κ; utp-^.u*; •; u£\ uκ; xh)

be a C1 function of m{nv + nv~ι + + 1) + n variables uip..Λj

κ, , uh

κ, uκ, xh.

Then \?kF is the following C° function of m(nv+ι + nvΛ- + l ) + w variables

(2. 1) (

= WA^.i'^l1'-11- + ^ - , . . ^ ^ 1 ^ - ^ + + ukΨ\κ+F\k

where

Hence, if F is a CQ function, we can define the function

The system (1.1) or (1. 2) of partial differential equations is equivalent

to a closed exterior differential system 2 composed of

(2.2.1) Gκ(uκ;xh) = 0,

(2.2.2) FΛ(μi

κ;ur;a*) = 0,

(2.2.3) (

(2.2.4)

(2.2.5)

(2.2.6) duκ -ufdx1 = 0,

(2.2. 7) £&*' Λ da* = 0,

where (2.2.2), (2.2.3) are derived from (1.2.2), (1.2.3) by substituting (2.2.6)

or diUK = Ui\ while (2.2. 4), (2. 2. 5), (2.2. 7) are necessary to make (2. 2) a

closed system. 2 contains n independent variables xh and m(n + ϊ) dependent

variables z/jκ, w*.

The first prolongation of 2 is obtained by putting

(2. 3) du? = uH

κdxj.
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Thus we obtain a closed exterior differential system Σ1 composed of

(2.4.1) Gε = 0, v* G* = 0, v*2V*,G* = 0,

(2.4.2) FA = 0, vkF
A = 0,

(2.4.3) dulc-ul

Kdxl = 0,

(2.4.4) uu: - uWi)* = 0,

(2. 4. 5) dutΐ - ««."da* = 0,

(2.4.6)

(2.4.7)

(2. 4. 8) £/«„« - ί&ίt^,- = 0,

(2. 4.9) duuΐ Λ ίfcε* = 0,

Mϋi)*> uVcji)" e t c standing for the symmetric parts.
The first four sets of equations ((2. 4.1)—(2. 4. 4)) are derived by substituting

(2. 3) into Σ. The last four sets ((2. 4.6) —(2.4. 9)) are necessary to make the
system Σ1 be closed.

We can proceed in such a way to the pth prolongation ~ϊ,p which is
composed of

(2.5

(2.5.

(2.5.

(2.5.

(2.5.

(2.5.

(2.5.

(2. 5.

(2.5.

•1).

l ) i

1),

2).

2)>

2),

3):

3),

4).

Vk,' VhF
A = 0,

%," - "CM," = 0,

duκ -uk*da? = 0,
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(2.5.4), dut'-uki*da* = 0,

(2. 5. A),, duif,.Λ: - ukip...u

κda* = 0,

(2.5.5),

(2.5.6),

(2 5.7)p duipt4p..Λr - du^ic..ΛJ = 0 ,

(2.5.8), du^.^'A da* = 0.

(1.1) or 2 is solved by finding a solution of 2P or the infinite prolongation
2°° composed of

(2.

(2.

(2.

(2

5.1),

5.2),

5.3),

5.4),

(p = 0,1

(̂ > = 0 , 1

(p = l,2

(p — 0,1

,2, ),

,2, ),

,3, ),

,2, )

(see H. H. Johnson [1]). Since Gκ and FA are of class Cω and V*r+1 VkιG
κ

and Vfcr VklF
A are polynomials in uiiU\ , uir^.Λι\ VA;P+1 V*Gκ and

VA:P * Vk,FA are Cω functions of uip+u.Λι

κ

9 , uκ, xh for any point (ut

K

9 u
κ, xh)

in D and infinite prolongation is possible.
Let us assume that an infinite sequence of numbers

(2. 6) (xh\ , (Oi, (ut% , , (uir^\

satisfies (2. 5. l) p, (2. 5. 2),,, (2. 5. 3 ) ^ for p = 0,1,2, simultaneously. We
assume moreover that ((UiK)u {uκ)u (xh)ι) z D.

For each sequence (il9 , /p) of numbers 1 ̂ ir^n let /?! be the number
of numbers il9 , ẑ  which are equal to 1 and so on, and put

Then the theorem of H. H. Johnson [1] states that
If there exist positive numbers M, Rly , Rn such that for every natural

numbers p and il9 9ip (1 ̂  il9 , ̂  fg w) the inequalities

' . ̂  < M

are simultaneously satisfied, then there exists a unique solution of (1.1)
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defined in some domain Ό'J^ in D and satisfying the initial conditions

««Oi) = ( O i ,

But it is not a simple task in general to find a sequence (2.6). For

example we can not obtain (u% and {u*)ι from (2. 5. l)0, (2. 5. l)j, and (2. 5. 2)0

alone in general, as it may happen that we get some other equations in u*y

uκ and xh by eliminating «Wl*, wWl

κ, from (2. 5.1)2, (2. 5.1)3, , (2. 5. 2)1?

(2. 5.2)2, and (2. 5. 3)1? (2. 5. 3)2, . In following paragraphs we study

equations where no such difficulty occurs.

§3. A complete system of partial differential equations. In (2.2) we

have three sets Gκ, VkGκ, FA of functions of xh, uκ, ut

κ. Let us consider a

matrix (Gκ\κ) where

K indicating the rows and K the columns, and a matrix

with nP+N rows and mn columns obtained from

and dFA/dut

κ,

7 and A indicating the rows and ι the columns.
rί K

Before defining a complete system precisely, we first set aside all super-

fluous equations from (1.2) and assume that

(A. 1)

(A. 2) rank (G*| Λ, FA \ \)= nP + N

in some domain D.

4) We define Dx as the set of (xι, •••, xn) such that iμικ\ uκ; xh) € D for some uf and uκ.
D' is some domain in Dx such that (x{) 6 D' and ((MiK)i, (« κ) 1,
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This assumption (A) stands for (i) and (ii) of §1, for, it is easily seen
that in a suitable domain Π containing the point Po (i) is satisfied because
of (A. 1), while the simultaneous equations (2. 2. 2) and (2. 2. 3) are by virtue
of the assumption (A. 2) reduced to some equations which determine nP+N
of the u*'s as functions of xh, uκ and the remaining mn — (nP+N) of the u*'s,
and consequently no equation is obtained by eliminating ut

K from (2.2.2)
and (2. 2. 3). We remark in passing that

for any Lk

κ satisfying Lk

κG
κ\JSk = 0 satisfies DKGK\K = 0, hence L\ = 0 by

virtue of (A. 1). This shows that assumption (A) does not restrict a system
of partial differential equations unduely as long as we are considering only
in a domain D.

We shall consider only uf and uκ such that (uί

ιc,uκ

yx
h) e D.

DEFINITION 3.1. Let us assume (A). A system (1.1) of partial differ-
ential equations is said to be a complete system zvithin the qth prolongation
(q = 0,1, 2, •) when the corresponding exterior differential system 2 and its
qth prolongation 2I

Q(ΣO = Σ) have the following properties:
( i ) No equation in xι, , xn only is obtained by eliminating uκ from

(2. 5. l)0.
5>

(ii) Any equation in only m + n unknowns uκ and xh obtained by elimi-
nating uf from (2. 5.1)! and (2. 5. 2)0 is not independent of (2. 5. l)0, that is, any
such equation is satisfied by any set of numbers (uκ, xh) satisfying (2. 5. l) 0.

(iii) For every natural number p^q any equation in only m{nVJrnv~x

+ — + 1 ) + Λ unknowns utpmm,tι

κ

9 ,u^, uκ, xh obtained by eliminating uip+i..Λι

κ

from (2.5. l) p + 1 , (2. 5.2)p and (2. 5. 3)p is satisfied by any sequence of numbers
uip..Λl

κ, , utf, u\ xh satisfying (2. 5. l)0, , (2. 5. l)p,. (2. 5. 2)0, , (2. 5. 2)p_λ

and (2. 5. 3 ) ! , . . . , (2. 5. 3),.!.

DEFINITION 3. 2. When (1.1) is a complete system within the qXh pro-
longation for every natural number q, (1.1) is said to be a complete system.

If (1.1) is a complete system, the corresponding system 2 is also called
a complete system.

Since the qXh prolongation of Σp is the {p+q)th. prolongation 2P+<Z, it is
easily seen that, if 2 is a complete system, so is also any prolongation 2P.

As we have prolongations of 2, so we have prolongations of the system
(1.1) or (1.2).

Let S denote the system of partial differential equations composed of

5) (i) and (ii) are already satisfied because of (A).
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(3.1.1) Gκ{uκ xh) = 0,

(3.1. 2) (v*G*)(uf ;uκ;xh) = 0,

(3.1.3) FΛ(u*;uκ;xh) = 0,

(3.1.4) 3 ^ - ^ = 0

in m(w + l) dependent variables UiK, uκ and n independent variables xh. S is

equivalent to (1.1).

The pth prolongation Sv of 5 or of (1.1) is defined by

(3. 2. l)0 Gκ(uκ xh) = 0,

...ιI"; ; ^ ; ^ ) = 0,(3.

CO*

(3.

(3.

(3.

(3.

2.1),

2.2)0

2.2),

2.3),

2.3),

2.4).

«" *») = o,

a , ^ - w / = o,

(3.2.4)p

Σp is obtained from £ p when (3. 2. 4) are replaced by equations which are

transvections with dxj and to the resulting system are added some equations

to make the system closed.

Let us assume that (1.1) is a complete system within the zeroth prolon-

gation and that (1.1) is completely integrable. A system (1.1) is by definition

completely integrable when the system composed of (2. 2.1), (2. 2.2), (2. 2. 3) and

(2. 2. 6) satisfies the condition that duf A dxι = 0 modulo dGκ

y d(yk Gκ)> dFA

and duκ — ufdx1, hence dui

κAdxί = 0 modulo d(^kG
κ)y dFA and duκ — ufdxK

Since by virtue of (A) we can express nP-\-N of the ut

κ's as functions of

xh, uκ and the remaining mn—(nP+N) of the uf's, duff\dxl can not vanish

modulo d(ykG
κ), dFA and duκ — u*dxι if nP+N<mn. Hence we see that, if

(1.1) is completely integrable, (1. 2) can be solved in the form
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(3. 3)

where R = m —P and ff satisfy

As we get from (3. 3) dt u
κ and the higher derivatives step by step by

differentiating partially with respect to x, (1.1) is then a complete system.
The same deduction is possible also starting from any prolongation Sp.
Thus we obtain the

THEOREM 3.1. Let us assume (A). A system (1.1) of partial differential
equations is complete if (1.1) is completely integrable. A system (1.1) of
partial differential equations is complete if there exists a natural number p
such that (1.1) is complete within the pth prolongation and the pth prolon-
gation Sv is completely integrable.

We assumed that GE and FA are Cω functions in D. But such strong
restriction is not necessary when some prolongation is completely integrable
and we define completeness in broader sense as follows.

DEFINITION 3.3. Let Gκ and FA be Cv functions in D and let (1.1) be
complete within the qύi step, that is, let (1.1) satisfy (A) and the conditions
(i), (ii), (iii) of definition 3.1 in D'cD. When the qth prolongation Sq or
XQ of (1.1) is completely integrable, (1.1) is said to be a complete system.

§4. Eliminators. Let ((^)i> (w#% (w**)i) be a point in Π satisfying
(2.5.1)o, (2,5.1)i and (2.5.2)0. If a system (1.1) of partial differential equations
is found to be complete in the narrow sense, a formal solution is obtained
by taking this point and finding (ui2h

κ)1 which satisfy (2. 5.1)2, (2. 5. 2\ and
(2. 5. 3)1? and so on. If (1.1) is complete in the broader sense, a solution is
obtained by continuing such process only to some step and then solving a
completely integrable system of equations which is obtained as a prolongation.

We shall present here a necessary and sufficient condition that a system
be complete.

Let (1.1) be a complete system within the zeroth prolongation. Then
(1.1) is a complete system within the first prolongation if and only if any
equation obtained by eliminating uH

κ from (2.5.1)2, (2.5.2)!, (2.5.3)j is satisfied
identically by any set of numbers uf, uκ, xh satisfying (2.5.1)0, (2.5.1)!, (2.5.2)0.

6)

6) We consider only uf, uκ, xh such that (uf, uκ, xh)
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We can write (2.5.1)2 and (2.5.2)! in the form

(4.1) G*|.«Λ« + G Λ ' = 0,

(4.2) ί " Ί U Λ « + F / = 0

where GH

K and FA are functions of ut

κ, u", xh defined by

(4.3) GHκ = vsViGs -G*\κuH*,

(4.4) Fi

Λ

Since every equation of (4.1), (4.2) and (2.5. 3)t is a linear equation in
MΛ", we can eliminate uH* by taking linear combinations of these equations,
which we can write in the form

(4.5) V\{Gκ\κuH* + GH

K)

+ MΛ(FΛ\t

κuH* + Ff)

+ Nίl

κ(uH* - Moo") - 0 .

We can also consider that every equation obtained from (4.1), (4.2), (2.5.3),
by eliminating uH

κ has the form (4.5) with LH

S, Mj

A, N}i

κ satisfying

(ZΛG*| . + MAF
A\\ + JSP',)uΆ' - W.ttoo" = 0

identically, hence

(4. 6) U'KGK\K + MAF
A\ι

κ + Nji

κ - Wji\ = 0.

From (4. 6) we can eliminate N>\ and obtain

(4. 7) (ZΛ +L l i

x)Gκ\κ + MAF
ΛI\ + M\FΛ\\ = 0.

Thus we find that (1.1) is complete within the first prolongation if and
only if every equation

(4. 8) L ^ G Λ ' + M ^ F / = 0,

where Ljig, Mj

A are restricted by (4. 7), is satisfied identically by u*, uκ, xh

satisfying (2. 5. l)0, (2. 5. ΐ)u (2. 5. 2)0.

DEFINITION 4.1. A set of numbers (LjV, Mj

Λ) satisfying (4. 7) is called
an eliminator of the first order.

Let us eliminate utM..Λι

κ from (2. 5. l ) p + 1 , (2. 5. 2)p and (2. 5. 3)p. This is
accomplished by making a linear combination
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(4. 9) !>'•• •^VI^ VI.G'

+ (N^-\ - N^~Λ>\)uh+ι..Λι

κ = 0

where Lip*ι-tι

κ, Mi'-tl

A,N
i»l-\ (which we shall write simply L,M,N if there

is no possibility of confusion) satisfy

(4. 10) Li^-hκGκ\κ + M^-\FA\\

Such L, M, N are obtained by taking L, M such that

(4.11), L^-h)

κG
κ\κ + M ^ ^ F ' ^ I 4 ^ = 0

and then taking N which satisfies (4.10).

DEFINITION 4.2. A set of numbers (L, M) satisfying (4. 11), is called

an eliminator of the pth order.

An eliminator is considered at each point (u^, uκ, xh) in D'. Generally

it is not a definite function of uf, uκ, xh> but we can consider its differential

(dL9 dM).

DEFINITION 4.3. Gίp+1..Λι

κ and Fip..Λι

A are functions of uίp..Λι

κ, , u\ xh

defined by

f w p+ι i,GK - GK\Kuip+1...u*,
(4. 12),

We find immediately that, if L, M, N satisfy (4.10), then (4. 9) becomes

(4.13), V»~*κ Gw... f l* + M^'\Fίp..Λ* = 0.

Hence we find that, if (1.1) is complete within the gth prolongation,

then (4.13), is satisfied identically by any sequence of numbers uίp..Λι

κ, ,

u\ xh satisfying (2.5.1)0, , (2.5.1),, (2.5.2)0, , (2.5.2),..! and (2.5.3)1?

(2.5.3),.! for /^= 1,2,...,g.

Thus we get the following theorem.

THEOREM 4.1. Let (1.1) be a complete system within the zeroth prolon-

gation. Then (1.1) is a complete system within the qth prolongation if and

only if for each p (p = 1, , q) every equation of the form (4.13),, where
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(X, M) is an arbitrary eliminator of the pth order, is satisfied by any sequence
of numbers uip..Λl

κ, , u\ xh satisfying (2. 5. l)0, , (2. 5. ΐ)p, (2. 5. 2)0, ,
(2.5.2)3,_1 and (2. 5. 3)1? ,(2. 5. 3)p-1. If q is replaced with oo in this proposi-
tion we get necessary and sufficient condition that (1.1) be a complete system.

§5. Symmetric eliminators and E-simple systems. We first prove the

LEMMA 5.1. Let

be any function of vir_Λl

p, ,τ;f

 p, vp, xh satisfying a suitable differentiability
condition and where vit,.Λ? are symmetric in iS9 ,ii if s^r+2. (vis,,Λ

p

with s — r + 1 , r + 2 will appear later). Let the sequence of numbers (t>ir. Λ
p>

• , vp) be denoted by vx

p where X represents ir il9 zr_i iu , zΊ, φ,
vψp standing for vp. Then we have F(vx

p xh). Adopting the summation
convention with respect to X, Y, , we define

vp; xh) = F\x

pvkx

p

especially

is..Λl

p = Vkis,,ΛlP.

Then we have

(5. 1)

P R O O F . Since

and

ViVk

we have

7.F=F|*i

+ r\ f,

F\x

p\
r

σ = I'

F

F —

W

lVkJ

W

ΎΛ

1*1.

+ F|^

= fjfcZ

= F\ι

F-

T
P

A

\\

k

= 0.

σVkX

PVιγ

\vιγ° +

y

T

F\t

X
P 9

we get (5.1) directly.
Next we prove the

LEMMA 5. 2. Gip+1..Λl

k and Fip...if defined by (4.12)p are symmetric in their

lower indices if Uι%iχ

κ

y , uip..Λι

κ are symmetric in their lower indices.
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PROOF. For small p this is proved directly. For larger p we use
Lemma 5.1 in the case of r = p— 2 and take GE as F of this lemma. Then
we find that v*s V*2 V*i Gκ is symmetric with respect to z2 and ix as well as
with respect to z3 and z2. Hence VisVhVhGκ is symmetric in z3, z2, zV We
can proceed in this way until we get V*P V*i G^ which is symmetric in
*P> #

 9 h If moreover UiM...u were also symmetric in the lower indices,
ViP+1 * Vit G

κ would be symmetric in the lower indices. However, this is
not the case now. But, since VsP+i" * VuGK contains uίv^%Λ* only in the term
Gκ\κuiMm.Λι

κ, the remaining part Gip+lm.Λ* is symmetric in all lower indices.
For FA also we can proceed in the same way.

Now we find from (4. l l ) p that, if (Z>+1'V, Mίp"Λι

A) is an eliminator,
then (Lίp+1"Jl

κ, Mipm"x

A), where L, M a r e the symmetric parts of L, Mrespectively
with respect to all superior indices, is also an eliminator. From Lemma 5. 2
we find moreover that L, M can always be replaced with L, M in (4.13)^, for
(4.13)p is used to find whether (1.1) is complete within ^>th prolongation or
not when (1.1) is known to be complete within {p— l)th prolongation and
(2. 5. 3)j, , (2. 5. 3)p_! are assumed.

This proves that we need only to consider symmetric eliminators, a

symmetric eliminator being defined as an eliminator (L, M) where L — L,

M = M. In the following we consider only symmetric eliminators and the

adjective "symmetric" will be dropped.
The following lemma is trivial.

LEMMA 5. 3. Let a system (1.1) of partial differential equations be given.
At each point (itf, uκ> xh) in D the set of eliminators of any given order is
a linear space.

Let this linear space be denoted by Vp, where p is the order, and let us
put dim Vp = mp. Then we get

LEMMA 5. 4. If mγ eliminators (L, M) (ξ = 1, , mλ) compose a base of

Vl9 (L, M) where

(5. 2)

is an eliminator of order p.

We use indices ξ, η=l, , mx and adopt the summation convention with
respect to these too. Being almost immediate, proof will be omitted.
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DEFINITION 5.1. An eliminator (L, M) of order p of the form (5.2) is
called a simple eliminator.

For any given system (1.1), for each order p, and at each point {uf, uκ,
xh) in D the set of simple eliminators is also a linear space.

DEFINITION 5.2. If at every point of D Vp is composed of simple
eliminators only, (1.1) is called an E-simple system at the order p. If (1.1) is
E-simple at every order, it is called an E-simple system.

Whether a system (1.1) is E-simple or not depends only upon the
derivatives Gκ\κ and FA\\.

If a system is E-simple, every eliminator has the form (5. 2) and (4.13)^
becomes

ξ κ lv+1'"%ι ξ Λ lp+1 l2

where we can take Hip+lίs arbitrarily. Hence (4.13)p is equivalent to

(5. 3)p Ώ^K Glp+,..ίχ* + M\ F w . . ^ = 0 .

Thus we obtain the

LEMMA 5. 5. Let a system (1.1) of partial differential equations be E-
simple and complete within the first prolongation. A necessary and sufficient
condition that it be complete within the qth prolongation is that (5.3) p

(p= 1, ,q), where (L, M) is an arbitrary eliminator of the first order, is
satisfied by any sequence of numbers uip..Λι

κ, , uκ, xh satisfying (2.5.1)0, ,
(2.5.1),,, (2.5.2)0, , (2.5.2)p_! and (2.5.3)1? , (2.5.3)^_j. // q is replaced with
oo in this proposition we get necessary and sufficient condition that (1.1) be
a complete system.

§6. E-simple systems of partial differential equations. We are now
going to prove the following main theorem.

THEOREM 6.1. Let a system (1.1) of partial differential equations be
E-simple. A necessary and sufficient condition that the system be complete is
that it be complete within the first prolongation.

We shall first prove the

LEMMA 6.2. 7^(1.1) is complete within the first prolongation and is
E-simple, then (1.1) is complete within the second prolongation.
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Let (Ljί

κ, M1A) be an eliminator of the first order satisfying (4.7). Since
(1.1) is assumed to be complete within the first prolongation, (4.8) is satisfied
by any ut\ u\ xh satisfying (2.5.1)0, (2.5.1)1? (2.5.2)0.

If u*, u\ xh vary satisfying (2.5.1)0, (2.5.1)j, (2.5.2)0, and if the eliminator
(Ljiκ, Mj

A) varies continuously with ut

κ> uκ, xh, we get

(6. 1) {dVl

K)GH

K + (dM\)FjΛ + Ljί

κdGH

κ + Mj

ΛdF/ - 0,

(6. 2) dGκ = 0, 4v*Gκ) = 0, dFΛ = 0.

If we take any uH

κ such that the sequence of numbers (uH

κ> ut

K

9 uκ, xh)
satisfies (2.5.1)2, (2.5.2)x and (2.5.3)! besides (2.5.1)0, (2.5.1)!, (2.5.2)0, then we
can substitute

(6. 3) duf = uH

κdx\ duκ = ufdx1

into (6.1) and (6.2), for (6.2) becomes then equivalent to

(6.4) ^

which is satisfied.
We get from

the following relations,

' = (V*GΛΊ>/ + Gκ\κukH

Substituting these into

tG*" - Gκ\κukH

κ,

we get

Now, GH

ε and FA being functions of u', u", xh, we get from (6.1) and

(6.3)
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{dVl

K)GH

K + {dM?A)Fs

A + L^VtGjDda* + M*A(VkF
A)dxk = 0

which is equivalent to

(6. 5) {dVi

κXvNiGκ -Gκ\κuj) + (dM>A)(χΛF
A - FA\\uH*)

+ D\(GkH

κ - (vkG
κ\κ)uH

κ)dxk + MA{Fkύ

A - (V^l^ujfidx* = 0 .

On the other hand we get from (4. 7)

d{U\Gκ\κ + U*KGK\K + M\FA\\ + M\FA\\) - 0

or

d(Ui

κG
κ\κ + M^F^ig «Λ* = 0

where Jw^, <iw*, dxh must satisfy (6.2). Hence we can substitute (6. 3) and
obtain

(6. 6) {{dV\)G« I κ + Z,VV* G^

+ (dMj

A)FA I'. + MVV* FAI g ^ f c} ttjl« - 0 .

From (6. 5) and (6. 6) we get

(dLji

K)VNiGK + {dMA)v5F
A + {V\GkH

κ + M>AFkό

A)dx* - 0.

This proves that

V\Gkji

κ + Mj

AFkj

A = 0

are satisfied by any eliminator (L, M) of the first order if ujί

κ, u*, uκ, xh only
satisfy (2.5.1)o, (2.5.1)!, (2.5.1),, (2.5.2)0, (2.5.2)1? (2.5.3)lβ

Since we have Lemma 5. 5, we get Lemma 6. 2.
In the same way we can prove the

LEMMA 6.3. If (1.1) is E-simple and is complete within the qth prolon-
gation, then (1.1) is complete within the (q + l)th prolongation.

Then we get Theorem 6.1 by induction.

§7. Systems with redundant equations. Let the indices λ, a run for
the moment as follows,

λ = 1, , F a = 1,. . . , N',
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and consider C~ functions ©λ of Gκ and C°° functions %" of VkGκ, FA such
that

®\GK) = 0,

are satisfied by Gκ=0, χ?kG
κ=0, FA=0. Remember that Gκ are functions of

uκ and xh, while VkGκ and FA are functions of u*\ uκ; xh. χ$* may also
contain Gκ as parameters.

Replacing u£ with 9^* we get a system of partial differential equations
composed of

(7. 1) Gκ = 0, @λ - 0, FA = 0, $« = 0

or

G* = 0 , @λ = 0, F^ = 0, $α = 0 ,
(7.2)

G ^ u a ^ + G^u - o .
Evidently three systems (1.1), (7.1), (7.2) are equivalent, ®λ = 0 and ffα = 0
being superfluous equations.

It often occurs that a given system of partial differential equations contains
such superfluous equations in implicate form and that we can not exclude
these superfluous equations from the system without destroying its regular
form. In such a case it is better to leave the system as it is.

Thus we use what are called provisional eliminators. A provisional
eliminator of the pth order is a set

satisfying

b(7. 3) bi "'-'ύκG
κ\lc + L(i— w

λ ® λ | κ + A F - Λ ^ I - I I |«»>, + M^»-\ gi«ι |« = 0

* * * *
and such that Lίp+1- \, Ltp*l~\, Mip~\, Mh"\ are all symmetric in superior
indices.

Let us write the relations

in the form
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\κ — O KKJ K9

cra\ί „ Cαi ί^KI i Cα TyM I ί
IT I « — *J .ff^ U + *J ^ ^ I «r

Then we soon find that (Lίp+ι Λχ

κ, Mίp 'Λl

A) where

is an eliminator of the >̂th order of the system (1.1).
It is also found immediately that, if (Lip+ι~Λϊ

κ, Mip Λlj) is an eliminator of
(1.1), then

where

L^-Λ = 0

M' Λ = Λf̂  "1^, M^ Λ = 0

is a provisional eliminator.
If every provisional eliminator

of the (^>+l)th order (p = 1,2, ) can be written in the form

λ

(7. 4)

where

M ^

is a provisional eliminator of the first order for each value of ξ in some
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range ξ = 1,2, , Z, then the system (1.1) is an JS-simple system. This is

proved as follows.

Let (Lip+2-\, Mip+ι-\) be any eliminator. Then, since (Lip+2 \ , 0, M W Λ ,

0) is a provisional eliminator, we have Hip Jl such that

0 =

Taking suitable linear combinations of these equations we get

if we only put

Uι

R = Vι

κ + V\S\ Af
ξ ξ ξ ξ

Thus any eliminator of higher order is expressed linearly in terms of elimi-

nators of the first order and we have proved that (1.1) is £-simple.

Let (1.1) be an E-simple system. We put

(7. 5)

Then we can prove that, if every provisional eliminator of the first order

satisfies

(7. 6) V\Gn

κ + ZΛG/ + MAFf + M*aFf = 0 ,

(1.1) is a complete system. For this purpose we have only to put
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where (Z/V, M5

A) is an arbitrary eliminator.

Thus we get

THEOREM 7.1. Let (7.1) be a system of partial differential equations

equivalent to (1.1), @λ = 0 and %a — 0 being superfluous equations. Then we

can distinguish (1.1) to be E-simple if all provisional eliminators of higher

order can be expressed in the form (7.4). Let (1.1) be E-simple. Then (1.1)

is complete if every provisional eliminator of the first order satisfies (7.6).

§8. An example of E-simple systems. It is not difficult to prove that

any system of partial differential equations of the first order in only one

dependent variable is an £-simple system. But since such systems are well-

known we present another example.

Let us consider a coordinate neighborhood U of an ^-dimensional C°°

manifold M. We assume that for each point x £ U and each vector u £ Mx

a (1, 1) tensor φ is given and that its components φi1 are C°° functions of

the coordinates x1, , xn and of the components u1, , un. We assume

moreover that the matrix φ has diagonal Jordan canonical form with μ

distinct eigenvalues σu , σμ with multiplicity ml9 , mμ. Let D be a domain

in U such that μ and ml9 , mμ are constant in D.

We consider a system of partial differential equations

(8. 1) Ψi\x, uid^u1 - <pm\x, u)dtu
l + ψn

ι(x, u)=0

where ψm

ι are also C°° functions of x and u, and prove that the system (8.1)

is an ^-simple system if ψ has the form

(8. 2) t i " = φi^uh ~ w.V**

First, we find immediately that, by virtue of (8.2), no equation is obtained

by eliminating Uιh from

(8. 3) φίuj - φmW +ψm

ι = 0

which is equivalent to

φAuJ - 7Tm<) - φjfa1 - TTV) - 0 .

We can write (8.1) in the form

(8.4) Fm

ι0tu
h;uh;x») = O

where Fm

ι and uh would take the place of FA and uκ in (1.1) respectively,
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but (8.3) does not contain n2 linearly independent equations. Hence (8.4) is

a system with redundant equations which we can write

FA = 0, %a = 0 .

Since we have no equation Gκ — 0, ©λ = 0, a provisional eliminator of

the rth order is given by (Mkr'~\, Mkr kl

a) satisfying

But turning to (8.4) we can also consider that a provisional eliminator of the

rth order is a quantity (Mkr- kιi

h) satisfying

(8. 5) M^'-k^m

lFm

ll\i\ = 0

and

Af*' *'Λ = M ^ - ' Λ .

As we get

from

Fn\uih uh xh) = ^ wm

έ - φj ut

l + ψ J ,

(8.5) can be written in the form

(8. 6) M^'^\φh

ι - M^-k^hφJ - 0 .

Since our problem is one of linear algebra, we can take a suitable frame

such that the components of φ take the form

<Pih = Pi%

where

pλ = . . . = p m i = σχ 9 p m ι + 1 = . . . = p m ι + π l 2 = σ 2 ,

, Pn-m^ + l = * * * = Pn =σμ

Then putting
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we can write (8.6) in the form

(8. 7) (pk - Pt)A\ + (ph - ^)A«Λ - 0 ,

(8. 8) (ph

Σ 0>* - p^σ'-^^'-^'n = 0

and Ckl'"kpji

h is symmetric in ku ,kp,j.
Now let us use indices as follows for the moment,

a,b,c, = 1, ,n—mβ,

x,y,z = n-mβ + l, , rc ,

and put

λ i = σ μ — pi.

Then we get

From (8.8) we obtain

— -^^ - o

/ . X ^ C ^ 1 " ' r C r + i '-1 **ι "cfac'χ = o ,

8=r+l

C 1 - ^ ^ = 0 .

Hence, if Akl"mkp\Ji

x are symmetric in ku , kp and satisfy

ΛCι...cP\ba *- (
Λ ' ' - p+2 v

/i...2/rCr+i...c,;| δα

p+2-r
f ^ V
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A*i...kp\jy Λ_ \^ Λkx...WW..kP\ ksy _ /^kv..kPjyΓλ I x ~ /_j - ^ \ x *^ x >
β = l

we have

V
Λkx...kp\5i _4_ Y ^ Ak1...ks-ιjks+1...kP\ksi _ pku..kvji

and

In such a way we get Akι' 'kp\ji

x satisfying

(8. 9) Ak-"k'\\ + έ A^-*-*--*'|^ = Cfc-^\ ,

(8. 10) (f>»-ft) A*-*|* f t + (P* -P})A*>-*>\ »h = 0.

(8.10) shows that for each sequence (kί9 ,k p) of numbers ku ,kp

= l, ,τι A^ "**!^ is a (2,1) tensor satisfying (8.7). On the other hand
(8.9) shows that

Hence (8.1) is an jE-simple system.
Thus we have the

THEOREM 8.1. Let φ(x\ , xn u\ , un) be a matrix of degree n
with diagonal Jordan canonical form and with μ distinct eigenvalues, μ and
their multiplicity mu ,mμ being constant in D. Then any system (8.1) of
partial differential equations is E-simple if ψ has the form (8.2).

REFERENCE

[ 1 ] H. H. JOHNSON, On infinite prolongations of differential systems, Proc. Amer. Math.
Soc, 12(1961), 588-591.

YOKOHAMA NATIONAL UNIVERSITY.




