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§1. Introduction. Roughly speaking the purpose of the present paper is
to present a sufficient condition that a system of partial differential equations
of the first order in many dependent variables and independent variables be
complete.

A complete system is defined as follows.

Let
@ FPQu su ;2% =0 A=1,---,N)
' G5u<; %) = 0 (K=1,---,P)

be a system of partial differential equations in 7 dependent variables® !, - -

-,#™ and n independent variables z!,-- -, z" indices being used as follows,
A,B,C’... :1’...,N; J,K,L,... :1,...,P;
K, 0,0, =1 o m; hij,eee=10--2,7.
Assuming that (1.1) admits a solution
u=u (x',0-,2"

we obtain
G*|ou + G|, =0
where

G*|. =9oG*/ow, G*|,=0G%/ozt.

We find that (1.1) is equivalent to the system (1.2) of partial differential
equations composed of

1.2.1 GXu ;2 =0,
1.2.2) FAQ,u ;u ; 2%) =0,
(1.2.3) GKl,caiu"—FGKh:O.

1) Some of % may eventually become independent variables.
2) We adopt the summation convention.



346 Y. MUTO

The system (1.1) is a complete system if and only if the following con-
ditions are fulfilled.®

(i) No equation in z!,---,z" only is obtained by eliminating «* from
1.2.1). |

(ii) Any equation obtained by eliminating 9;#* from (1.2.2) and (1.2.3)
is not independent of (1.2.1). )

(iii) Equations obtained by differentiating (1.2.1) and (1.2.2) partially
v times (v = 1,2, ) with respect to x (u being considered as functions of x)
will be denoted by (1.2.1), and (1.2.2), respectively. Then any equation
obtained by eliminating ©9i,,,++- 9,2 from (1.2.1),,; and (1.2.2), is not
independent of (1.2.1),(1.2.1),,---,(1.2.1), and (1.2.2),(1.2.2);,---,(1.2.2),_,.

In general it is not possible to distinguish a system (1.1) or (1.2) to be
complete or not by examining only the first derivatives (1.2),. The purpose
of the present paper is to give a sufficient condition that this be possible.

Before defining a complete system of partial differential equations an
equivalent exterior differential system and its prolongations are explained in
§2, together with some symbols to be used. No unknown result is contained
there. In §3 a complete system is defined. In §4 a tool for discerning
completeness of a system is introduced. But a necessary and sufficient con-
dition for a system to be complete contains an infinite sequence of equations.

Now, there are some systems of partial differential equations for which
a necessary and sufficient condition to be complete is given by equations in
which only the first or the second derivatives of the functions appearing in
the given equations are concerned. We call them E-simple systems. These
are treated in §5 and §6 which are the essential part of the present paper.

In §7 systems with superfluous equations are treated. In §8 an example
of E-simple systems is given.

§2. A system of partial differential equations and an exterior differ-
ential system. Let

GK (u/c ; xh,), FA (uilc ; ulc ; xh)

be C¢ functions of m(n+1)+#n variables #*, «*, 2" in some domain D containing
a point Py=((:)o, @)o, (x"),) satisfying G* =0, G*|,u + G*|, =0, F41 =0.
We introduce an infinite sequence of new variables

K 3 [3
uizil > ui,f.i, s uiptp—ln..i] st

and an operation V, which is defined as follows.

3) A more precise definition is given in § 3.
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Let
F(u, . 1f5 iy, 055 ¢+« o5 wf; u'; x")

be a C' function of m(n”+n*~' + -+« +1) + n variables w, .* -, wr, u", 2"
Then v.F is the following C° function of m(n**'+ n?+ - -+ +1)+ n variables

k Kk K h
WUipprip..iys** s Uiy , U, I,

@1 (ViF) Wiguity..a5 = = =5 455 2
= Uiy B0 4 sy, oS F 0 4 oo+ w B A F

where

Fli,....ilk = aF/aui,.."hn >
le = aF/aux ’
F|; = aF/axi :

Hence, if F is a C* function, we can define the function

The system (1.1) or (1.2) of partial differential equations is equivalent
to a closed exterior differential system 3 composed of

2.2.1) G*w;x") =0,
2.2.2) F4ur;u ;2% =0,
2.2.3) (VG (w5 ut5 2") =0,
(2.2.4) dF4* =0,
(2.2.5) dv.G*) =0,
(2.2.6) du — urdx' =0,
(2.2.7) du \ dxt =0,

where (2.2.2), (2.2.3) are derived from (1.2.2), (1.2.3) by substituting (2. 2.6)
or o = u*, while (2.2.4), (2.2.5), (2.2.7) are necessary to make (2.2) a
closed system. 3 contains n independent variables " and m(n+1) dependent

K

variables ", u".
The first prolongation of 3 is obtained by putting

2. 3) du = u*dx’ .
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Thus we obtain a closed exterior differential system X' composed of

(2.4.1) G*=0, vi;G* =0, V,vr,G* =0,
(2.4.2) F4=0, v,F“=0,
(2.4.3) du* — urdx* =0,

(2.4.4) Uiy — Uiy =0,

(2.4.5) du* — uyrdz* =0,

(2. 4.6) d(Vi, Vi, GX) = 0,

(2.4.7) dv.F4) =0,

(2.4.8) duy® — dug,yr =0,

(2.4.9) dut N\ dxk =0,

Uy, Uwp® ete. standing for the symmetric parts.

The first four sets of equations ((2. 4.1)—(2. 4. 4)) are derived by substituting
(2.3) into 3. The last four sets ((2.4.6)—(2.4.9)) are necessary to make the
system 3! be closed.

We can proceed in such a way to the pth prolongation 37 which is
composed of

(2.5.1), GF=0,

(2.5.1), vi:G* =0,

(2.5. 1)1 Vkoa Vi GX =0,
(2.5.2), F4=0,

(2.5.2), Ve F4=0,

(2 5 2),, Vi, * VleA =V,
(2.5.3), Uigt,y Uiy = 0,
(2.5. 3), Uippsip. i — Uiipty.in® = 0,

(2.5.4), du* — u dx* =0,
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(2.5.4), dur — uydx* =0,
(2.5.4), du;, i — Uy, . dx* =0,
(2.5.5), (Vi ++ - VG =0,
(2.5.6), AV, - - Vi, F) =0,
(2.5.7), Aty iy — Qi =0,
(2.5.8), du, i, N\ dx*=0.

(1.1) or 3 is solved by finding a solution of 3” or the infinite prolongation
3= composed of

(2.5.1), (»p=0,1,2,--+),
(2.5.2), (»=0,1,2,--+),
(2.5.3), (»=123,--9,
(2.5.4), (»=0,1,2,--+)

(see H. H. Johnson [1]). Since G¥ and F* are of class C° and vi,, -+ * Vi, G
and Vi .-V, F* are polynomials in %% <<, %, " Vi.*** Vi, G and
Vi, * * * Vi, F* are C* functions of ;. ;% ++-,u" =" for any point (" u~, 2")
in D and infinite prolongation is possible.

Let us assume that an infinite sequence of numbers

2. 6) (-Th)l , (@), N7 RN (ui,...ilx)l oot

satisfies (2.5.1),, (2.5.2),, (2.5.3),,; for p=0,1,2,--- simultaneously. We

assume moreover that ((z*),, ), (z"),) € D.
For each sequence (7, -,?,) of numbers 1 =7, =< n let p, be the number

of numbers 7;,---,7, which are equal to 1 and so on, and put

P(ih"',ip):Pl!P'z!"'Pnl'

Then the theorem of H.H. Johnson [1] states that
If there exist positive numbers M, R,,---, R, such that for every natural
numbers p and 7;,--+,7, 1 =4,---,7, = n) the inequalities

Iuiy-.-i|k| RIPI P Rnﬂn

- - M
p(lly'°'>2p) <

are simultaneously satisfied, then there exists a unique solution of (1.1)
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defined in some domain D,* in D and satisfying the initial conditions

w(xy) = (W),

@) (z)) = i)y,

But it is not a simple task in general to find a sequence (2.6). For
example we can not obtain (%*); and (%), from (2.5.1),, (2.5.1);, and (2.5. 2),
alone in general, as it may happen that we get some other equations in %,
u* and x" by eliminating ", %~ - -+ from (2.5.1),, (2.5.1),,+++,(2.5.2),,
(2.5.2),, +++ and (2.5.3),, (2.5.3),,--+. In following paragraphs we study
equations where no such difficulty occurs.

83. A complete system of partial differential equations. In (2.2) we
have three sets G%, v,G%, F* of functions of =« u*, u*. Let us consider a
matrix (G*|,) where

G*|. = oG*/ou*,

K indicating the rows and « the columns, and a matrix
(G* |8, F*1%)

with 7P+ N rows and mn columns obtained from

a(Vk GK)/auiK and a}’ﬂlt/azli’C N
K

P and A indicating the rows and /Zc the columns.

Before defining a complete system precisely, we first set aside all super-
fluous equations from (1.2) and assume that

(A. 1) rank (G*|,) =P,
(A. 2) rank (G¥| 8, F4|'\)=nP+ N

in some domain D.

4) We define D, as the set of (z!, +++, %) such that (u*; u*; z*) € D for some u;* and .
D;, is some domain in Dy such that (z) € Dy and (@), (@), (%)) €D.
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This assumption (A) stands for (i) and (ii) of §1, for, it is easily seen
that in a suitable domain I containing the point P, (i) is satisfied because
of (A.1), while the simultaneous equations (2.2.2) and (2.2.3) are by virtue
of the assumption (A.2) reduced to some equations which determine nP+N
of the #,”s as functions of x", #* and the remaining mn—(nP+ N) of the u,*s,
and consequently no equation is obtained by eliminating # from (2.2.2)
and (2.2.3). We remark in passing that

rank (G*|,8}) = nP,

for any L*; satisfying L*;G*| 8, = O satisfies L'xG%|. =0, hence L'y = 0 by
virtue of (A.1). This shows that assumption (A) does not restrict a system
of partial differential equations unduely as long as we are considering only
in a domain D'.

We shall consider only #;* and #* such that (u, u*, x*) € D'.

DEFINITION 3.1. Let us assume (A). A system (1.1) of partial differ-
ential equations is said to be a complete system within the qth prolongation
(g=0,1,2,---) when the corresponding exterior differential system 3 and its
gth prolongation 37(2°=3) have the following properties:

(i) No equation in z!,---,x" only is obtained by eliminating #* from
(2.5.1),.2

(ii) Any equation in only m+7 unknowns #* and x" obtained by elimi-
nating «,* from (2.5.1), and (2. 5. 2), is not independent of (2. 5. 1),, that is, any
such equation is satisfied by any set of numbers (u*, £*) satisfying (2.5.1),.

(iii) For every natural number p= g any equation in only m(n?+n*"
+ «++ +1)+n unknowns w,;, ;5 -+ - u), u, " obtained by eliminating #;,, "
from (2.5.1),.4, (2.5.2), and (2.5. 3), is satisfied by any sequence of numbers
Us, e 0w uf, 2t osatisfying (2.5.1)g, « -, (2.5.1),, (2.5.2),, +++, (2.5.2),4
and (2.5.3),, - -, (2.5.3),_..

DEFINITION 3.2. When (1.1) is a complete system within the gth pro-
longation for every natural number g, (1.1) is said to be a complete system.

If (1.1) is a complete system, the corresponding system 3 is also called
a complete system.

Since the gth prolongation of 3” is the (p+¢)th prolongation 37*¢, it is
easily seen that, if 3 is a complete system, so is also any prolongation 3”.

As we have prolongations of 3, so we have prolongations of the system
1.1) or (1.2).

Let S denote the system of partial differential equations composed of

5) (i) and (ii) are already satisfied because of (A).
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(3.1.1) G*(u;2") =0,
(3.1.2) (Vi GO (w5 w52 =0,
(3.1.3) Fuf;u;2%) =0,
(3.1. 4) 2 —ur =0

in m(n+1) dependent variables #;%, % and n independent variables x*. S is
equivalent to (1.1).
The pth prolongation S? of S or of (1.1) is defined by

3.2.1), G*(u*;2") =0,

(3 2 1)p+1 (Vk_+l b Vk; GK)(uim.x...i]‘ yretsu xh) = 0 >
(3.2.2), Fiuf;u;2%) =0,

(3.2.2), (Vi * + s Vi F) (i, a5 0 o o505 2) =0,
(3.2.3), Ui — Ugay =0,

3.2.3), Uit — Uiy = 0,

(3 2. 4)0 ajux - qu = >

(3.2.4), Osthiy..if — Wiy = 0.

37 is obtained from S? when (3.2.4) are replaced by equations which are
transvections with dx’ and to the resulting system are added some equations
to make the system closed.

Let us assume that (1.1) is a complete system within the zeroth prolon-
gation and that (1.1) is completely integrable. A system (1.1) is by definition
completely integrable when the system composed of (2.2.1), (2.2.2), (2.2.3) and
(2.2.6) satisfies the condition that du* A\ dx* = 0 modulo dG*, d(v,G*), dF*
and du* — u*dz', hence du \ d=* =0 modulo d(v.G*), dF* and du*—udx’.

Since by virtue of (A) we can express nP+ N of the # s as functions of
x", #* and the remaining mn—(nP+N) of the u*’s, du\dx' can not vanish
modulo d(v.GF), dF* and du*—usdx' if nP+ N <mn. Hence we see that, if
(1.1) is completely integrable, (1.2) can be solved in the form
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u’ =f¢(ul" * ',uR;xlv' ° .’xn) (‘P = R+1’ ° "am),

3. 3)
aiufzﬁf(ul’...’uk;xl,.. .,xn) (E’nzl,...,R)

where R = m—P and f} satisfy
Oiff + [0, ff = ouff + fro.ff.

As we get from (3.3) 2,4 and the higher derivatives step by step by

differentiating partially with respect to z, (1.1) is then a complete system.
The same deduction is possible also starting from any prolongation S”.
Thus we obtain the

THEOREM 3.1. Let us assume (A). A system (1.1) of partial differential
equations is complete if (1.1) is completely integrable. A system (1.1) of
partial differential equations is complete if there exists a natural number p
such that (1.1) is complete within the pth prolongation and the pth prolon-
gation S” is completely integrable.

We assumed that G¥ and F* are C° functions in D. But such strong
restriction is not necessary when some prolongation is completely integrable
and we define completeness in broader sense as follows.

DEFINITION 3.3. Let G* and F“* be C’ functions in D and let (1.1) be
complete within the gth step, that is, let (1.1) satisfy (A) and the conditions
(i), (ii), (iii) of definition 3.1 in D'c D. When the gth prolongation S or
3 of (1.1) is completely integrable, (1.1) is said to be a complete system.

§4. Eliminators. Let ((«%),, (&),, (%)) be a point in I satisfying
(2.5.1),, (2.5.1), and (2.5.2),. If a system (1.1) of partial differential equations
is found to be complete in the narrow sense, a formal solution is obtained
by taking this point and finding (), which satisfy (2.5.1),, (2.5.2), and
(2.5.3),, and so on. If (1.1) is complete in the broader sense, a solution is
obtained by continuing such process only to some step and then solving a
completely integrable system of equations which is obtained as a prolongation.

We shall present here a necessary and sufficient condition that a system
be complete.

Let (1.1) be a complete system within the zeroth prolongation. Then
(1.1) is a complete system within the first prolongation if and only if any
equation obtained by eliminating u;* from (2.5.1),, (2.5.2),, (2.5.3), is satisfied
identically by any set of numbers u*, «*, £* satisfying (2.5.1),, (2.5.1),, (2.5.2),.”

6) We consider only %%, u*, z* such that (u#, u*, z") € D',
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We can write (2.5.1), and (2.5.2), in the form
4. 1) - G*leui*+ G;=0,
4. 2) F4liu <+ F* =0
where G, and F;* are functions of u*, u*, z* defined by
4. 3) G = v;viG* — G¥|euy*,
4. 4) Fi* = v;F4 — F4) ou~.

Since every equation of (4.1), (4.2) and (2.5.3), is a linear equation in
u;*, we can eliminate u;* by taking linear combinations of these equations,
which we can write in the form

(4. 5) L x(G"|cui* + Gi¥)
-+ MJA(FA]igujix + FjA)
+ Ny — ugn®) = 0.

We can also consider that every equation obtained from (4.1), (4.2), (2.5.3),
by eliminating #;* has the form (4.5) with L?x, M’,, N’ satisfying

(L*G¥ | + M F4) ' + N ) uy — Nt ugy =0
identically, hence
(4. 6) L% G*|. + M, F*|* + N, — NU»,_=0.
From (4.6) we can eliminate N’!, and obtain
4.7 (L% +L9)G*| . + MPJF4% + M F4]%, = 0.

Thus we find that (1.1) is complete within the first prolongation if and
only if every equation

(4. 8) LjiKGjiK + MjAFjA = O,
where L7, M’, are restricted by (4.7), is satisfied identically by u*, «~, z*
satisfying (2.5.1),, (2.5.1);, (2.5.2),.

DEFINITION 4.1. A set of numbers (L7, M’,) satisfying (4.7) is called
an eliminator of the first order.

Let us eliminate u,, ;* from (2.5.1),,;, (2.5.2), and (2.5.3),. This is
accomplished by making a linear combination
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(4_ 9) Lim...i,K Vim .o Vi. GK
+ Mimb“igA Vipn c° Vf:FA
+ (Ni,m...i;x — N(ipn...il)") ui;u...i;x — 0

where L7+, M»-#, N (which we shall write simply L, M, N if there
is no possibility of confusion) satisfy

(4. 10) Limtig GX|, 4 M-tz F4|
+ Niwtets — Nt = ()

Such L, M, N are obtained by taking L, M such that
(4.11), Lrain  GE| | 4 MConeevie, FlAl|in, =
and then taking N which satisfies (4. 10).

DEFINITION 4.2. A set of numbers (L, M) satisfying (4.11), is called
an eliminator of the pth order.

An eliminator is considered at each point (&%, «*, x") in D'. Generally
it is not a definite function of «*, »*, ", but we can consider its differential

(dL, dM).

DEFINITION 4.3. G, ;~ and F,, ;% are functions of w;, .~ +-+,u" 2"
defined by

Gipro it = Vipy* * * Vi, G — G"| oy, 45,
4. 12), {

F,. . .t= Viga®*° V.4 — F45, Uiy gty -
We find immediately that, if L, M, N satisfy (4.10), then (4.9) becomes

(4' 13)p Liml...ilx G K + Mip...ilA Fip..‘ilA — O .

Ipi1e.. iy

Hence we find that, if (1.1) is complete within the gth prolongation,
then (4.13), is satisfied identically by any sequence of numbers u;, ;% ---,
S, =" satisfying (2.5.1),,---, (25.1),, (25.2),, ---, (25.2),., and (25.3);,---,
(25.3),-, for p=1,2,-+-,q.

Thus we get the following theorem.

THEOREM 4.1. Let (1.1) be a complete system within the zeroth prolon-
gation. Then (1.1) is a complete system within the qth prolongation if and
only if for each p (p=1,-+-,q) every equation of the form (4.13),, where
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(L, M) is an arbitrary eliminator of the pth order, is satisfied by any sequence
of numbers wu, it -+, v, 2" satisfying (2.5.1)g, -+, (2.5.1),, (2.5.2), ¢+,
(2.5.2),-, and (2.5.3),,+++,(2.5.3),-1. If q is replaced with oo in this proposi-
tion we get necessary and sufficient condition that (1.1) be a complete system.

§5. Symmetric eliminators and E-simple systems. We first prove the

LEMMA 5.1. Let

be any function of v, ;F,« -, v:f, v°, 2" satisfying a suitable differentiability
condition and where wv,, ;° are symmetric in igc-e-<,i, if s=r+2. (v’
with s=r+1, r+2 will appear later). Let the sequence of numbers (v;, P,
« oo, V) be denoted by vi® where X represents i<ty T_ycciy, 20,1, P,
vy standing for v*. Then we have F(vy;x"). Adopting the summation
convention with respect to X, Y, -, we define

(Vi F)(vs,..if ;0230 2") = F|%,ves” + Fl i,
especially
Vi Uit = Ukiy.tip
Then we have

(6. 1) V.ViF — ViV, F=0.

PROOF. Since we have
ViViF = F| %04 + F| 5| vl vy’
+ F| % ol + FlelYovw® + Flelo,
Uiy’ = Vnx®
and
F|%|% = F|51%, FI%l = F[|%,
Fik'l=F|l‘k7

we get (5.1) directly.
Next we prove the

LEMMA 5.2. G,,,..* and F;, . defined by (4.12), are symmetric in their
lower indices if wiy), + -+, w,. " are symmetric in their lower indices.
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PROOF. For small p this is proved directly. For larger p we use
Lemma 5.1 in the case of » = p—2 and take G* as F of this lemma. Then
we find that v,v,V;,G* is symmetric with respect to 7, and z, as well as
with respect to Z; and 7,. Hence Vv,V,V,G* is symmetric in 7, 7, ;. We
can proceed in this way until we get v, ---V;,G* which is symmetric in
ip, **+,1;. If moreover w,, ;° were also symmetric in the lower indices,
Vi * * * Vi, G¥ would be symmetric in the lower indices. However, this is
not the case now. But, since v;,,* -+ V,G" contains u;,, ;* only in the term
G*| .. .*, the remaining part G,,, ;X is symmetric in all lower indices.
For F4 also we can proceed in the same way.

Now we find from (4.11), that, if (L%, M®™ %) is an eliminator,
then (E""""'K, M b)) where L, M are the symmetric parts of L, M respectively
with respect to all superior indices, is also an eliminator. From Lemma 5.2
we find moreover that L, M can always be replaced with L, M in (4.13),, for
(4.13), is used to find whether (1.1) is complete within pth prolongation or
not when (1.1) is known to be complete within (p—1)th prolongation and
(2.5.3);,++-, (2.5.3),-, are assumed.

This proves that we need only to consider symmetric eliminators, a
symmetric eliminator being defined as an eliminator (L, M) where L = L,

M= M. In the following we consider only symmetric eliminators and the
adjective “symmetric” will be dropped.
The following lemma is trivial.

LEMMA 5.3. Let a system (1.1) of partial differential equations be given.
At each point (wf, u*, x") in D' the set of eliminators of any given order is
a linear space.

Let this linear space be denoted by V,, where p is the order, and let us
put dim V, = m,. Then we get

LEMMA 5.4. If m, eliminators (IE;, 1\54) E=1,---,m,) compose a base of
V., (L, M) where
Lt = f{(i,,,,...i, L),
(5. 2) E £
Mis-hy = F Gtz Ji,
£

is an eliminator of order p.

We use indices & 9=1,.++,m,; and adopt the summation convention with
respect to these too. Being almost immediate, proof will be omitted.
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DEFINITION 5.1. An eliminator (L, M) of order p of the form (5.2) is

called a simple eliminator.
For any given system (1.1), for each order p, and at each point (u*, u*,
x") in D’ the set of simple eliminators is also a linear space.

DEFINITION 5.2. If at every point of D’ V, is composed of simple
eliminators only, (1.1) is called an E-simple system at the order p. If (1.1) is
E-simple at every order, it is called an E-simple system.

Whether a system (1.1) is E-simple or not depends only upon the
derivatives G*|, and F4|%,.

If a system is E-simple, every eliminator has the form (5.2) and (4.13),

becomes
Sttty (T tad K 4 4
Hmn..- s (I{z e Gipﬂ...i, + ]\54' 1, Fi,m...iz ) =0 R

¢
where we can take H®w-% arbitrarily. Hence (4.13), is equivalent to
5. 3), Lt Gy, of + My F,,, 4t = 0.
Thus we obtain the

LEMMA 5.5. Let a system (1.1) of partial differential equations be E-
simple and complete within the first prolongation. A necessary and sufficient
condition that it be complete within the qth prolongation is that (5.3),
(p=1,+--,q), where (L, M) is an arbitrary eliminator of the first order, is
satisfied by any sequence of numbers w,, .f, -+, u", " satisfying (2.5.1),+++,
(2.5.1),, (252)4,++-, (25.2),-, and (25.3),,+++,(25.3),-,. If q is replaced with
oo in this proposition we get necessary and sufficient condition that (1.1) be
a complete system.

§6. E-simple systems of partial differential equations. We are now
going to prove the following main theorem.

THEOREM 6.1. Let a system (1.1) of partial differential equations be
E-simple. A necessary and sufficient condition that the system be complete is
that it be complete within the first prolongation.

We shall first prove the

LEMMA 6.2. If (1.1) is complete within the first prolongation and is
E-simple, then (1.1) is complete within the second prolongation.
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Let (L', M",) be an eliminator of the first order satisfying (4.7). Since
(1.1) is assumed to be complete within the first prolongation, (4.8) is satisfied
by any u/*, «*, " satisfying (2.5.1),, (2.5.1),, (2.5.2),.

If u*, u, x* vary satisfying (2.5.1),, (2.5.1),, (2.5.2),, and if the eliminator
(L%, M?,) varies continuously with #*, «*, =", we get

6. 1) (AL"%)GE + (AMYFA + LixdG, X + M, dFA = 0,
6. 2) dGX =0, dv.G) =0, dFt=0.

If we take any wu;* such that the sequence of numbers (u;*, »*, «*, ")
satisfies (2.5.1),, (2.5.2), and (2.5.3), besides (2.5.1),, (2.5.1),, (2.5.2),, then we
can substitute

6. 3) du) = u;*dx’, du* = urdx
into (6.1) and (6.2), for (6.2) becomes then equivalent to
(6. 4) viGE=0, vwi:G=0, v, F*=0,

which is satisfied.
We get from

V;V.G* = G*| " + G5,
V;F4= F4| u;* + F
the following relations,
ViViViG* = (ViG* | )ust + G|y + VG~
VeVt = (Ve 2us® + F4 s + Vit
Substituting these into
Gisi = ViViViG" — G*|eures*,
Fiit = viVF4 — F4| o i*,
we get
G = (Ve G*l) ui* + Vi Gii™
Fpi*= (Ve FY') w* + Vi Fit.

Now, G;* and F;* being functions of %S, u*, 2", we get from (6.1) and
6.3)
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(dL"0) Gy + (AM )F* + L'(v,Gy)dx* + M4 (V. Fy*)dxt = 0
which is equivalent to
(6.5  (@L')(ViViG" — G%| ) + (M )V, F* — F*|% uyf)
+ L'%(Ges™ — (VG| Just) da* + M (Fei* — (VeF* | Jusf)dz* = 0.
On the other hand we get from (4.7)
AL G"|, + LY G"|, + M, F4|', + M',F4]) =0
or
AL G"|e + My F* ') u; = 0

where du®, du’, dz" must satisfy (6.2). Hence we can substitute (6.3) and
obtain

(6. 6) {(AL7)G* | + L(v,. G*|,) dx*
+ (@M OF|' + M (Vi F*1') da*} uys =
From (6.5) and (6.6) we get
L")V, VG" + (dM OV, F* + (L' xGs® + M aF i) dxt = 0.
This proves that
LGy + My Fi* =0

are satisfied by any eliminator (L, M) of the first order if u;*, u", u‘, 2" only
satisfy (2.5.1),, (25.1),, (2.5.1),, (2.5.2),, (2.5.2),, (2.5.3),.

Since we have Lemma 5.5, we get Lemma 6. 2.
In the same way we can prove the

LEMMA 6.3. If (1.1) is E-simple and is complete within the qth prolon-
gation, then (1.1) is complete within the (¢+1)th prolongation.

Then we get Theorem 6.1 by induction.

§7. Systems with redundant equations. Let the indices A, @ run for
the moment as follows,

)\,:1’...,P'; a:l,---’N,,
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and consider C= functions & of G* and C~ functions §* of v,G%, F* such
that

BNG* =0,
F(ViG*; F) =0
are satisfied by G¥*=0, v,G*=0, F4=0. Remember that G¥ are functions of
u* and x", while v,G* and F* are functions of u;; #*; z*. $* may also

contain G¥ as parameters.
Replacing #* with ou* we get a system of partial differential equations

composed of
(7. 1) GE=0, =0, F*=0, =0

or

Gf=0, =0, F*=0, g~=0,
7. 2)
GK],‘aiuK'*‘GKli:O.

Evidently three systems (1.1), (7.1),(7.2) are equivalent, & =0 and §* =0
being superfluous equations.

It often occurs that a given system of partial differential equations contains
such superfluous equations in implicate form and that we can not exclude
these superfluous equations from the system without destroying its regular
form. In such a case it is better to leave the system as it is.

Thus we use what are called provisional eliminators. A provisional

eliminator of the pth order is a set

* * * * .
(sz,....t,K’ Lig.,...'i,/\ , Misi, | Mi,,.,.z,a)
satisfying
¥ i 5 (page.d 1 e i v
(7. 3) L(i""“ l)KGle + L( DH1ee e 1)1@ ,x+ M( zm...zuFlAllil)x + M(ipﬂ...iga 8;|a] lilZc — 0

* % * *
and such that L=ty Liwby o Mie-h M54 are all symmetric in superior

indices.
Let us write the relations
', = (68"/2G")GX|,,
1% = (08*/oviG)G"| + (05*/oF“)F|',

in the form
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@l“ = SAKGK|I¢ )
%al i/c — SaiKGle + SaAFA[ t" A
Then we soon find that (L=, M%) where
* * *
Li;m...i.K — Lipﬂ...tlx _|__ Liy.....i.ASAK + M(i,,,...iza S]allil)K ,
. * *
1\4111...1:4 p— Mip'"ih + Miy...i,aSaA

is an eliminator of the pth order of the system (1.1).
It is also found immediately that, if (L%, M%) is an eliminator of
(1.1), then

x *, % *
(L Pele e lK} Lﬂl.-.‘ll, Mip...‘h, Mip...i;a)
where
* *
Lirabiy = Ll [hoahy = Q)
*

) *
Mirh, = Mis-t, Mit, = 0

is a provisional eliminator.
If every provisional eliminator

* * * *
(Lt,.,...llK’ I‘lp,g...i.A , Mipq.,.i,A R Miml.-oil‘!)

of the (p+1)th order (p=1,2,-+-) can be written in the form

* ) £ ,
Lk,,...lc,ﬂK = %l lgn)" ,

LI S
L Peee ,JA — H( Peee ‘Lﬂ);\ s

£
(7. 4)
Y 13 2 k. K *i
M-kt — F ot D) s
£
* ) £ *
Mlcy...klla — H(kg...kl 1‘\541)“ R
where
* " * " * 4 *
(I{’K, {zjx, Jy,b 1;42)

is a provisional eliminator of the first order for each value of £ in some
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range £§=1,2,+++,Z, then the system (1.1) is an E-simple system. This is
proved as follows.
Let (L', M% %) be any eliminator. Then, since (L=, 0, M5,

£
0) is a provisional eliminator, we have H® " such that
k. 3% ] s
L Peee 1JK —_ H(kp...k, Iflﬁ)K R
Eo %
0= H% = [
€
ki 2 Y
M-kt — F ok Jy‘)“ ,
£ *
0 = Efte-ks ]\Eli)a .
Taking suitable linear combinations of these equations we get

£

Liokidt = Ff ok I{jik ,
£

Mo-kai — FJ sk ]\?i)a ,

if we only put

X * * X
[E‘”K — E]LK + %J’iA SJLK + ]y(fa Slalf)x,

* *
\ i, = ]yt“i +inaSaA-

Thus any eliminator of higher order is expressed linearly in terms of elimi-
nators of the first order and we have proved that (1.1) is E-simple.
Let (1.1) be an E-simple system. We put

Gyt = Vv — O, uy”,
(7. 5)
Fi* = v;g* — & eus” .
Then we can prove that, if every provisional eliminator of the first order
satisfies
* * * *
(7_ 6) Ljix GﬂK + LjiAGﬂl + MjA FjA + MjaFj“ = 0 >

(1.1) is a complete system. For this purpose we have only to put

Lie=Lig, =0, Mai=Mi, M.=0
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where (L', M’,) is an arbitrary eliminator.
Thus we get

THEOREM 7.1. Let (7.1) be a system of partial differential equations
equivalent to (1.1), & = 0 and §F* = 0 being superfluous equations. Then we
can distinguish (1.1) to be E-simple if all provisional eliminators of higher
order can be expressed in the form (7.4). Let (1.1) be E-simple. Then (1.1)
is complete if every provisional eliminator of the first order satisfies (7.6).

§8. An example of E-simple systems. It is not difficult to prove that
any system of partial differential equations of the first order in only one
dependent variable is an E-simple system. But since such systems are well-
known we present another example.

Let us consider a coordinate neighborhood U of an n-dimensional C*
manifold M. We assume that for each point x € U and each vector u € M,
a (1,1) tensor ¢ is given and that its components @;* are C* functions of
the coordinates z',---, " and of the components #!,---,z" We assume
moreover that the matrix @ has diagonal Jordan canonical form with u
distinct eigenvalues o, « « -, o, with multiplicity #2,,--+,m,. Let D be a domain
in U such that 4 and m,,---,m, are constant in D.

We consider a system of partial differential equations

8. 1D @ (x, w)ontt — @' (x, w)oid + Y (x,u)=0

where 4! are also C* functions of = and %, and prove that the system (8.1)
is an E-simple system if Y has the form

(8. 2) ’\l/’,;h = ¢)ik’ﬂ'kh —_ Tikq)kh .

First, we find immediately that, by virtue of (8.2), no equation is obtained
by eliminating #;* from

8. 3) @l'u,t — @piut + Yt =0
which is equivalent to
@i’ — mp') — P! — ) = 0.
We can write (8.1) in the form
8. 4) F, Qu";u"; x™) =0

where F,' and #* would take the place of F4 and #* in (1.1) respectively,
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but (8.3) does not contain 7? linearly independent equations. Hence (8.4) is
a system with redundant equations which we can write

F4=0, =0
Since we have no equation G¥ =0, & = 0, a provisional eliminator of
* *
the rth order is given by (M*-%, MFt %) satisfying
* * )
M(k,...kkFlAlli)h + Mtk %mlz)h =0.

But turning to (8.4) we can also consider that a provisional eliminator of the
rth order is a quantity (M**¢) satisfying

(8. 5) MEr-Ralm L UD, = ()
and
Mk,...k.th — M(k,...k,)ih .
As we get

Foll'n = @'8n — @n' 8L

from
Fol(w!;u" 5 2") = @luy' — on'wd + P4t

(8.5) can be written in the form
(8. 6) M), ‘Pnl _ M(kr...k,lMIh ¢mi) =0.

Since our problem is one of linear algebra, we can take a suitable frame
such that the components of @ take the form

@" = p;d}
where
Pr=""*"=Pm =015 Pm+1= "= Pmytm, = Oz,
et P = =P, =0,
Then putting
A%y = M,

Ch kol — Mkl...k,,jih
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we can write (8.6) in the form

8.7 (Pn = P)A”, + (pn — p)AY, =0,
(8. 8 (pn — pi)CE=53, 4 (p,, — p,)Chr--Hs13,
]
-+ Z (Ph _ Pk,) Ckl...k,_,jk,u...k,,ik,h =0
s=1

and Ch-®5% js symmetric in &y, -« -+, &p,J.
Now let us use indices as follows for the moment,

a,b,c,o00e =104, n—m,,
T, ¥, 2 =n—m,+1,«++ ., n,
and put
M=o, —pi.
Then we get
N0, A, =0.

From (8.8) we obtain

Y4
)\’aCcl...cpbzI + bec,..‘c,,abx =+ E : XC'CC,A..C,_,M,,,...CWE,’; — s
8=1
..................
14
hacu....v,crﬂ...cpbaz + 7\'b Cy,.‘.y,cm...c,abx + Z 7\'0' Cy""y'c”""c"‘bc"""c’m‘x =0 s
8=7+1

hacy,..‘y,,baz + N Cyl...y,abx =0 ,

Cttos = (),

Hence, if Af-*|/ are symmetric in %, -, k, and satisfy

1 A
Acl...c,, ba (Cc,...c,,ba _ ) Ccl...c,ab )
I x P+2 X )’a x >
1 A
ATJ.-..ihcmA..cy ba — - (Cz]l...’y,c,ﬂ...c,,ba _ (/) Cy,...yrc,ﬂi..c,,abx>
T pr2-r § N ’
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1 A
Vi..-Vp|ba V... Usbat b ... Ypad
Arem]ie, = o (Cvevie, — 0 e, )

@ 3

Akl...k,[ ya,x —_— O s

»
Aoy Z Ak kaadben ko |1 — Chue kot

s=1
we have
VA
Akl-“kﬂljix + ZAkl..,k,-ljk.ﬂ...kplk,im — Ck,...kpjim
8$=1
and

)liAkl“'kplji:c + )'jAkl.“kplijx :0'.

In such a way we get A%*|7 satisfying

(8. 9) Ak |36 4 i Ak Feakun ko | ki = Chrekodl
s=1
8. 10) (o —pi) Afe=B] % + (p—p;) ARy = 0.

(8.10) shows that for each sequence (k;,---,%,) of numbers k,,:+-,%,
=1,e-,n A"-®|7 s a (2,1) tensor satisfying (8.7). On the other hand
(8.9) shows that

p
Ck,...kpjih — 8,(:“‘- .. SfZ)Al"“l”l A4 Z 81(,’“ cee 3;2:1 {'slc,ﬂ_ . 8{‘;‘) Az....zplmh .

(%)
$=1

Hence (8.1) is an E-simple system.
Thus we have the

THEOREM 8.1. Let @(x!,---,x";u',+--,u") be a matrix of degree n
with diagonal Jordan canonical form and with p distinct eigenvalues, p and
their multiplicity ms,« «+,m, being constant in D. Then any system (8.1) of
partial differential equations is E-simple if ¥ has the form (8.2).
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