ON TANNAKA-TERADA’S PRINCIPAL IDEAL THEOREM
FOR RATIONAL GROUND FIELD

SHOICHI TAKAHASHI

Let n be a natural number 2f 7 or 4|7 and m be one more natural
number which have no quadratic factor and satisfy the relation Q(¢,) DQ/ m)
(Q: the rational number field, ¢, = exp (27i/n)), then the author wants to
give an explicit representation for Tannaka-Terada’s principal ideal theorem
for the case of Q,) DQOW m)>Q. In 1 we express the calculation of
Geschlechtermodul &, of Q(,)/Q and M = f(Q&.)/QW m)/Q) according to
the definition and notation of T. Tannaka [1], S. Takahashi [5]. In 2 we show
that the ideals in each ambigous ideal class mod. Mt which are prime to
(i.e. A an ambigous ideal in Q(./m ) prime to n satisfying the relation
A'=(a), ac Q(/ m), a=1 (mod. M) there o means a generator of the Galois
group of Q(/ m)/Q)), are only principal A=(A) ideals in Q(/ m), and
decide their form explicitly. In 3 it is shown that we can find a unit E(A)
in Q(&,) explicitly, for which

A=EA) (mod. F,)
so that

A~1 (mod. F,) in Q,)
holds.

1. Calculation of &,, M. Let n = pip..- p* be a natural number,

where p,, p,,+++, p, are different prime numbers and =2, ¢,=0 or e, =2,
and &, the “Geschlechtermodul” of Q(¢,)/Q. We have then from S. Takahashi

(5]
%n:gm%m"'%pn gm:(l_gm)’ 1= 1’29"')t' (1)
Subsequently, let F(Q(¢,)/Q) and F(Q(x/m)/Q) be “Fiihlers” of Q(¢.,)/Q
and QW m)/Q respectively, then
1(QE./Q) = np..
mp.t (m=1 (mod. 4))

HQW m)/Q)=d pf =
4mp.t (m = 2,3 (mod. 4))
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(provided that e =0 for m >0, e = 1 for m < 0) hold.
Now from Q(,)>Q(/ m) we have |d||n, and set n=|d|n’. Therefore,
according to the definitions and notations of T. Tannaka [1], we get

M =1QEN/ QW m)/Q) = D(Qn)/QW m)) - F(Q)/Q) .
On the other hand

DQEN/ QW m ) DQW m)/Q) = D(QE&.)/Q)
hence
M =DQE)/QTFQEN/Q/DQW m)/Q)
=FHQE&)/Q/PQW m)/Q)
=np./s/d p.t
=n'"d p%

(provided that ¢'=0 for m<0 and e¢'=1 for m>0).
From the above, we get the following proposition.

PROPOSITION 1. Let m, n be as above and Q(&,) D QW m)DQ, then

Fn = F(QEa)/Q) = Fn8m+++ s o= 1A=E0),
M = F(QE.)/QW ™)/Q) = npo/r/d pt
=n'"d P,
provided that
g {m (m =1 (mod. 4))
4m (m=2,3 (mod. 4))
1, for m>0

n' =n/|d|, e’={
0, for m <O.

2. A decision of ambigous ideals mod 9. Let o be the generator of
‘the Galois group of Q(¢,)/Q such that o/ m°= —+/m, and ¥ an ambigous
ideal mod. M prime to n, then

A = (a), A =@, acQW m), a=1 (mod. M).

Here we set
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a= A A, p are integers of Q(s/ m) prime to .

I
Now from a =1 (mod. M)

A—p=0 (mod. M) (2)
a+l . a—1 _ A—p
2 1= 2 7 2u (3)

hold. On the other hand, from A°~'=(a) we get
Na = =1 (N: the norm Q(/ m)— Q)
here
if m <0, Na>0
if m>0, from a=1 (mod. p.) N(@) >0
hold. Therefore, for any cases we can set
Na =1, a°=1/a.

Now from

2 .a%*_—

a+l ' _a'+1.. 1lla+l a+1l
( 2‘)‘ 2 W= g U

a+1
2
Therefore, if we set all prime numbers in d, p, p,*++, o and p, =i in

Q(/ m), then we get

U is an o-invariant ideal of Q(+/ m) which is not always prime to .

1
DU = (@) whple -+ -yl (4)

(provided that a is a rational number, where A,=0 or 1).
In the following lines we decide U for each case of 7 (mod. 4).

I. m=1 (mod. 4)
In this case, d=m is prime to 2, and » is prime to 2 or 4|n. Therefore
from 1, proposition 1 we get

IN is prime to 2 or 4|M and
&, is prime to 2 or 2||M .
If n is prime to 2, then so is M. Hence from (2), (3) we get
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agl =1 (mod. M)

and from §,|M,

Al =1 (mod §)

holds.
If 4|n, then 4|9, 2||F,. Let M be the maximal part of M relatively
prime to n, then as above

‘“2‘1 =1 (mod M)
holds.
Furthermore, from 2|2u, A—p=0 (mod. 4) and (3), we get
a;_l =1 (mod. 2),
therefore from &, |(2)M’
g;—l =1 (mod. &.,).

Thus we have the following proposition.

PROPOSITION 2. Let m be m=1 (mod. 4) and U an ideal of an ambigous
ideal class mod. M in Q(v/ m)/Q, ie.

At =(a), ac Qlw/ m), a=1 (mod. M)

then
“;1 =1 (mod. §,)
a+1 .
and IR A are both prime to n and d, now from (4) we have
a-;l A = (a), a is a rational number prime to n
a . . . —
and A = (—OLTFT_) is principal in Q(/ m)
2
a  _
‘?’_l— =a (mod 8,,)

2
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II. m=3 (mod. 4)

In this case, d=4mpt, 4|n, 2|M. For the maximal part M of M which
is prime to #n, as by the case of I, we get

a+1
2

=1 (mod. M).

For mod. 2, we set (2) =9 in Q(/ m), » = (2, 1+4/m) and investigate it
corresponding to the following cases.
Do, k=012

a ..
Then ZkLﬂl is prime to 2 and from

a+l V., a+l
( Ok+1 )QI = ok+1 A

%:%%I is prime to n especially to d. Therefore (%E}—) A is a o-invariant

ideal prime to d. Now from (4), we have

%2{ = (a), a is a rational number prime to »
and
A= (—a%~) is principal in Q(v/ m).
o onery @F1
i) | =5

Then p|| atl holds. And we can set

2k+1
a+1 I}
B="gem =7
By =x + Y/ M

provided that x,y,b are rational integers, b is prime to n, and B, is an
integer in Q(s/ m ) satisfying the condition p|3,.

Now from p=(2, 1++/m), 9|8, x, y must be both odd numbers, because
if x, y are both even then 2|8, if x is odd, and y is even ie. x =2s+1
y=2t (s, ¢ are rational integers), then from
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Bo=2s+1+2t/m =2(s+ta/ m)+1, v {8,

and if x is even, y is odd, i.e. £=2s, y=2¢t+1 (s, ¢ are rational integers) then
from

By =2s+ Qt+1)/ m
=206+t m)+/ m, PtB,.
We have then
Bi?=(@+1)“=a=1 (mod M)
especially
Bi°=1 (mod.?2).
On the other hand we have

a1
P2y, pllz—yy/ m,
B =1 (mod. 2).
Therefore the case ii) does not happen. As was stated above, we have the
following proposition.

PROPOSITION 2. Let m be m =3 (mod. 4) and A an ambigous ideal
of an ambigous ideal class mod. M in Q(/ m)/Q ie A '=(a), ac Qv m),
a+l

2

is even, hence

a=1 (mod. ED?) Then, the exponential index of v for

we can set P || %1— (£=0,1,2,--+). And C;j:nl

of QW m) prime to n. Therefore again from (4), we get

A is a o-invariant ideal

a+1

2k+l

A=(a), A= ) is principal in Q(/ ™)

_a
a+1

a is a rational number prime to n.
III. m=2 (mod. 4)

In this case, we have d =4mp%, n=2'-n, ¢ =3, n, odd). And if we
set 2 =p? in Q(4/ m ), then
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p=@2 /m)
" ln, pla/d, pIM.

Now we set

8= a+l _ Mp _ AN—pt2p
2 2p 2p

then from M|A—p, p*|A—p and p?||2p
PIN—p+2p

holds. Therefore B is prime to p, and for the maximal part M of M which
is prime to 2, we have as above

a+1l
2

=1 (mod. M).

Hence B is prime to 7, and especially prime to d. And (8)¥ is a o-invariant
ideal of Q(3/ m) prime to d, therefore

BUA = (a), a is a rational number prime to n

holds. Consequently, we have the following proposition :

PROPOSITION 2”. Let m be m=2 (mod. 4), A an ideal of an ambigous
ideal class mod. M of Q(/ m), i.e.

A = (@), ac QW m), a=1 (mod. M)
then

a+1
2

A = (a), a is a rational number prime to n

and

A = (f:]_) is principal in (Q /).

Now in consideration of the premises, for any cases we have that ¥ is principal

in QW m).

3. An explicit representation for Tannaka-Terada’s principal ideal
therem., In the following we consider according to three cases of 2.

2. 1. From the proposition 2 we get
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a a _
QIZ( P ), arl =94 (mod. &,)
2

and, a is a rational number prime to #.
Now from S. Takahashi [5], there is an explicit form of an unit which
satisfy

a= E(d) (mod. &,).

Therefore
a
ﬁ =qa= E(a) (mod %n)
2
and

A~1 (mod. &,).

2. II. From the proposition 2" we get

a
A= a+1
and if we set 8= a—j—f~ , then B is an integer of Q(s/ m ) prime to n. Now
L 1—e _ a+1l _ v
Bt =(a+1) = il - 8= 1 (mod. M) .

And if we set 8 = z+y./ m (x,y are rational integers), then from
Br=1 (mod M),
2y =0 (mod. M)
holds. Furthermore, from &,|M, 2 F.
¥y m =0 (mod. F./(2)
holds. On the other hand we have
x ==y (mod. 2), because B is prime to p = (2, 1+./ m ).

If x, y are both even, then 2|8, and if x,y are both odd ie x=2s+1,
y=2¢t+1 (s, ¢t are rational integers) then
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B=2s+1+ @Qt+1)s/ m =2(s+t/ m)+(A+/m), p|B.

In the following we consider according to the cases where x,y are even or
odd respectively.

i) x: odd, y: even

In this case y+/m =0 (mod. 2) holds, so yo/m =0 (mod. &,) and
B = x+ys/ m are prime to n especially prime to &,, so that x is prime to
&= and n. Therefore

B=xz (mod. §,).
Now from S. Takahashi [5], there is a unit satisfying the congruence equation
z = E(x) (mod. Fn).
For this unit we get
B =E(x) (mod. F.)
and

A~1 (mod. F,) in Q,).

il) x: even, y: odd

It we set n = 2" +n, (n,: odd), so « is prime to n, because B=x+ys/ m
is prime to n and ya/ m =0 (mod. &,/(2)). Therefore the following linear
congruence equations have the solution %, and % relatively prime to n

kxr=1 (mod. ny)
{ ky=1 (mod. 2).
For this %
kB = kx + kys/ m =1 (mod. F./(2))
{ kB = kx + kyy/ m =4/ m (mod. 2)
hold. Furthermore, from 4|n

(5)

and
Na e —}—(iJTﬁ +1)

holds.
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On the other hand =+/—m +1/2 is an integer, because —m =1 (mod. 4)

hence o/ m =7 (mod. 2) holds. So we have from (5) the following congruences

E8=1 (mod. &,/(2))

. (6)
kB =i (mod. 2).
Let n=2".n,=2".ps pf*++ . pi* be, where p, are all odd prime numbers and
e, # 0. Then we have
g}TL:Z%m%m"'%z’t, {S:pt:(l_gﬂt)'
Now we put
t
].:_[ (1 §4§m >

= ];[1 (é‘p,_§4)
2 = H (1_§4§m§m)

> F :[[ Cmgﬂ; §4) ( 7 )
4,5 (1,
((Z,7): all combinations of two different numbers from 1,2,+--,%)
E/C :( H (1 ;4:9; c° CW) > Fk
iy,

I &---
((i,j,"',

é‘m _Cti)
(B, dyvoe,l
l): all combinations of k£ difierent numbers from 1,2,-:-,¢)
Ez=1_§4§m"'z:pn t =l ln— &
Then, E,E,---,E, F,F.

.o
2y

F, are units in Q(¢&,).
Generally it is well known that if » is a natural number which contains
is a unit.

two or more prime numbers, and ¢ is a primitive root of unity, then 1 — ¢
Therefore

1 - {:4:17( ¢
Cp‘gp) e

'.é‘pz’

Cm =& =86 (Eip - é‘m -1
(k=1,2,+++,¢)

are all units. And furthermore, we set
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E F,E,F,---E,_,F, ) .
'F1E2F3E4...FL_1Et (if ¢t is even)
E =
E F,E,---F,_|E,
F,E,F,---E,_,F,

(f ¢ is odd)

Then E too is a unit in Q(¢,). Now we put for fixed ¢ from 1,2,--

follows

E = EY)’E?) 5 EP=1-— §4§p.

F,=FF, FP=f,—&

E,=EVPED | E» = II A=&itie-+ 80

Gyeenyl)

F,=FPFP , FP= I @€&---6—80
G, oeeyl)

E, = EP
F,=FpP. (Ef = F{» =1)
Then from &, =1 (mod. &,)
E=F{" (mod. &)
EP =E®, (mod. F,)
F® =F®, (mod. §,)
hold. Therefore, from (8), (9), (10)

E“’E(”F,ﬁ‘)ﬂ“ e
= Fii)Ffi)E&i)Egi) .= 1 (mod. &,),

G=1,2,+++,0)
E=1 (mod. &,/(2)).

In the next we show that E=1{ (mod. 2). It holds

97

(8)

-t as

(9)

(10)
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1_§4Cm"'§m —
] é‘p.é‘w’ * 'Cp;_§4 —C4 <m0d 2)

1 /¢ = -8 =¢, (mod. 2).
Therefore

Ek :Flc
F., — E;

={¢% (mod.2).

And from (8) it holds
é “

E=tl =4""'=¢, (mod. 2).

Therefore from (11), (12)
E=1 (mod. §./(2)
E=i (mod. 2).
And from (6) we have

B=E (mod &.).

8V

(12)

(13)

Now again take the unit E(k) in Q(¢,) satisfying 2 = E(k) (mod. &,) according

to S. Takahashi [5]. Then

-o-(42)
kB _ E
& T ER (mod. 3,)

A~1 (mod. F,) in Q(&,).

2. III From the proposition 2 we have

a
2[_( a+1 )
2
and put
a
8= a+1
2

B is an integer of Q(s/m ) which is prime to n, and
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Bl=(a+])"=a=1 (mod M).
Therefore if we put

B =zx+ ys/ m (x,y are rational integers)

then

Ba_lzx;y«/ﬂ__l_;_iﬁy%%zo (mod. M) .

x+y m
So
29/ m =0 (mod. M)
and x is prime to n

y/m =0 (mod. F./(2)). (14)

In the following we consider according to the cases where y is even or odd
respectively.

i) y: even
In this case it holds from (14),
y/ m =0 (mod. &),
o)

B=xz (mod. &,)

and x is prime to n. Therefore take again a unit in Q(¢,) satisfying x=E(x)
(mod. &,). Then

A=(B), B=x=Ex) (mod. F,)
so it holds
A~1 (mod. F, in Q,).
if) y: odd

Write n = 2'-n,, n, being odd. Then the following linear congruence
equations have the solution 2 which is prime to n

kx=1 (mod. n,)
k=1 (mod. 2)
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so, for 8 = x+y/ m
kB = kx+kyy/ m =14/ m (mod. 2)
{ kB = kx+kyy/ m =1 (mod. §./(2))
hold. (phr. §./(2) |7, y&/ m =0 (mod. &,/(2)).

Now we write m = 2m’ (m’ is odd). Here, if m’ =1 (mod. 4) holds

(15)

m =2 =2 Wm =1 in QE.)
and /7" —1/2 is an integer in Q(v/77)C Q(E,)
so Jm=a"2 (mod.2).
And if m =3 (mod. 4) holds
Nm =/ 2i=2(/m —i)

and /m —i/2= 1 (A/—m" +1) is an integer, because —m’'=1 (mod. 4)

21
SO m =427 (mod. 2).
On the other hand take
ta= 0 € Q)
then
N N2
gS + é’B ~/‘2— + 1+i
_/2At) /T
- 2 2
=2
Therefore

N2 —N2i=y21-1)= N8
=G+ —8-0
=& (1—¢) = 287 =0 (mod. 2).
From the above we have for any cases

14/ m=14+42 (mod 2).
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Now 144/ 2 is a unit in Q(¢,), and has the following representasion.
1+0/ 2 =1+ 8+, t=-1, td=—&"
=1+& —&.
On the other hand
A+ & — A —&)

LHg—f-G—G+8
--a-g,

hence

R el

In the following we write

Y
E,=1+42 =1
so from (15)
kB = E, (mod. 2)

(16)
BB=1 (mod. F./(2).

Now let all prime numbers contained in 7n, be p,, p,,+ -+, p, and we put

A
E= 1 2iee e,

- gs—gmgm . g4§l}¢€p;_l
E= I w et ettt

(@, j): all combinations of two different numbers from 1,2, -, %)

ooooooooooooooooo

— Es—Cnbp -+ & . Elprobp—1
E. = (z,;,I.I.,D S T T S S

(@, 4,+++,0): all combinations of % different numbers from 1,2,-..,%)

ooooooooooooooooo

E = Cs_z;mgpz"'gm . §4§p"“§m_1
‘ Cg+C4§p."'Cm g4"‘§p¢§pi"'§m.
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Now
& — :me;' ° Zp; = gs(l - :gé‘m e é‘p;)

G+ Lalpe e by =01 — &850+ - E)
Eabpevrbn—1
Eo— Enlnr oo Cn = Eu(1 — L0l e+ - Ew)

are all units. Therefore E,, E,,++ -, E, are all units in Q(¢,). Now, for fixed
7 from 1,2,++-,¢ we put

(i Cs_g §4§p -1
— (1) (i) (1) — P, 't
E=EPED. EP=uite, t-tn

(i Cs"é‘ é‘ C4§p§p-_1
= E® E®, () — pbn & 1y
E=EPED, EV=1 i, t—tt,

E.=EPEP, EP = I Es—Enlp -+ - En . Lilp e Cu—1

ey EHELpc o En Lm Gl by
E,=EP.

Then

) — &B+& =8y, . Ci8p—1
EOEI ) CS_ 1 §g+§4§m §4 “gp‘

§§+§4 . gs"l . é‘4—1
&—1 &G+8 &—1

=1 (mod. §,)

and for £ =2,3,---,¢

() — Eo—ECn&p v - En, . Cuilp s Cn—1
Ek UI]':*) §§+§4 glh M gm §4_§p¢§m e° gm

— I[ Cs_é‘m' - gm . §4§m ccc é‘m—"l
(Joosol) §g+ §4§'m M gpz 54_ gm e gﬂz

=E®, (mod. §,)

holds. Therefore we have the following congruence equations



ON TANNAKA-TERADA’S PRINCIPAL IDEAL THEOREM 103

EEP=1 (modd,)

_ an
EP =E®, (mod. &,,)
(k=2,3;"'9t)'
Now if ¢ is even we put
E= E0E1E3 M Et—x
E,E,---E,
E0E§1)E§i) i El(i-)lE_g—)l
= EQEOPEPE® « «  E®
So from (17)
E=1 (mod. &,).
If ¢ is odd we put
E= EOE1E3 i Et
E2E4 M Et—l
EJEOE? - - - B
T EPES .- EDE®,
So from (17) we have
E=1 (mod. &,).
As the above we have for any cases
E=1 (mod. §,) i=12,---,¢,
accordingly
E=1 (mod. §./(2)). (18)

On the other hand we can show that E = E; (mod. 2).
Put for brevity as the following

B= Enloyee Cm

A= Es—Cnlp -+ En . Ealpo - Ep—1
§§+§4§p. e fp, §4_§m‘:p,‘ N 'é‘m )

Then
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_ &—B  &B—-1 _
B §§+§4B §4_B

A-1 1

_ &=B)(B-1)— E+EB)E—B)
&+EB)(E—B)

_ &8B—{— 8B+ B8, + 5B B+, B’
E+EB) (¢ —B)

_ 2B(1+¢& _
S @BE-B 0 et
Namely
A=1 (mod. 2)
and so
E,=E,=...=E,=1 (mod. 2)
{ (19)
E=E, (mod. 2).

From the above formulas (16), (18), (19)
EB=E (mod. §,).

Now take once again according to S. Takahashi [5] a unit E(k) in Q(.,)
satisflying the congruence equation %= E(k) (mod. &,), then we have the
following congruence which is the desired result:

kB __ E
BzT:f(k—) (mod. %¥,)

A~1 (mod. F,) in Q).
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