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§1. Introduction. Let f(x) be integrable in (—, 7) and periodic with
period 27, and let its Fourier series be

(1) S(f)=%°f+ i(ancosnx—f—bnsinnx)

=> A, (x).
n=0

The Poisson integral of f(x)

(2) fir2) = 2 [ fero P

WK

A.(x)r

n=0

satisfies the Laplace equation
2\ Ci
<r——ar ) S, x) + e fG,2)=0

inside the unit circle. Moreover if f(x) is continuous over (a,b), then f(r,x)
tends uniformly to f(x) as » — 1 over (@', %) situated inside (a,b). What can
we say about f(x), when the rapidity of approximation of f(x) by f(r, x) is
given ? If (a,b) is (—m,7) and

flrz)— flx) =0l —1),
uniformly if and only if f(x) is a constant and

S, x) — fo) = Ol — 1)

uniformly if and only if ﬂx) satisfies the Lipschitz condition, see G. Sunouchi
and C. Watari [5]. This is a saturation theorem.

We shall investigate this problem over an interval (a,d) situated inside
(—,7) in §2 of this note. In §3 and §4, we consider such problem about
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Cesaro means (C,a) and Riesz means (R,n", %) of Fourier series (1). The
cases =1 and A=/k= an integer have been solved in the previous notes [7].
However the treatment of this paper is simpler and more systematic than the
former notes.

For the sake of simplicity, we consider only uniform approximation and
norm means uniform norm over (a,b). But another norm may be treated
by the same method.

Throughout this paper, (a,b) means an interval situated in (—=,7) and
(a’, b) is any interval totally interior in (a, b).

§2. Poisson integral. For the local saturation of Poisson integral, we
show the following theorem.

THEOREM 1. (1°) If
(3) I/, 2) = fo)] =0(l=7), as r—1

over (a,b), then f(x) is a constant over (a’,b). Conversely, if ﬁx) is a con-
stant over (a, b), then (3) holds good over (a’,b).

@°) If
(4) I f(r, x) = f(o)f = O—r) asr—1,

over (a,b), then f(x)e L=(a’,b). Conversely if f(x) e L™(a, b), then (4) holds
good over (a’',b).

PROOF. Since
(A= @) — [, 20} ~ & Ada)(1—r)(1 =)

and the Fourier coefficients
Alo)(l-r1—r" 0<r<l)
are of order o(n). We have, by the localization theorem [9, p. 367], for any
&> 0,
| on [(A—7)"1{ flx) — flr, )} 1 =26, for 1 >r=r, N= N, over (a’,b),

provided that (3) is true, where ox(f) denotes the arithmetic means of the
Fourier series of f(x). Letting »—1, we get

lon (S} =26,
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where g(f) denotes the derived conjugate series of f(x). Hence, aN{§(f)}

converges uniformly to zero over (a’,b") and we get f(x) is a constant over
(a’,b"), see G. Sunouchi [6, Theorem 1].

Conversely, if f(x) is a constant in (a, b), then D> _kAx(x) is (C, 1)-summable

to zero over (a’,b) uniformly by the above cited theorem. So > kAi(x) is
Abel summable to zero over (@', ") uniformly. Taylor expansion yields

f(T‘,.ZC) :f(x) + (L_r)f,r(‘fax)’ r<< E < 1

where
Pl @)= 3 kAL €,
tends to zero uniformly over (@', ") as £ — 1. Hence
Sfr,x) — flx) =0(1—7) as r—1.
uniformly over ().

2° Iif
firix)— fle)=01-r) as r—1

uniformly over (a, b), then the same device to the above yields
ox (S ()} = 0Q)

uniformly over (¢’,5") and }"(x) e L=, b).
Conversely, if f'(x) € L*(a,b), then

o (S()} =0
over (a’,b") (see G. Sunouchi [6]) and the proof is the same to (1°).

By the same method, we may prove the following more general theorem.

THEOREM 2. (1°) If

ofuzer)
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over (a,b), then (@%)k [ is zero over (a’,b"), where

C )
on ' [_ or S, x)]rﬂ
Conversely, if ( > fis zero over (a,b), then (5) holds good over (a’,b).
@2°) If
(1—r)y!

) |rrw-rf@-a-nZo... G (2
oft]

|

k!

a k , , . a k
over (a, b), then (—,—a-n«> fel=(a,b). Conversely if (—,(37) feL>(a,b), then

(6) holds good over (a’,b").

The whole interval case has been investigated by R. Leis [4] and P. L.
Butzer and G. Sunouchi [1].

§3. (C, @) means of Fourier series. Let

« n+a nt _
As = ( M ) Tas1) ) (a> —1)
and denote the (C, ) sums and the (C, &) means of the series (1) by

Si(z, f) = Silx) = ZA;‘.‘-VAU(JC),

on(z, f) = o%(x) = Si(x)/ A%

respectively. In this case

1_&;," — 1_01_-“70%“,L as 71— oo
A n
for fixed v. Hence we may expect that the order of saturation is »~'. How-

ever, if

o3 f) — £l = o)
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over (a, b), then by the limitation theorem of (C, @)-means, we have a, =o0(n*™").
When 0 <a <1, no local condition yields a, = o(n*™"). So we have to
consider @ =1 for local saturation problem.

THEOREM 3. (1°) If
(7) |l on(@) — f@I =0o(n"), az=1,

over (a, b), then ﬁx) is constant over (@', b). Conversely if ]?(x) is constant
over (a,b), then (7) holds good over (a’, b’).

@°) If
(8) I o7lx) — f@)ll = 0@™), a=1

over (a, b), then _?(x) e L=(a’,b"). Conversely if f (x) € L*(a, b), then (8) holds
good over (a’, b").

PrROOF. (1°) If (7) holds then

%_‘:1(1— %)n(l— éi;” )Au(x)H =

v=0

over (a’,b’), for large n and N= N,. Letting n — oo, we have

N-—

(1———)»A(x)”<e/a over (a’,b).

=0
Hence || J?;(x)” = &, and € is arbitrary, we get
Fl@) =0 over (a,0).

Conversely f (x)=0 over (a,b), then the derived conjugate series
> v Afx)
v=1

is (C, a) summable (¢ = 1) to zero over (a’, b’), by the localization theorem.
By a theorem of L. Jésmanowicz [3], we get

lon(x) — (@)l = o(n™)

over (a’, ).
The proof of part (2°) is almost the same to the case (1°).
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§4. Riesz means of Fourier series. When infinite series »_a, is given,

we set the following definition and notation, see K.Chandrasekharan and
S. Minakshisundaram [2].

We set
(9) Alt)y= 2" a,
(10) Akt) = X (t—M)a, = kf E—7)F1A(m)dr, (>0
then
d .
(11 v [A¥(t)] = RA*'(8), k>1.
If

Cx(t) = t7* AM@)

tends to s as ¢ — oo, then we say that 3 _a, is (R, A\, £) summable to s.
Further we set

(12) by = M@, Blt) = X M a,
Ayt
(13) Bt) = > t—N)na, (B> 0),
Ap=t

then we have the relation
(14) t At )— AF'(t) = BE(®) .
For the later use, we need the following lemma.

LEMMA. If k>0 and
t™* BXt) = 0o(l) as t—oo, then

Cit)—s =ot™") as t— oo,

and if hypothesis is O(1), then conclusion is also O(¢t™").

PROOF. From (11) and (14) we have
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t d
A0 - Ao = B@,

and from this

Bf(x)
k+1 k+1
A1) = (B+1) ]fo LD e
If we set ‘
CHY(f) = =% A1) and D(¢) = % BX¢),
then

CHie) = (k+1) f DO g,

The relation

Ciey — ooy = 20

becomes

D¥(¢t)
Pt

Ck@t) = (k+1)j: ngt) dt +

From the hypothesis, we have
D*t) = o(1)
as t — oo, and
D). 1
[ 2an=o( )

as t —> oo, Hence

et = @+ [ ZO-gr 2D, o<—

|

)

If we put

(k+1)f—’%§fldt= ,

then
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t

CHE) — s = o(i)

as t-— oo,

The OQ) case is proved similarly.
We denote (R, #*, k) means of S(f) by
Ry, f) = Z ( 1- —”n%)k Afx).
If we have .
IR f) = f@ = o )
over (a,b), then by the limitation theorem
a, = o(n*n*) = o(n*).

Hence we have to restrict 2= Q.

THEOREM 4. (1°) If N is a positive integer and
(14) IR e, /) = fl@) | = o™, k=N
over (a, b), then

S(x) (A, even)

f(@) O odd),

is at most a (N—1)-th algebraic polynomial over (a’,b’). Conversely if (15)
is true over (a,b), then (14) holds good over (a’ .,b).

(15)

(2°) If N is a positive integer and
(16) | Ry (x, ) — f(@)ll = O#n™, k=2n
over (a,b), then
FMx) (N, even)
17) ~
) (A, odd),

belongs to the class L= over (a',b"), and conversely if (17) is true over (a,b),
then (16) holds good over (a’, b").
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PROOF. (1°) We suppose
I Ru (. f) — f(@)] = o(n™)
over (a, b). The Fourier series of

[ f(@) — Rea, f)) ~ nz{l - (1 - —)f Af) + w3 Afa)

A
n v=n

and its Fourier coefficient is o(n). By the above method
| o& [2* {f(x) — RA(x, )} =2& for n=n,, N=N,,
over (a’,b’). Letting n— oo, we have
I ok (SOOI =28 (N=N,) (A, even)

or

o {SMAHY =26 (N=N,) (O, odd).

Hence we get the conclusion, see Sunouchi [6]. Conversely if we suppose
that (15) is true, then by the localization theorem,

(18) >k Ax)

is (C, k)-summable to zero over (a’,d") uniformly. From the second theorem
of consistency, (18) is (R, n*, k)-summable to zero over (a’,5") uniformly also.
Hence by the lemma,

| Ry x, f) — f@)]l = o(n*)

over (a’, b").
(2°) This case is proved almost the same. So we omit the detail.

By the same method, we get the following theorem for fractional .

THEOREM 5. (1°) If
19) | RZ(x, /) — f@)ll = o(n™), k=N

over (a,b), then

(20)

over (a’,b"), and vice versa.



SATURATION IN THE LOCAL APPROXIMATION 25
2% If
(21) | Rz, f) — f@l = 0™, =\

over (a, b), then

N

(22)

( ) "A(x)H_O(l)

=1

over (a’, b"), and vice versa.

In this case, we can also characterize the class by the original function.
For the whole interval case, see [8].
We write, for any positive integer s,

@3 o) = A% a2 = 3 (<0 § )t -2
then

glz, ) = (—=1)° 2% i A (x) sin® vt .

v=1

THEOREM 6. If

249

j‘é{l - (%)x}kvmv(x)” =0(1),

over (a, b), then

(25)

tl+7t

f A flz,2t) dt”zo(l), 0 <A< 2s

over (a’,b") and vice versa. If the hypothesis is O(1), then the conclusion is
also O(1).

PROOF. If (24) is true, then
(26) | R e, f) — fll = o(n™), k=2
over (a’, b). On the other hand, by (23),

n-1

RiMt, ) = (=124 % {1 - (w) } Ae(z) sin® ¢

and
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R‘tlﬂﬁ 9 g - (—1)82282{ ( )} Af) f Sliiumf

However we get

“ sin® vt “ sin® u
(~vyze [ SR G = (aygeyr [T gy

If 0 << N\ < 2s, the last integral is convergent, and we put this ¢2*. Hence
RA t n-1 » Ak
[ %D 4 Z{l— (7) VA7)
v=1

converges uniformly to zero over (a,b).

We write
" Ry, 9) g(®)

_[RGD g, f Rt a=s0) , [ RGA=o0 4,

1+7L t1+l tl T A+

= 11 + 12 + Is »
say. If we fix a small 8, then
R, ) — &) = o(n™) (k=N)

uniformly over £¢(0,8) and x ¢ (a’,b"). So
8
Ll S o) [ 25 = otnn) = oD).

Since ¢(¢) belongs to the class L(—m, ), Ry*(¢, g) converges in mean to ¢(Z)
on (—m, 7). Hence,

|| §1ij§f®wdt =o0(l).

t1+l

On the other hand, by (26), ¢(#) belongs to the class lipA. By the definition
of Ry¥t, g) (see the formula following (26)),

l
lraatl Ri‘l,k(t’g)] :07 l:0>1’2a"'7[)\'], 7\'<23
L t=0
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and Taylor expansion yields

[A1+1

R4z, g)} , 0<6<p).

t=0

al°
R?z'k(l% ,(/) = M [atmﬂ

From the approximation order of R}*(t,¢9) and the Bernstein theorem

a[l] 1 Ak [A]1+1-1
{WR"‘ (¢, g)]t_g =o(n ).
Hence
I " A, [A1+1-1
il = | e o™ dt
= o(n””“‘")f MM gt = o(1).
1]
So
ot
@7) f f,(f dt = o(1)

n-1

uniformly over (a’, b").

Conversely, we suppose that (27) is true over (a,b). For a fixed n, the
N-th (C,\)-means of Fourier series of the left member of (27) is

pl v \' sos [ sin® ve
E(l—w) A,,(x)(— 1) 2 J;_‘Tdt ,
and this is small for large N over (a’,4’) uniformly. Letting #n — oo, then
N-1 v A
— A
,,Z=:' (1 N ) A, (x)

converges to zero uniformly over (a’, b). Thus we can prove the theorem
for o(1). Since the case O(1) is treated by the similar method, we omit details.
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