GENERATION OF SOME DISCRETE SUBGROUPS OF SIMPLE ALGEBRAIC GROUPS

Eilchi Abe

(Received March 10, 1965)

1. Let G be a connected semi-simple algebraic group over the field C of complex numbers such that defined over the field Q of rational numbers and of Chevalley type (i.e. whose Lie algebra is anti-compact). Then G has a uniquely determined Z-structure (i.e. the structure of group scheme over the ring Z of rational integers) satisfying a proper condition (cf. C. Chevalley [2]). Denote by G_{Z} the group consisting of the Z-rational elements of G with respect to the structure. Suppose G is simply connected and simple. Let Σ be the system of roots of G with respect to a Cartan subgroup of G. Then G is isomorphic to the algebraic group generated by the symbols $x(r, t)(r \in \Sigma$, $t \in C$) (as an abstract group) with the following relations (A), (B) and (C) when the rank of G is >1 and (A), (B^{\prime}) and (C) when the rank of G is $=1$ (cf. R. Steinberg [5]).

$$
\begin{equation*}
x(r, t) x(r, u)=x(r, t+u) \quad(r \in \Sigma ; t, u \in C) \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
(x(r, t), x(s, u))=\prod_{i, j} x\left(i r+j s, c_{i, j, r, s} t^{i} u^{j}\right) \quad(r, s \in \Sigma ; r+s \neq 0), \tag{B}
\end{equation*}
$$

where (x, y) is the commutator $x y x^{-1} y^{-1}$, the product is taken over all pairs (i, j) of positive integers such that $i r+j s$ is a root, the pairs being arranged so that the roots $i r+j s$ form an increasing sequence with respect to a fixed order in Σ, and where $c_{i, j ; r, s}$ are integral constants depending only on Σ. We define $w(r, t)=x(r, t) x\left(-r,-t^{-1}\right) x(r, t)$ and $h(r, t)=w(r, t) w(r,-1)$ where t is an element of the multiplicative group C^{*} of C. Then

$$
\begin{equation*}
w(r, t) x(r, u) w(r, t)^{-1}=x\left(-r,-t^{2} u\right) \quad\left(r \in \Sigma ; t \in C^{*}, u \in C\right), \tag{B'}
\end{equation*}
$$

$$
\begin{equation*}
h(r, t) h(r, u)=h(r, t u) \quad\left(r \in \mathbf{\Sigma} ; t, u \in C^{*}\right) . \tag{C}
\end{equation*}
$$

We shall identify the group with G. Then we see that the group G_{Z} is the subgroup of G generated by $x(r, t)$ for $r \in \Sigma$ and $t \in Z$ (cf. C. Chevalley [2]). If G is of type A_{n} or C_{n}, then $G_{Z} \cong S L(n+1, Z)$ or $G_{Z} \cong S p(2 n, Z)$ and it is known that $S L(n+1, Z)(n \geqq 1)$ and $S p(2 n, Z)(n>3)$ are generated by
two elements (cf. P. Stanek [3]). In this note we improve it and prove in 2 the following

THEOREM. Let G be a connected, simply connected simple algebraic group defined over Q of Chevalley type. If G is of type $A_{n}(n \geqq 1)$ or the rank of G is >3, then G_{2} is generated by two elements. For other cases, G_{Z} is generated by at most three elements.

Further, we give in 3 an application to the adjoint groups of complex simple Lie algebras.
2. For $r, s \in \Sigma$, define the integer $a(r, s)=p-q$ where q (resp. $-p$) is the maximum (resp. minimum) integer i such that $s+i r$ is a root. Let $\Pi=\left\{a_{1}, \cdots, a_{n}\right\}$ be the fundamental system of roots with respect to a fixed order of Σ. Denote $a(i, j)=a\left(a_{i}, a_{j}\right)$ and a_{1}, \cdots, a_{n} are so labelled once for all that $a(i, i)=2, a(i, i \pm 1)=-1$ and $a(i, j)=0$ for all other pairs (i, j) with the following exceptions : $a(n-1, n)=-2$ for type $B_{n}, a(n, n-1)=-2$ for type $C_{n}, a(n-1, n)=a(n, n-1)=0$ and $a(n-2, n)=a(n, n-2)=-1$ for type D_{n} $(n \geqq 4), a(n, n-1)=a(n-1, n)=0$ and $a(n-1, n-3)=a(n-3, n-1)=-1$ for type $E_{n}(n=6,7$ and 8$), a(2,3)=-2$ for type F_{4} and $a(1,2)=-3$ for type G_{2}. The symmetry σ_{r} with respect to $r \in \Sigma$ is the permutation of Σ defined by $\sigma_{r}(s)=s-a(r, s) r$. The Weyl group W of Σ is the group generated by all $\sigma_{r}, r \in \boldsymbol{\Sigma}$. Denote by σ_{i} the symmetry with respect to $a_{i}(1 \leqq i \leqq n)$. Then W is generated by $\sigma_{i}(1 \leqq i \leqq n)$. We shall use the following relations between generators where ε and η are 1 or -1 which are uniquely determined by the roots r and s (cf. R. Steinberg [5], 7.2 and 7.3).

$$
\begin{align*}
& w(r, 1) w(s, 1) w(r,-1)=w\left(\sigma_{r}(s), \varepsilon\right), \tag{1}\\
& w(r, 1) x(s, t) w(r,-1)=x\left(\sigma_{r}(s), \varepsilon\right) . \tag{2}
\end{align*}
$$

Suppose G is not of type G_{2} and let r, s and $r+s \in \Sigma$, then the possible relations (B) are the following (cf. C. Chevalley [1], p. 36): If r, s generate a system of type A_{2}, then $r-s$ is not a root and

$$
\begin{equation*}
(x(r, t), x(s, u))=x(r+s, \varepsilon t u) . \tag{3}
\end{equation*}
$$

If r, s generate a system of type B_{2}, when $r-s$ is not a root,

$$
\begin{equation*}
(x(r, t), x(s, u))=x(r+s, \varepsilon t u) x\left(r+2 s, \eta t u^{2}\right) \text { or } x(r+s, \varepsilon t u) x\left(2 r+s, r t^{2} u\right) \tag{4}
\end{equation*}
$$

and when $r-s$ is a root,

$$
\begin{equation*}
(x(r, t), x(s, u))=x(r+s, \varepsilon 2 t u) \tag{5}
\end{equation*}
$$

Lemma 1. G_{Z} is generated by $x\left(\pm a_{i}, 1\right)$ for $1 \leqq i \leqq n$.

Let H be the subgroup of G_{2} generated by $x\left(\pm a_{i}, 1\right)(1 \leqq i \leqq n)$. Then H contains $w\left(a_{i}, 1\right)(1 \leqq i \leqq n)$ by definition. Since W is generated by σ_{i} $(1 \leqq i \leqq n)$ and for any root r, there exists an element σ of W such that $\sigma(r)= \pm a_{i}$ for some i, (1) and (2) show that H contains $x(r, 1)$ for all $r \in \Sigma$.

LEMMA 2. (R. Steinberg [4], 2.1) If W is not of type $A_{n}(n \geqq 2), D_{n}$ (n odd) or E_{6}, then W contains the central reflexion -1 defined by $r \rightarrow-r$ $(r \in \Sigma)$ and it is a power of $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ (operations from right to left).
N.B. The order of the operations σ_{i} of σ is some what different from that of [4], however we have the assertion in the same way.

Now we define $w=w\left(a_{1}, 1\right) w\left(a_{2}, 1\right) \cdots w\left(a_{n}, 1\right)$, then we have

PROPOSITION 1. If G is of type $A_{n}(n \geqq 1)$, then G_{Z} is generated by w and $u=x\left(a_{1}, 1\right)$. For other cases, G_{z} is generated by $w, x\left(a_{1}, 1\right)$ and $x\left(a_{n}, 1\right)$.

Let H be the subgroup generated by two or three elements stated in the proposition. By Lemma 1 , it is sufficient to show that H contains $x\left(\pm a_{i}, 1\right)$ for $1 \leqq i \leqq n$. First, we notice that if $a_{1}, \cdots, a_{k}(k \leqq n)$ form a system of type A_{k} and a_{j} is orthogonal to $a_{i}(1 \leqq i \leqq k-1)$ for all $j>k$, then

$$
\begin{equation*}
w^{i} x\left(a_{1}, 1\right) w^{-i}=x\left(a_{i+1}, \varepsilon\right) \quad(1 \leqq i \leqq k-1) \tag{6}
\end{equation*}
$$

Case of type $A_{n}(n \geqq 1)$: (6) holds for $1 \leqq i \leqq n-1$. Therefore $x\left(a_{i}, 1\right) \in H$ for $1 \leqq i \leqq n$. From relations $w^{n} x\left(a_{1}, 1\right) w^{-n}=x\left(-\left(a_{1}+\cdots a_{n}\right), \varepsilon\right)$ and $x\left(a_{i}\right.$, 1) $x\left(-\left(a_{i}+\cdots+a_{n}\right), 1\right) x\left(a_{i},-1\right)=x\left(-\left(a_{i+1}+\cdots+a_{n}\right), \varepsilon\right)(1 \leqq i \leqq n-1)$, we have $x\left(-a_{n}, 1\right) \in H$. Then $w^{i} x\left(-a_{n}, 1\right) w^{-i}=x\left(-a_{i-1}, \varepsilon\right)(2 \leqq i \leqq n)$ shows that $x\left(-a_{i}, 1\right) \in H$ for $1 \leqq i \leqq n$. Case of type B_{n} or $C_{n}(n \geqq 2)$: (6) holds for $1 \leqq i \leqq n-2$. Therefore, from Lemma 2 , we have $x\left(\pm a_{i}, 1\right) \in H$ for $1 \leqq i$ $\leqq n-1$ and also we have $x\left(\pm a_{n}, 1\right) \in H$. Case of type $D_{n}(n \geqq 4$, even): (6) holds for $1 \leqq i \leqq n-3$. Therefore, from Lemma 2, we have $x\left(\pm a_{i}, 1\right) \in H$ for $1 \leqq i \leqq n-2$. Since $w^{n-2} x\left(a_{n}, 1\right) w^{-n+2}=x\left(-\left(a_{n-2}+a_{n-1}\right), \varepsilon\right)$, the relation (3) for $r=a_{n-1}$ and $s=-\left(a_{n-2}+a_{n-1}\right)$ shows that $x\left(-a_{n-1}, 1\right) \in H$. Thus $x\left(\pm a_{n-1}, 1\right)$ and $x\left(\pm a_{n}, 1\right)$ are also contained in H. Case of type $D_{n}(n>4$,
odd): (6) holds for $1 \leqq i \leqq n-3$. Therefore from $w^{n-1} x\left(a_{1}, 1\right) w^{-n+1}=x\left(-a_{1}\right.$, $\varepsilon)$, we have $x\left(\pm a_{i}, 1\right) \in H$ for $1 \leqq i \leqq n-2$. From the relations $w^{n-2} x\left(a_{n}, 1\right)$ $w^{-n+2}=x\left(-\left(a_{n-2}+a_{n}\right), \varepsilon\right), w^{n-2} x\left(a_{1}, 1\right) w^{-n+2}=x\left(-\left(a_{1}+\cdots+a_{n}\right), \varepsilon\right)$ and (3), we see that $x\left(\pm a_{n}, 1\right)$ and $x\left(\pm a_{n-1}, 1\right)$ are contained in H. Case of type E_{6} : (6) holds for $i=1,2$. Therefore $x\left(a_{i}, 1\right) \in H$ for $i=1,2$ and 3 . $w x\left(a_{1}, 1\right) w^{-1}$ $=x\left(-\left(a_{1}+a_{2}+a_{3}+a_{6}\right), \varepsilon\right)$ and (3) show that $x\left(\pm a_{i}, 1\right) \in H$ for $i=1,2,3$ and 6 . From $w^{2} x\left(\pm a_{6}, 1\right) w^{-2}=x\left(\mp\left(a_{2}+a_{3}+a_{4}\right), \varepsilon\right), \quad w^{5} x\left(\pm a_{6}, 1\right) w^{-5}=x\left(\mp\left(a_{3}+a_{4}\right.\right.$ $\left.+a_{5}\right), \varepsilon$, we have $x\left(\pm a_{4}, 1\right)$ and $x\left(\pm a_{5}, 1\right)$ are contained in H. Case of type $E_{n}(n=7,8):(6)$ holds for $1 \leqq i \leqq n-4$. Therefore, from Lemma 2, we have $x\left(\pm a_{i}, 1\right) \in H$ for $1 \leqq i \leqq n-3$. Since $w^{n-3} x\left(a_{1}, 1\right) w^{-n+3}=x\left(a_{1}+\cdots+a_{n-2}\right.$ $\left.+a_{n}, \varepsilon\right)$ and $w^{n-2} x\left(a_{1}, 1\right) w^{-n+2}=x\left(a_{2}+\cdots+a_{n-1}, \varepsilon\right)$, using (3), we have $x\left(\pm a_{n-2}, 1\right)$ and $x\left(\pm a_{n-1}, 1\right)$ are contained in H. Case of type F_{4} : From $w x\left(a_{1} 1\right) w^{-1}$ $=x\left(a_{2}, \varepsilon\right), w x\left(a_{4}, 1\right) w^{-1}=x\left(-\left(a_{1}+\cdots+a_{4}\right), \varepsilon\right)$ and Lemma 2, we have $x\left(\pm a_{i}\right.$, 1) $\in H$ for $1 \leqq i \leqq 4$. Case of type G_{2} : From Lemma 2, we have $x\left(\pm a_{i}, 1\right)$ $\in H$ for $i=1,2$.

Proposition 2. If G is not of type A_{n} and the rank of G is >3, then G_{Z} is generated by $w=w\left(a_{1}, 1\right) \cdots w\left(a_{n}, 1\right)$ and $u=x\left(a_{1}, 1\right) x\left(-a_{n}, 1\right)$.

Denote by H the subgroup of G_{2} generated by w and u. It is sufficient to show that $x\left(a_{1}, 1\right)$ and $x\left(a_{n}, 1\right)$ are contained in H. If $\sigma^{k}=-1$ (cf. Lemma 2), denote by $x^{*}=w^{k} x w^{-k}$ for $x \in G_{2}$. Case of type $B_{n}(n>3)$: We have $v_{1}=w u w^{-1}=x\left(a_{2}, \varepsilon\right) x\left(a_{1}+\cdots+a_{n}, \eta\right), v_{2}=w^{2} u w^{-2}=x\left(a_{3}, \varepsilon\right) x\left(a_{2}+\cdots+a_{n}, \eta\right)$ and $v_{3}=\left(u, v_{1}\right)=x\left(a_{1}+a_{2}, \varepsilon\right) x\left(a_{1}+\cdots+a_{n-1}, 2 \eta\right), v_{4}=\left(v_{2}, v_{3}\right)=x\left(a_{1}+a_{2}+a_{3}, \varepsilon\right)$. Since, by Lemma 2, v_{2}^{*} and $u^{*} \in H$, we have $\left(\left(v_{2}, v_{3}\right), v_{2}^{*}\right)=x\left(a_{1}+a_{2}, \varepsilon\right)$ and $\left(x\left(a_{1}+a_{2}, 1\right), u^{*}\right)=x\left(a_{2}, \varepsilon\right)$ are contained in H. Therefore, from (6), $x\left(a_{1}, 1\right)$ $\in H$ and also we have $x\left(a_{n}, 1\right) \in H$. Case of type $C_{n}(n>3)$: We have $v_{1}=w u w^{-1}=x\left(a_{2}, \varepsilon\right) x\left(2 a_{1}+\cdots+2 a_{n-1}+a_{n}, \eta\right),\left(u, v_{1}\right)=x\left(a_{1}+a_{2}, \varepsilon\right)$. Since, by Lemma $2, u^{*} \in H,\left(v_{1}, u^{*}\right)=x\left(a_{2}, \varepsilon\right) \in H$. From (6), $x\left(a_{1}, 1\right) \in H$ and also we have $x\left(a_{n}, 1\right) \in H$. Case of type $D_{n}(n \geqq 4)$: We have $v_{1}=w u w^{-1}=x\left(a_{2}, \varepsilon\right)$ $x\left(a_{1}+\cdots+a_{n-2}+a_{n}, \eta\right), \quad v_{2}=w^{2} u w^{-2}=x\left(a_{3}, \varepsilon\right) x\left(a_{2}+\cdots+a_{n-2}+a_{n-1}, \eta\right)$ and $v_{3}=\left(u, v_{2}\right)=x\left(a_{1}+\cdots+a_{n-1}, \varepsilon\right)$. If n is odd, $w^{n-2} v_{3} w^{-n+2}=x\left(a_{n}, \varepsilon\right)$ and $v_{4}=\left(v_{3}, x\left(a_{n}, 1\right)\right)=x\left(a_{1}+\cdots+a_{n}, \varepsilon\right)$. If n is even, $w^{n-2} v_{3} w^{-n+2}=x\left(a_{n-1}, \varepsilon\right)$ and $v_{4}=\left(v_{1}, x\left(a_{n-1}, 1\right)\right)=x\left(a_{1}+\cdots+a_{n}, \varepsilon\right)$. Therefore $w v_{4} w^{-1}=x\left(-a_{1}, 1\right)$ and we have $w^{n-1} x\left(-a_{1}, 1\right) w^{-n+1}=x\left(a_{1}, \varepsilon\right)$ is contained in H. Case of type E_{n} ($n=6,7$ and 8): We have $v_{1}=$ wurv ${ }^{-1}=x\left(a_{2}, \varepsilon\right) x\left(a_{1}+\cdots+a_{n-3}+a_{n}, \eta\right)$, $v_{2}=w^{2} u w^{-2}=x\left(a_{3}, \varepsilon\right) x\left(a_{2}+\cdots+a_{n-2}, \eta\right), v_{3}=\left(u, v_{1}\right)=x\left(a_{1}+a_{2}, \varepsilon\right) x\left(a_{1}+\cdots\right.$ $\left.+a_{n-3}, \eta\right)$ and $v_{4}=\left(v_{2}, v_{3}\right)=x\left(a_{1}+a_{2}+a_{3}, \varepsilon\right)$. If $n=6, v_{5}=w^{7} u w^{-7}=x\left(a_{5}, \varepsilon\right)$ $x\left(-\left(a_{1}+a_{2}+a_{3}+a_{6}\right), \eta\right),\left(v_{4}, v_{5}\right)=x\left(-a_{6}, \varepsilon\right)$. Therefore $x\left(a_{1}, 1\right)$ and $x\left(a_{6}, 1\right) \in H$. If $n=7,8$, since $u^{*}, v_{1}^{*} \in H,\left(v_{4}, u^{*}\right)=x\left(a_{2}+a_{3}, \varepsilon\right)$ and $\left(x\left(a_{2}+a_{3}, 1\right), v_{1}^{*}\right)=x\left(a_{3}\right.$, $\varepsilon) \in H$. Therefore from (6), we have $x\left(a_{1}, 1\right) \in H$ and also $x\left(a_{n}, 1\right) \in H$. Case
of type F_{4} : We have $v_{1}=$ wuw $^{-1}=x\left(a_{2}, \varepsilon\right) x\left(-\left(a_{1}+\cdots+a_{4}\right), r_{1}\right), v_{2}=\left(u, v_{1}\right)$ $=x\left(a_{1}+a_{2}, \varepsilon\right)$. Since $v_{2}^{*} \in H,\left(u, v_{2}^{*}\right)=x\left(-a_{2}, \varepsilon\right) \in H$. Thus we have $x\left(a_{1}, 1\right)$, $x\left(a_{4}, 1\right) \in H$.

From Propositions 1 and 2, we have the theorem. As a special case of the theorem, we have

Corollary 1. (cf. P. Stanek [3]) $S L(n+1, Z)(n \geqq 1)$ and $S p(2 n, Z)$ $(n>3)$ are generated by two elements.

For $G=S L(n+1, C)(n \geqq 1)$, let $\Sigma=\left\{\lambda_{i}-\lambda_{j}, i \neq j, 1 \leqq i, j \leqq n+1\right\}$ be the root system of type A_{n}. Then the set of matrices $x\left(\lambda_{i}-\lambda_{j}, t\right)=I+t E_{i j}$ $\left(\lambda_{i}-\lambda_{j} \in \Sigma, t \in C\right)$ where $E_{i j}$ is the ($n+1, n+1$) matrix whose (i, j) component is 1 and all other components are 0 , is a system of generators of G which satisfy (A), (B) (or (B')) and (C). We have $G_{2}=S L(n+1, Z)$ and also our assertion. For $G=S p(2 n, C)(n>3)$, let $\Sigma=\left\{\lambda_{i} \pm \lambda_{j}, \pm 2 \lambda_{i}: i \neq j, 1 \leqq i, j \leqq n\right\}$ be the root system of type C_{n}. Then the following matrices are generators of G satisfying (A), (B) and (C): $x\left(\lambda_{i}-\lambda_{j}, t\right)=I+t\left(E_{i j}-E_{j+n, i+n}\right), x\left(\lambda_{i}+\lambda_{j}, t\right)$ $\left.=I+t\left(E_{i, j+n}+E_{j, i+n}\right), x_{(}^{\prime}-\left(\lambda_{i}+\lambda_{j}\right), t\right)=I+t\left(E_{j+n, i}+E_{i+n, j}\right), x\left(2 \lambda_{i}, t\right)=I+t E_{i, i+n}$, $x\left(-2 \lambda_{i}, t\right)=I+t E_{i+n, i}$. We see that $G_{Z}=S p(2 n, Z)$ and we have our assertion. Note that $x\left(\lambda_{j}-\lambda_{i}, t\right), x\left(\lambda_{i}+\lambda_{j}, t\right)$ and w are the matrices denoted by $R_{j i}(t)$, $T_{i j}(t), T_{i}(t)$ and D respectively in [3].
3. Let G be the adjoint group of a complex simple Lie algebra g (i.e. the connected component of the identity of the group of all automorphisms of g. We fix a canonical base $\left(H_{1}, \cdots, H_{n}, X_{r}, r \in \Sigma\right)$ of g defined by Chevalley (cf. [1], Th. 1). Then we may suppose that G is a linear algebraic group defined over Q in $G L(N, C)$ where N is the dimension of g. We denote by G_{2} the subgroup of G consisting of the elements with integral coefficients and determinants $=1$. Then we have

COROLLARY 2. Let G be the adjoint group of a complex simple Lie algebra and suppose that G is a linear algebraic group with respect to a canonical base of \mathfrak{g}. If g is not of type $D_{u}, n \geqq 4$ and even, then $G_{\%}$ is generated by two elements.

Denote by $x(r, t)=\exp t \operatorname{ad} \mathrm{X}_{r}, r \in \Sigma, t \in C$, and by $G_{Z}^{\prime \prime}$ the subgroup of G generated by $x(r, 1), r \in \Sigma$. Then G_{Z}^{\prime} is also generated by two elements by the theorem. For G_{z}^{\prime} is the homomorphic image of \widetilde{G}_{Z} where \widetilde{G} is the universal covering group of $G . G_{Z}^{\prime}$ is a normal subgroup of G_{Z} and further we shall show the following

Lemma 3. If \mathfrak{g} is of type A_{n} (n even), E_{6}, E_{8}, F_{4} or G_{2}, then $G_{Z}=G_{Z}^{\prime}$. If g is of type $A_{n}(n$ odd $), B_{n}, C_{n}, D_{n}(n \geqq 5$, odd $)$ or E_{7}, then G_{z} / G_{Z}^{\prime} is the cyclic group of order 2. If g is of type $D_{n}(n \geqq 4$, even $)$, then G_{2} / G_{Z}^{\prime} is the direct product of two cyclic groups of order 2 .

Denote by H_{Z} the subgroup of G_{Z} generated by $h(\chi)$, where $h(\chi)$ is the automorphism of g defined by $H_{i} \rightarrow H_{i}, X_{r} \rightarrow \chi(r) X_{r}, \chi$ being a homomorphism of the additive group P_{r} generated by the roots of \mathfrak{g} into the multiplicative group $U=\{1,-1\}$, and by $H_{Z}^{\prime}=H_{Z} \cap G_{Z}^{\prime}$. Then H_{Z}^{\prime} is the group generated by $h(\chi)$ such that χ can be extended to a homomorphism of the additive group P of the weights of the representations of g into U. We have $G_{z /} / G_{Z}^{\prime} \cong H_{Z /} / H_{Z}^{\prime}$ (cf. Cvevalley [2]). Since [$H_{z}: H_{z}^{\prime}$] is equal to the order of. $\operatorname{Hom}\left(P / P_{r}, U\right)$ (cf. Chevalley [1], p. 63), $G_{z /} / G_{z}^{\prime}$ is the elementary abelian group of order 2^{d} where $d=n-\operatorname{rank} A, A$ being the (n, n) matrix with coefficients in $Z / 2 Z$ whose (i, j) component is the image of $a(i, j)$ in $Z / 2 Z$. From this we have the lemma.

When $G_{z}=G_{\prime}^{\prime}$, the corollary is trivial by theorem. When G_{z} / G_{z}^{\prime} is the cyclic group of order 2 , let w, u be the generators of G_{z}^{\prime} which are the canonical image of the generators of G_{Z} denoted by the same letters in 2, h be an element of H_{z} not contained in H_{z}^{\prime}. Then wh and u generate the group G_{Z}.

In the case of type $D_{n}, n \geqq 4$ and even, we have not known whether the group G_{2} may be generated by two elements or not, but from theorem, we have that G_{Z} is generated by three elements.

REmARK. Let G be the group consisting of the matrices x such that ${ }^{t} x J x=J$, det $x=1$, where $J=\left(I^{I}\right), I$ being the unit matrix of degree n and G_{Z} be the subgroup of G consisting of the matrices with integral coefficients. Since G_{Z} is the group of Z-rational elements with respect to an admissible Z-structure of G, we have, in the same way as the proof of corollaries 1 and 2, that if $n>3, G_{Z}$ is generated by two elements. (Note that in this case $G_{Z /} / G_{Z}^{\prime}$ is a cyclic group of order 2.) The same reasoning doesn't hold for the classical group of type B_{u}.

References

[1] C. Chevalley, Sur certains groupes simples, Tôhoku Math. Journ., 7(1955), 14-66.
[2] C. Chevalley, Certains schémas de groupes semi-simples, Séminaire Bourbaki, 13 (1960/61), No. 219.
「3] P. Stanek, Concerning a theorem of L. K. Hua and I, Reiner, Proc, Amer, Math, Soc., 14(1963), 751-753.
[4] R. Steinberg, Generators for simple groups, Canad. Journ. Math., 14(1962), 277-283.
[5] R. Steinberg, Générateurs, relations et revêtments de groupes algébriques, Coll. théorie des groupes algébriques, Bruxelles, (1962), 113-127.

TÔHoku University.

