GENERATION OF SOME DISCRETE SUBGROUPS OF SIMPLE ALGEBRAIC GROUPS

EIICHI ABE

(Received March 10, 1965)

1. Let G be a connected semi-simple algebraic group over the field C of complex numbers such that defined over the field Q of rational numbers and of Chevalley type (i.e. whose Lie algebra is anti-compact). Then G has a uniquely determined Z-structure (i.e. the structure of group scheme over the ring Z of rational integers) satisfying a proper condition (cf. C. Chevalley [2]). Denote by G_Z the group consisting of the Z-rational elements of G with respect to the structure. Suppose G is simply connected and simple. Let Σ be the system of roots of G with respect to a Cartan subgroup of G. Then G is isomorphic to the algebraic group generated by the symbols x(r, t) ($r \in \Sigma$, $t \in C$) (as an abstract group) with the following relations (A), (B) and (C) when the rank of G is >1 and (A), (B') and (C) when the rank of G is =1 (cf. R. Steinberg [5]).

(A)
$$x(r,t) x(r,u) = x(r,t+u) \quad (r \in \Sigma; t, u \in C),$$

(B)
$$(x(r,t), x(s,u)) = \prod_{i,j} x(ir+js, c_{i,j;r,s} t^i u^j) \quad (r, s \in \Sigma; r+s \neq 0),$$

where (x, y) is the commutator $xyx^{-1}y^{-1}$, the product is taken over all pairs (i, j) of positive integers such that ir+js is a root, the pairs being arranged so that the roots ir+js form an increasing sequence with respect to a fixed order in Σ , and where $c_{i,j;r,s}$ are integral constants depending only on Σ . We define $w(r, t) = x(r, t) x(-r, -t^{-1}) x(r, t)$ and h(r, t) = w(r, t) w(r, -1) where t is an element of the multiplicative group C* of C. Then

(B')
$$w(r,t) x(r,u) w(r,t)^{-1} = x(-r,-t^2 u) \quad (r \in \Sigma; t \in C^*, u \in C),$$

(C)
$$h(r,t) h(r,u) = h(r,tu) \quad (r \in \Sigma; t, u \in C^*).$$

We shall identify the group with G. Then we see that the group G_z is the subgroup of G generated by x(r,t) for $r \in \Sigma$ and $t \in Z$ (cf. C. Chevalley [2]). If G is of type A_n or C_n , then $G_z \approx SL(n+1, Z)$ or $G_z \approx Sp(2n, Z)$ and it is known that SL(n+1, Z) $(n \ge 1)$ and Sp(2n, Z) (n > 3) are generated by two elements (cf. P. Stanek [3]). In this note we improve it and prove in 2 the following

THEOREM. Let G be a connected, simply connected simple algebraic group defined over Q of Chevalley type. If G is of type A_n $(n \ge 1)$ or the rank of G is >3, then G_z is generated by two elements. For other cases, G_z is generated by at most three elements.

Further, we give in 3 an application to the adjoint groups of complex simple Lie algebras.

2. For $r, s \in \Sigma$, define the integer a(r, s) = p-q where q (resp. -p) is the maximum (resp. minimum) integer i such that s+ir is a root. Let $\Pi = \{a_1, \dots, a_n\}$ be the fundamental system of roots with respect to a fixed order of Σ . Denote $a(i, j) = a(a_i, a_j)$ and a_1, \dots, a_n are so labelled once for all that a(i, i) = 2, $a(i, i \pm 1) = -1$ and a(i, j) = 0 for all other pairs (i, j) with the following exceptions: a(n-1, n) = -2 for type B_n , a(n, n-1) = -2 for type C_n , a(n-1, n) = a(n, n-1) = 0 and a(n-2, n) = a(n, n-2) = -1 for type D_n $(n \ge 4)$, a(n, n-1) = a(n-1, n) = 0 and a(n-1, n-3) = a(n-3, n-1) = -1 for type E_n (n=6, 7 and 8), a(2, 3) = -2 for type F_4 and a(1, 2) = -3 for type G_2 . The symmetry σ_r with respect to $r \in \Sigma$ is the permutation of Σ defined by $\sigma_r(s) = s - a(r, s)r$. The Weyl group W of Σ is the group generated by all σ_r , $r \in \Sigma$. Denote by σ_i the symmetry with respect to a_i $(1 \le i \le n)$. Then W is generated by σ_i $(1 \le i \le n)$. We shall use the following relations between generators where ε and η are 1 or -1 which are uniquely determined by the roots r and s (cf. R. Steinberg [5], 7.2 and 7.3).

(1)
$$w(r,1) w(s,1) w(r,-1) = w(\sigma_r(s), \varepsilon),$$

(2)
$$w(r,1) x(s,t) w(r,-1) = x(\sigma_r(s), \varepsilon).$$

Suppose G is not of type G_2 and let r, s and $r+s \in \Sigma$, then the possible relations (B) are the following (cf. C. Chevalley [1], p. 36): If r, s generate a system of type A_2 , then r-s is not a root and

$$(3) \qquad (x(r,t),x(s,u)) = x(r+s,\mathcal{E}tu).$$

If r, s generate a system of type B_2 , when r-s is not a root,

(4)
$$(x(r,t), x(s,u)) = x(r+s, \varepsilon tu) x(r+2s, \eta tu^2)$$
 or $x(r+s, \varepsilon tu) x(2r+s, \eta t^2u)$

È. ABÈ

and when r-s is a root,

(5)
$$(x(r,t), x(s,u)) = x(r+s, \mathcal{E}2tu).$$

LEMMA 1. G_z is generated by $x(\pm a_i, 1)$ for $1 \leq i \leq n$.

Let *H* be the subgroup of G_z generated by $x(\pm a_i, 1)$ $(1 \le i \le n)$. Then *H* contains $w(a_i, 1)$ $(1 \le i \le n)$ by definition. Since *W* is generated by σ_i $(1 \le i \le n)$ and for any root *r*, there exists an element σ of *W* such that $\sigma(r) = \pm a_i$ for some *i*, (1) and (2) show that *H* contains x(r, 1) for all $r \in \Sigma$.

LEMMA 2. (R. Steinberg [4], 2.1) If W is not of type A_n $(n \ge 2)$, D_n (n odd) or E_6 , then W contains the central reflexion -1 defined by $r \to -r$ $(r \in \Sigma)$ and it is a power of $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n$ (operations from right to left).

N.B. The order of the operations σ_i of σ is some what different from that of [4], however we have the assertion in the same way.

Now we define $w = w(a_1, 1) w(a_2, 1) \cdots w(a_n, 1)$, then we have

PROPOSITION 1. If G is of type A_n $(n \ge 1)$, then G_z is generated by w and $u = x(a_1, 1)$. For other cases, G_z is generated by w, $x(a_1, 1)$ and $x(a_n, 1)$.

Let *H* be the subgroup generated by two or three elements stated in the proposition. By Lemma 1, it is sufficient to show that *H* contains $x(\pm a_i, 1)$ for $1 \leq i \leq n$. First, we notice that if a_1, \dots, a_k $(k \leq n)$ form a system of type A_k and a_j is orthogonal to a_i $(1 \leq i \leq k-1)$ for all j > k, then

(6)
$$w^i x(a_1, 1) w^{-i} = x(a_{i+1}, \varepsilon) \quad (1 \le i \le k-1).$$

Case of type A_n $(n \ge 1)$: (6) holds for $1 \le i \le n-1$. Therefore $x(a_i, 1) \in H$ for $1 \le i \le n$. From relations $w^n x(a_1, 1) w^{-n} = x(-(a_1 + \cdots + a_n), \varepsilon)$ and $x(a_i, 1) x(-(a_i + \cdots + a_n), 1) x(a_i, -1) = x(-(a_{i+1} + \cdots + a_n), \varepsilon)$ $(1 \le i \le n-1)$, we have $x(-a_n, 1) \in H$. Then $w^i x(-a_n, 1) w^{-i} = x(-a_{i-1}, \varepsilon)$ $(2 \le i \le n)$ shows that $x(-a_i, 1) \in H$ for $1 \le i \le n$. Case of type B_n or C_n $(n \ge 2)$: (6) holds for $1 \le i \le n-2$. Therefore, from Lemma 2, we have $x(\pm a_i, 1) \in H$ for $1 \le i \le$ n-1 and also we have $x(\pm a_n, 1) \in H$. Case of type D_n $(n \ge 4, even)$: (6) holds for $1 \le i \le n-3$. Therefore, from Lemma 2, we have $x(\pm a_i, 1) \in H$ for $1 \le i \le n-2$. Since $w^{n-2} x(a_n, 1) w^{-n+2} = x(-(a_{n-2} + a_{n-1}), \varepsilon)$, the relation (3) for $r = a_{n-1}$ and $s = -(a_{n-2} + a_{n-1})$ shows that $x(-a_{n-1}, 1) \in H$. Thus $x(\pm a_{n-1}, 1)$ and $x(\pm a_n, 1)$ are also contained in H. Case of type D_n (n > 4,

180

GENERATION OF SOME DISCRETE SUBGROUPS

odd): (6) holds for $1 \leq i \leq n-3$. Therefore from $w^{n-1}x(a_1, 1) w^{-n+1} = x(-a_1, \varepsilon)$, we have $x(\pm a_i, 1) \in H$ for $1 \leq i \leq n-2$. From the relations $w^{n-2}x(a_n, 1) w^{-n+2} = x(-(a_{n-2}+a_n), \varepsilon), w^{n-2}x(a_1, 1) w^{-n+2} = x(-(a_1+\cdots+a_n), \varepsilon)$ and (3), we see that $x(\pm a_n, 1)$ and $x(\pm a_{n-1}, 1)$ are contained in H. Case of type E_6 : (6) holds for i = 1, 2. Therefore $x(a_i, 1) \in H$ for i = 1, 2 and 3. $wx(a_1, 1) w^{-1} = x(-(a_1+a_2+a_3+a_6), \varepsilon)$ and (3) show that $x(\pm a_i, 1) \in H$ for i = 1, 2, 3 and 6. From $w^2x(\pm a_6, 1) w^{-2} = x(\mp (a_2+a_3+a_4), \varepsilon), w^5x(\pm a_6, 1) w^{-5} = x(\mp (a_3+a_4+a_5), \varepsilon),$ we have $x(\pm a_4, 1)$ and $x(\pm a_5, 1)$ are contained in H. Case of type E_n (n=7, 8): (6) holds for $1 \leq i \leq n-4$. Therefore, from Lemma 2, we have $x(\pm a_i, 1) \in H$ for $1 \leq i \leq n-3$. Since $w^{n-3}x(a_1, 1)w^{-n+3} = x(a_1+\cdots+a_{n-2}+a_n,\varepsilon)$ and $w^{n-2}x(a_1, 1)w^{-n+2} = x(a_2+\cdots+a_{n-1},\varepsilon)$, using (3), we have $x(\pm a_{n-2}, 1)$ and $x(\pm a_{n-1}, 1)$ are contained in H. Case of type F_4 : From $wx(a_1, 1)w^{-1} = x(a_2, \varepsilon), wx(a_4, 1)w^{-1} = x(-(a_1+\cdots+a_4), \varepsilon)$ and Lemma 2, we have $x(\pm a_i, 1) \in H$ for $1 \leq i \leq 4$. Case of type G_2 : From Lemma 2, we have $x(\pm a_i, 1) \in H$ for $1 \leq i \leq 4$. Case of type G_2 : From Lemma 2, we have $x(\pm a_i, 1) \in H$ for $1 \leq i \leq 4$.

PROPOSITION 2. If G is not of type A_n and the rank of G is >3, then G_z is generated by $w = w(a_1, 1) \cdots w(a_n, 1)$ and $u = x(a_1, 1) x(-a_n, 1)$.

Denote by H the subgroup of G_z generated by w and u. It is sufficient to show that $x(a_1, 1)$ and $x(a_n, 1)$ are contained in H. If $\sigma^k = -1$ (cf. Lemma 2), denote by $x^* = w^k x w^{-k}$ for $x \in G_z$. Case of type B_n (n > 3): We have $v_1 = wuw^{-1} = x(a_2, \mathcal{E}) x(a_1 + \cdots + a_n, \eta), v_2 = w^2 uw^{-2} = x(a_3, \mathcal{E}) x(a_2 + \cdots + a_n, \eta)$ and $v_3 = (u, v_1) = x(a_1 + a_2, \mathcal{E}) x(a_1 + \cdots + a_{n-1}, 2\eta), v_4 = (v_2, v_3) = x(a_1 + a_2 + a_3, \mathcal{E}).$ Since, by Lemma 2, v_2^* and $u^* \in H$, we have $((v_2, v_3), v_2^*) = x(a_1 + a_2, \mathcal{E})$ and $(x(a_1+a_2, 1), u^*) = x(a_2, \varepsilon)$ are contained in H. Therefore, from (6), $x(a_1, 1)$ $\in H$ and also we have $x(a_n, 1) \in H$. Case of type C_n (n > 3): We have $v_1 = wuw^{-1} = x(a_2, \mathcal{E}) x(2a_1 + \cdots + 2a_{n-1} + a_n, \eta), (u, v_1) = x(a_1 + a_2, \mathcal{E}).$ Since, by Lemma 2, $u^* \in H$, $(v_1, u^*) = x(a_2, \mathcal{E}) \in H$. From (6), $x(a_1, 1) \in H$ and also we have $x(a_n, 1) \in H$. Case of type D_n $(n \ge 4)$: We have $v_1 = wuw^{-1} = x(a_2, \epsilon)$ $x(a_1 + \cdots + a_{n-2} + a_n, \eta), \ v_2 = w^2 u w^{-2} = x(a_3, \epsilon) x(a_2 + \cdots + a_{n-2} + a_{n-1}, \eta)$ and $v_3 = (u, v_2) = x(a_1 + \cdots + a_{n-1}, \varepsilon)$. If *n* is odd, $w^{n-2}v_3w^{-n+2} = x(a_n, \varepsilon)$ and $v_4 = (v_3, x(a_n, 1)) = x(a_1 + \cdots + a_n, \varepsilon)$. If *n* is even, $w^{n-2}v_3w^{-n+2} = x(a_{n-1}, \varepsilon)$ and $v_4 = (v_1, x(a_{n-1}, 1)) = x(a_1 + \cdots + a_n, \varepsilon)$. Therefore $wv_4w^{-1} = x(-a_1, 1)$ and we have $w^{n-1}x(-a_1,1)w^{-n+1} = x(a_1, \varepsilon)$ is contained in H. Case of type E_n (n = 6, 7 and 8): We have $v_1 = wuw^{-1} = x(a_2, \varepsilon) x(a_1 + \cdots + a_{n-3} + a_n, \eta)$, $v_2 = w^2 u w^{-2} = x(a_3, \mathcal{E}) x(a_2 + \cdots + a_{n-2}, \eta), \ v_3 = (u, v_1) = x(a_1 + a_2, \mathcal{E}) x(a_1 + \cdots + a_{n-2}, \eta)$ $(a_1+a_2+a_3, \theta)$ and $v_4 = (v_2, v_3) = x(a_1+a_2+a_3, \theta)$. If n = 6, $v_5 = w^7 u w^{-7} = x(a_5, \theta)$ $x(-(a_1+a_2+a_3+a_6),\eta), (v_4,v_5)=x(-a_6,\varepsilon).$ Therefore $x(a_1,1)$ and $x(a_6,1)\in H.$ If n = 7, 8, since $u^*, v_1^* \in H$, $(v_4, u^*) = x(a_2 + a_3, \mathcal{E})$ and $(x(a_2 + a_3, 1), v_1^*) = x(a_3, \mathcal{E})$ \mathcal{E}) $\in H$. Therefore from (6), we have $x(a_1, 1) \in H$ and also $x(a_n, 1) \in H$. Case

E. ABE

of type F_4 : We have $v_1 = wuw^{-1} = x(a_2, \varepsilon) x(-(a_1 + \cdots + a_4), \eta), v_2 = (u, v_1) = x(a_1 + a_2, \varepsilon)$. Since $v_2^* \in H$, $(u, v_2^*) = x(-a_2, \varepsilon) \in H$. Thus we have $x(a_1, 1), x(a_4, 1) \in H$.

From Propositions 1 and 2, we have the theorem. As a special case of the theorem, we have

COROLLARY 1. (cf. P. Stanek [3]) SL(n + 1, Z) $(n \ge 1)$ and Sp(2n, Z) (n > 3) are generated by two elements.

For G = SL(n+1, C) $(n \ge 1)$, let $\Sigma = \{\lambda_i - \lambda_j, i \ne j, 1 \le i, j \le n+1\}$ be the root system of type A_n . Then the set of matrices $x(\lambda_i - \lambda_j, t) = I + tE_{ij}$ $(\lambda_i - \lambda_j \in \Sigma, t \in C)$ where E_{ij} is the (n+1, n+1) matrix whose (i, j) component is 1 and all other components are 0, is a system of generators of G which satisfy (A), (B) (or (B')) and (C). We have $G_Z = SL(n+1, Z)$ and also our assertion. For G = Sp(2n, C) (n > 3), let $\Sigma = \{\lambda_i \pm \lambda_j, \pm 2\lambda_i : i \ne j, 1 \le i, j \le n\}$ be the root system of type C_n . Then the following matrices are generators of G satisfying (A), (B) and (C): $x(\lambda_i - \lambda_j, t) = I + t(E_{ij} - E_{j+n,i+n}), x(\lambda_i + \lambda_j, t)$ $= I + t(E_{i,j+n} + E_{j,i+n}), x(-(\lambda_i + \lambda_j), t) = I + t(E_{j+n,i} + E_{i+n,j}), x(2\lambda_i, t) = I + tE_{i,i+n}, x(-2\lambda_i, t) = I + tE_{i+n,i}$. We see that $G_Z = Sp(2n, Z)$ and we have our assertion. Note that $x(\lambda_j - \lambda_i, t), x(\lambda_i + \lambda_j, t)$ and w are the matrices denoted by $R_{ji}(t), T_{ij}(t)$ and D respectively in [3].

3. Let G be the adjoint group of a complex simple Lie algebra \mathfrak{g} (i.e. the connected component of the identity of the group of all automorphisms of \mathfrak{g} . We fix a canonical base $(H_1, \dots, H_n, X_r, r \in \Sigma)$ of \mathfrak{g} defined by Chevalley (cf. [1], Th. 1). Then we may suppose that G is a linear algebraic group defined over Q in GL(N, C) where N is the dimension of \mathfrak{g} . We denote by G_z the subgroup of G consisting of the elements with integral coefficients and determinants = 1. Then we have

COROLLARY 2. Let G be the adjoint group of a complex simple Lie algebra and suppose that G is a linear algebraic group with respect to a canonical base of g. If g is not of type D_n , $n \ge 4$ and even, then G_Z is generated by two elements.

Denote by $x(r, t) = \exp t \operatorname{ad} X_r$, $r \in \Sigma$, $t \in C$, and by G'_z the subgroup of G generated by x(r, 1), $r \in \Sigma$. Then G'_z is also generated by two elements by the theorem. For G'_z is the homomorphic image of \widetilde{G}_z where \widetilde{G} is the universal covering group of G. G'_z is a normal subgroup of G_z and further we shall show the following

182

LEMMA 3. If g is of type A_n (n even), E_6 , E_8 , F_4 or G_2 , then $G_z = G'_z$. If g is of type A_n (n odd), B_n , C_n , D_n ($n \ge 5$, odd) or E_7 , then G_z/G'_z is the cyclic group of order 2. If g is of type D_n ($n \ge 4$, even), then G_z/G'_z is the direct product of two cyclic groups of order 2.

Denote by H_z the subgroup of G_z generated by h(X), where h(X) is the automorphism of g defined by $H_i \to H_i$, $X_r \to X(r)X_r$, X being a homomorphism of the additive group P_r generated by the roots of g into the multiplicative group $U = \{1, -1\}$, and by $H'_z = H_z \cap G'_z$. Then H'_z is the group generated by h(X) such that X can be extended to a homomorphism of the additive group P of the weights of the representations of g into U. We have $G_z/G'_z \cong H_z/H'_z$ (cf. Cvevalley [2]). Since $[H_z: H'_z]$ is equal to the order of $Hom(P/P_r, U)$ (cf. Chevalley [1], p. 63), G_z/G'_z is the elementary abelian group of order 2^d where d=n-rank A, A being the (n, n) matrix with coefficients in Z/2Zwhose (i, j) component is the image of a(i, j) in Z/2Z. From this we have the lemma.

When $G_z = G'_z$, the corollary is trivial by theorem. When G_z/G'_z is the cyclic group of order 2, let w, u be the generators of G'_z which are the canonical image of the generators of G_z denoted by the same letters in 2, h be an element of H_z not contained in H'_z . Then wh and u generate the group G_z .

In the case of type D_n , $n \ge 4$ and even, we have not known whether the group G_z may be generated by two elements or not, but from theorem, we have that G_z is generated by three elements.

REMARK. Let G be the group consisting of the matrices x such that ${}^{t}xJx = J$, det x=1, where $J = \begin{pmatrix} I \\ I \end{pmatrix}$, I being the unit matrix of degree n and G_z be the subgroup of G consisting of the matrices with integral coefficients. Since G_z is the group of Z-rational elements with respect to an admissible Z-structure of G, we have, in the same way as the proof of corollaries 1 and 2, that if n > 3, G_z is generated by two elements. (Note that in this case G_z/G'_z is a cyclic group of order 2.) The same reasoning doesn't hold for the classical group of type B_n .

References

- [1] C. CHEVALLEY, Sur certains groupes simples, Tôhoku Math. Journ., 7(1955), 14-66.
- [2] C. CHEVALLEY, Certains schémas de groupes semi-simples, Séminaire Bourbaki, 13 (1960/61), No. 219.
- [3] P. STANEK, Concerning a theorem of L. K. Hua and I. Reiner, Proc. Amer. Math. Soc., 14(1963), 751-753.

[4] R. STEINBERG, Generators for simple groups, Canad. Journ. Math., 14(1962), 277-283.
[5] R. STEINBERG, Générateurs, relations et revêtments de groupes algébriques, Coll. théorie des groupes algébriques, Bruxelles, (1962), 113-127.

TÔHOKU UNIVERSITY.