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Introduction. Let Mn be an ^-dimensional compact connected differentiable
manifold without boundary. Let τ{Mn) = (T(Mn), TΓ, Mn) be the tangent bundle
of Mn, where T(Mn) is the total space and TΓ : T(Mn) -* Mn is the projection,
then T(Mn) is a 2 ̂ -dimensional connected differentiable manifold.

In this paper we consider embeddings and immersions of T(Mn) in
Euclidean spaces. For example, in general MncR2n, so T(Mn)cRin, but we
get T(Mn)oR3n. Mn^Rn+k does not always imply MnaRn+k, but if k > 0
then for any T(Mn\ T(Mn)<^R2n+k implies T(Mn)aR2n+k.

In section 1, we recall some results of KO(X) and immersion. In sections
2, 3 and 4, we prove some general theorems for immersions and embeddings
of T(Mn). And in sections 5 and 6, we consider several applications for the
tangent bundles of projective spaces.

Notations M e N and M ί ~ N mean " M is differentiably embedded in N "
and "M is differentiably immersed in N" respectively. M φ N and M ^ N
means " M e N is false" and " M £ N is false" respectively.

1. Known results for KO(X). Let X be a finite connected CW-complex
and KO(k)(X) be the set of isomorphism classes of ^-dimensional real vector
bundles over X. Let 8{X) denote the set of all isomorphism classes of real
vector bundles on X. Then in our notation

€(X) = \J KOik,(X).

S(X) is an abelian semigroup with zero for the Whitney sum. We shall use
the symbol ξk to denote a ^-dimensional vector bundle and Sk to denote the
trivial bundle of dimension k. We have a mapping

4 : KOW(X) - KO{k+1)(X)

defined by ik{kk) = tk θ £\ and denote KO(X) the direct limit of this sequence
and denote £0 the corresponding class of ξk.

Now we can define the Grothendieck ring of real vector bundles over X
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by setting

The operations of addition and multiplication in KO(X) are induced by Whitney
sum and tensor product of vector bundles. And we have a homomorphism

θ : a(X) -> KO(X)

denned by θ{ξk) = ξo + k. ξ0 in KO(X) is called the stable class of ξ\ Then by
the stability of classifying spaces of the orthogonal groups and the definition
of θ we have the following lemma (cf. [6]).

LEMMA 1. (a) 6{£k) = θ(ηk) if and only if, for some n, ξk © 6* = ηk @ 8n.

(b) // 6ψ) = θ(ηk) and k > dimX, then ξk = ηk.

An element of KO(X) is said to be positive if it is in the image of θ.

Ifξ0£KO(X), the geometrical dimension of ξ0, written g(ξ0), is the least
integer k such that ξo + k is positive.

Let f:X-+Y be a continuous map. Then we denote fι(ξk) the induced
bundle of ξk. Then we get the following properties of the function g (cf. [6]).

LEMMA 2. (a) // ξ0 € KO(X), then g(ξ0) ^ dim X. (b) // &, Vo € KO(X),

then g(to + Vo) ^ g(ξo) + g(vo) (c) If f\X->Y is a map and ξQ € KO(Y), then

Now Mn will denote a connected ^-dimensional differentiable manifold
and τn will denote its tangent bundle. Using the geometrical dimension,
the main theorem of Hirsch on immersion of manifolds in Euclidean spaces
becomes ([2], [6]),

THEOREM 3. For k>0, M" cz #"+* if and only if g(-τ0) ^ k .

2. Tangent bundle of T(Mn). Let Mn be an w-dimensional compact
connected differentiable manifold without boundary. Let T(Mn) be the total
space of the tangent bundle τ{Mn) of Mn.

Let us now consider the projection ΊΓ : T(Mn) —»Mn and the inclusion
i : Mn -> T(Mn), then we have

LEMMA 4. (a) iι(τ(T(Mn))) = τ(Mn) 0 τ(Mn).
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(b) τ(Ί\Mn)) = τr!(τ(Mw) Θ r(Mn)) .

163

PROOF. Let {Ua} be a local chart of Mn and as usual ( T Γ " 1 ^ ) } be
a local chart of T(Mn). Let UaC\UβΦ0 and Or1, , xn\ (x\ , xn) be
local coordinates for Ua, Uβ respectively and (x\ , xn, a1, , α71),
(2c1, ,^n, α1, , αw) be local coordinates for π'^Ua), τr~1(Uβ) respectively.
Consider the tangent vectors on Ua(^Uβ, then

Σ ni ° - V Λ* d

thus

Therefore the coordinate transformation of τ(M") is given by

Similarly the coordinate transformation of τ(T(Mn)) is given by

33? 3x f

here

3α c>as
σxs

If q — i(p), pzUaΓ\Uβ then α1 = — = <2n = 0, consequently
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This means i[(τ(T(Mn))) = τ(Mn) © τ(Mn). Since i ° TΓ is a strong deformation
retraction, we have τ(T(Mn)) = τr!(τ(Mn) φ τ(M n)).

T H E O R E M 5. For k > 0, T ( M " ) c r + t im/tfz>5 T(Mn) c i?27l+A;.

PROOF. Consider an immersion/: T(Mn)->R2n+k, then

τ(T(Mn)) 0 iv = £2w+fc,

where iv is the normal bundle of the immersion f By Lemma 4,

τ(Mw) 0 τ(Mn) φ z!z/r = S2n+k .

Let now h : Mn -> i?2?z+A: be an embedding, then

τ ( M w ) © vh = ε2n+k,

where vh is the normal bundle of the embedding h. Hence we have

θ(τ(Mn) Θ i'Vf) = θ(vh).

By Lemma l(b) and k > 0, we get

Therefore we can embed τ{Mn) as a subbundle of vh. And if we consider
a tubular neighborhood for the embedding h, we have T(Mn)oR2n+k.

3. Immersion and geometrical dimension.

THEOREM 6. For k>0, T(Mn) S R2n+k if and only if g(-2τo(Mn)) ^ k.

PROOF. By Lemma 4, g(-τ,(T(Mn))) = g(-2τo(Mn)). And the result
follows from Theorem 3.

COROLLARY 7. T(Mn) c R3n.

PROOF. Since g( — 2τQ(Mn)) ^ n, by Lemma 2 (a), the result follows from
Theorem 5 and 6.

Let now ΊΓ : E—>B be a differentiable principal fibre bundle, then (cf. [4],
Ch. II, §1)
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τ(E) = τr!(τCB)) 0 em, m - dim £ - dim B .

Therefore

where TΓ : T(E) —> T(B) is induced by ir. Following Lemma 2 (c) and Theorem

3, we have

THEOREM 8. Let TΓ : E -> B be a differentiable principal fibre bundle,
then T(B) C #2 dim*** indies T ( £ ) c 2F<u™*+* for k>0.

Let λ* be the exterior /-power operation in 6(X). Atiyah ([1]) modifies

λ ι and introduces an operation 7* in KO(X), and a homomorphism

of KO(X) to the multiplicative group A(X) of formal power series in t with

coefficients in KO(X) and constant term 1. And he has

P R O P O S I T I O N 9. // ξ0 e KO(X), then τ(ξ0) = 0 for i > g(ξ0).

PROPOSITION 10. Let Mn be a compact differentiable manifold of

dimension n. If Mn<zRn+k, then 7*( —τ0) = 0 for i ^ k.

Let now Mn be an ^-dimensional compact differentiable manifold without

boundary. By simple modification of the proof of Proposition 10, we have

THEOREM 11. For k>0, T(Mn)czR2n+k implies 7*(-2τ0) = 0 for i ^ k.

4. Immersion and Stiefel Whitney class. The projection TΓ : T(Mn)—*Mn

induces an onto isomorphism 7Γ* : H*(Mn, Z2) —> H*(T(Mn), Z2). Using Lemma

4, we have a relation

(4.1) w(T(Mn)) = τr*(w(Mn) w(Mn))

between the dual Stiefel Whitney classes for Mn and T(Mn). Denote ϊΰi(Mn).

the z'-dimensional dual Stiefel Whitney class of Mn.

k

T H E O R E M 12. ]Γ w,(M") wt-,(M") Φ 0 ίm/»/tβ
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PROOF. This condition is equivalent to zvk(T(Mn)) φ 0 and the result

is obvious (cf. [3]).

Now consider the normal bundle vn of an embedding T(Mn)cRin. Then

T(Mn)^R3n-k if and only if the bundle associated to vn ® Sm with fibre

Vn+mΛ+m has a cross-section for some m^O, because the existence of such

a cross-section is equivalent to g(vo)^n — k. Since H%T(Mn), G)= 0 for t>n

and for any local coefficient G, we get the following results.

THEOREM 13. (a) Suppose n is even, then T(Mn)£R3n~ι if and only
n

if ΣwiiM'^ Wn-iM") = 0. (b) Suppose w = 44+1, then T(Mn)£R3n~2 if

and only if ]Γ wt(MM) «;„-,-^M") - 0.

PROOF. The conditions are the first obstructions to the existence of the

desired cross-sections. For (b), the second obstruction has values in

^0 / ».i.3) = ϋ ([5]).

5. The tangent bundles of projective spaces. FPn denotes projective

space of dimension n over the field F, where F is R,C or H, the real, complex,

or quaternion number field. Then FPn is a compact connected differentiate

manifold of dn dimensions, where d is the dimension of F over R.

Let aF ^ Hd(FPn, Z2) be the generator of the cohomology algebra H*(FPn, Z2).

Then the total Stiefel Whitney class of FPn is

and if/O) is the integer defined by 2/(n)"1 ^ n<2f{n\ the dual Stiefel Whitney

class of FPn is

(5.1)

Therefore, by (4.1)

(5.2) τt*-\w(T(FPn))) =

Using Theorems 6, 12, Corollary 7 and (5.2), we have the following table

for T(RPn)cRm and T(RPn)^Rk\
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n

m

k

1

2

1

2

6

5

3

7

-x-

4

12

11

5

14

13

6

14

13

7

15

-X-

8

24

23

REMARK. If Mn is an ^-dimensional compact differentiable manifold
without boundary, we have Mn ^ Rn. But T(Mn) is not compact, so I cannot
know whether, for n = S or 7, T(RPn) can be immersed in R2n.

Let 71*! : RP2n + ί —> CP?ί and 7r;ί: RP^n+3

considered in [6]. Then by Theorem 8,
w be the principal fibre bundles

T H E O R E M 14. Fork>0, (a) T(CPn)<^ Rin+k implies T(RP2n+ί)^Rln+2+k.
(b) T(HPn)^R8n+k implies T(RPin+3)<^ R*n+G+k.

COROLLARY 15. (a) T(RPn)^Rzn-1 for n = 2s+l. (b) r
for n = 4.v+3 and s > 0.

In order to calculate the binomial coefficients mod p, the following lemma
is useful. The proof is easy.

LEMMA. Let p be a prime and let a = ]Γ a.p and b — ^bφ1 (O^gα.£,

6t < />). Then

mod />.

By (4.1) and (5.1), ^'-dimensional dual Stiefel Whitney class τvdί(T(FPn))
-0 if and only if

(5.3) mod2.

For example, we have

THEOREM 16. Let d be the dimension of F over R. Then T(FPn)
r

Mn-ι j o r n = ^2 atf*-1 (ai = 0 or 1, s > 1, 0 ^ t < s) .



168 F. UCHIDA

T H E O R E M 17. T(RPn) £ i?3 n"4 for n = 8*+7 and s > 0.

PROOF. If k is odd, then w,k{T{HPk)) = 0 by (5.3). And following
Theorem 13 (a), T(HPk)^ R12k~\ The result follows from Theorem 14 (b).

From these results, we have many informations on the best possible
immersions and embeddings of the tangent bundles of projective spaces in
Euclidean spaces.

6. Application of the operation T. We shall now apply Theorem 11 to

RPn, the w-dimensional real projective space. Let η0 £ KO(RPn) denote the

stable class of the Hopf bundle η on RPn. Then KO(RPn) is a cyclic group

of order 2φin) with generator η0, where φ(n) is defined as the number of

integers s with

0<s^n and s == 0, 1,2 or 4 mod 8 .

Since η2 — 1, (η0)
2 — —2η0. It is well known that the tangent bundle

T = τ(RPn) is given by

T = (n+ l)v-1 in KO(RPn),

and so

τ0 = (n+ΐ)η0.

Hence

and so

Hence 78(—2τ0) = 0 if and only if

= 0 mod2« >.

Let us now define p(w) to be the largest integer s for which 2 s - 1ί s )
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is not divisible by 2φ{n\ Then Theorem 11 gives

T H E O R E M 18. T(RPn) φ R^+p^ , if P(n) > 0.

Table for T(RPn) c Rm and T(RPn)<ξRk. In the following, * means
"m is the best possible immersion" and the parenthesized numbers are given
by Theorem 18.

n

m

k

9

26

•X-

10

30

•se-

ll

30

*

12

35

(30)

13

37

(30)

14

41

(32)

15

41

(34)

16

48

17

50

•X-

18

54

•35-

19

54

•X-

20

60

21

62

m

k

22

65

61

23

65

61

24

71

61

25

73

(62)

26

77

(62)

27

77

(62)

28

83

(68)

29

85

(70)

30

89

(70)

31

89

(72)

32

96

33

98

•}(-

34

102

•x-

n

m

k

35

102

•X-

36

108

•ss

37

110

*

38

113

109

39

113

109

40

120

*

41

122

42

126

•X-

43

126

•X-

44

131

125

45

133

125

n

m

k

63

185

(150)

64

192

•X-

65

194

-X-

66

198

*

67

198

•X-

68

204

69

206

X-

70

209

205

71

209

205

72

216

•Sf

73

218

•X-

74

222

75

222

•>$•

n

πι

k

76

227

221

77

230

221

78

233

221

79

233

221

80

240

•X-

81

242

•X-

82

246

83

246

84

252

85

254

•X-

86

257

253
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REMARK. T(HP6) C RΊl by means of Theorem 13 (a), so we have
T(RP27)cR77 by Theorem 14 (b).

ADDED IN PROOF. If Mn is an orientable τr-manifold. then Mn is
immersible in Rn+1 so that its normal bundle is trivial. This shows MnxRι

^Rn+ι. Consequently, if Mn is parallelizable, then T(Mn)<^R2n. For example,
T(RP3) £ RG and T(RP7) £ Ru .
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