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1. Introduction. Let M be an n-dimensional connected complete differ-
entiable Riemannian manifold1* admitting an effective 1-parameter group H
of motions. The group H induces a Killing vector field on M. Each of its
maximal integral curves corresponds to a trajectory under H. On the other
hand, the group H can be regarded as a 1-parameter subgroup of the Lie
group G of all motions of M and the closure of H, in G, forms a subgroup
which is a connected abelian Lie group. This Lie group we denote by H.
Our object is to prove the following theorems:

THEOREM 1. Suppose that a trajectory is dense in M2). Then,

1) every trajectory is dense in M,
2) M is homeomorphίc to a torus,
3) the Riemannnian metric of M is Euclidean, and
4) the Killing vector field reduces to a parallel field.

THEOREM 2. The closure of a trajectory consists of one point, or is
homeomorphίc to a straight line or a torus of dimension r (l ^r^ri). In
the latter two cases, it has the structure of a regularly imbedded^ dijferentί-
able submanifold on which a Euclidean metric is naturally induced from
M.

Thus, a point or a differentiate submanifold, which is the closure of a
trajectory, is called the closure manifold of the trajectory and we have

THEOREM 3. In order that M becomes a fiber bundle whose fibers are
the closure manifolds of trajectories, it is necessary and sufficient that H
acts on M without fixed point. This fiber bundle can be regarded as a
differentiable principal fiber bundle with group ίf.4)

1) »>1. The word "differentiable" means "C°°-differentiable".
2) A trajectory is sometimes regarded as a subset of Af, as is here the case.
3) This means that the topology of the submanifold coincides with the relative one.
4) The base manifold may consist of a single point.
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2. Poofs of theorems. First we explain two notations. Let H(x) denote
the trajectory passing through a point x^M. Let d(xl9xz) denote the length
of a minimizing geodesic arc from xλ to x2, where x19x2^M.

LEMMA 1. For x0£ M, let xl9 y0 be two points of H(xQ) and JQ be an
element of H such that JO(XQ) = x^ Then,

d(xκ yo) = d(xl9 JoOVo)), d(xQ, x^ = d(yQ, ΛGyo))

PROOF. The first relation is obvious. To prove the second, take Je H
such that J(x0) — yQ. Since JQ J— J JQ, we have

Jfa) = J0 J Jo'X ̂ i) = Λ( Vo)

Hence the second relation follows immediately.

LEMMA 2. Let T be a trajectory under H and yQ be a point of the
closure of T. Then the closures of T and H(yQ) coincide.

PROOF. It is sufficient to prove the case y0<£T. Denote the closures of
T and H(y0) by T and H(yϋ} respectively and let {xλ}

5ycT be a sequence
converging to yQ. First take any y^H(y0). And choose JzH such that
J(yo) =y. A sequence [x{] c T, where x'λ ΞΞ J(xλ), converges to y. So y € T.
Hence, H(y0) c T. Next take any x z T. And choose Jλ^H such that
ΛOλ) = x. As d(yQ, xλ) = d(yλ, x) where yλ ΞΞ Jλ(y0) € H(y0), ί̂ λ] converges
to Λ:. So, x^H(yo). Hence, TdH(y0). This completes our proof.

LEMMA 3. Let Abe a connected abelian Lie group. Then any invariant
differentiable Riemannian metric on A is Euclidean.

PROOF. An invariant vector field on A is a field of vectors with constant
components in a canonical coordinate neighborhood, and becomes a Killing
vector field under an invariant differentiable Riemannian metric. By using
this fact the lemma is easily proved.

PROOF OF THEOREM 1. The assertion 1) is evident by Lemma 2. Take
an n-ί rame FXo at a point x0 € M whose first vector is tangent to H(x0) and such
that the remaining vectors are orthogonal to H(x0). By transferring the
frame by the elements of H, we obtain on H(x0) a field of 7z-frames. This

5) λ=l,2, (to oo).
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field can be extended to a continuous field of n-frames over M. This is easily
verified by using Lemma 1, since H(xQ) is dense. In this continuous field,
we denote the n-frame at x^M by Fx. As is immediately seen, for any
x € M there exists a motion of M carrying FXo to Fx. This motion belongs

to H and conversely an element of H is such one. Hence dim H > I and

so H must be a toral group. Moreover the map

/ : H M defined by /(J) = J(ΛΓO) ,

where J 6 H, is one-to-one onto and continuous. The group H being compact,
the map f becomes a homeomorphism. Therefore the assertion 2) holds good.

Indeed, the map f is a diffeomorphism. So we can induce on H the Riemann-
ian metric of M by the map /. As the induced metric becomes invariant
on H, it must be Euclidean by Lemma 3. Thus the assertion 3) is proved.
On the other hand, since the Killing vector field reduces to a vector field of
constant length by the assumption, all the trajectories are geodesies. This
fact proves our assertion 4).

PROOF OF THEOREM 2. The case dimH=l. Then H coincides with
H. Hence the closure of any trajectory T is the trajectory itself. So, it
consists of one point, or is homeomorphic to a straight line or a circle.
Further, the latter part of the theorem is verified by using the facts that
a straight line satisfies the second axiom of countability and that a circle is
compact. So, our theorem holds good.

The case dim H > 1. Then H is a toral group. Let T be a trajectory

and take a point x0 £ T. The closure T of T consists of the points h(x0)

for all h € H. Hereafter we treat T as a topological subspace of M. Let R

denote the subgroup of H which consists of the elements leaving XQ fixed.

Being a closed subgroup, the factor group H/R consists of the identity only
or forms a toral group. Then the map

φ : H/R - T defined by φ([h\) = h(x0),

where [h] denotes the element of H/R containing h € H, is one-to-one onto
and continuous. So, the map φ becomes a homeomorphism. Therefore T
consists of one point or is homeomorphic to a torus of dimension r (1 :g r

^ n). In the latter case, give T the same differentiability with H/R by the
map φ. Since h(x^) is differentiate with respect to h, the inclusion map of

T into M becomes differentiate and everywhere non-singular. T being

compact, T has the structure of a regularly imbedded differentiable submanifold
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of M. If dimT — 1, it is obvious that the induced metric on T is Euclidean.
If dimT > 1, then T consists of the union of some non-closed trajectories by
Lemma 2. And under the induced metric, T reduces to the same manifold as
M in Theorem 1. Accordingly the induced metric on T must be Euclidean.
This completes the proof.

PROOF OF THEOREM 3. 1) Suppose that H acts on M without fixed point.
Then, there exists no trajectory which consists of a single point.

The case dimH=l. //coincides with H. The closure manifold of a
trajectory consists of the trajectory only and is regularly imbedded in M by
Theorem 2. If M has both of closed trajectory and non-closed one, there
exists a nonzero element of H which leaves a point of M fixed. This con-
tradicts with our assumption. Accordingly, it is sufficient to consider the two
cases where all the trajectories are non-closed and are closed. In the respective
case, it is easily verified that M can be regarded as a differentiable principal
fiber bundle with group H whose fibers are the closure manifolds.

The case dim.fi> 1. Then H is a toral group. Take x0 € M. Let H(xQ)
denote the closure manifold of H(x0). The map

φ : H —- HCίό) defined by φ(K) = h(x0),

where hz H, is a diffeomorphism onto from the assumption. So, Kdim H^n.
It is easily shown that M can be regarded as a differentiable principal fiber
bundle with group H whose fibers are the closure manifolds.

2) Suppose that some nonzero element of H leaves a point x0 z M fixed.
To conclude our proof, it is sufficient to consider the case where there exists
no trajectory consisting of a single point, as H acts effectively on M. Let R
denote the subgroup of H which consists of the elements leaving XQ fixed.
This is a closed subgroup and so a Lie group. Let H(x0) denote the closure
manifold of H(x0). The group R acts on M leaving every point of H(x0)
fixed, as is seen from proof of Theorem 1. Accordingly, 1 ±i dim ~H(x0) <.n.

The cape dimΛ —0. Then R is a finite group. Take a unit vector v
at xQ orthogonal to H(XQ) such that, if we transfer v by every element of R,
we obtain mδ) unit vectors distinct from each other. Let y0 be the terminal
point of a geodesic arc g issuing from x0, with initial tangent vector v, and
let ΏΌ/o) be the closure manifold of H(y0). If the arc-length of g is sufficiently
small, we obtain an ra -covering map

p: H(y0) >• H(x0) defined by p(y) = x ,

6) ra suffices to be an integer > 1.
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where x £ H(x0) and y z H(y0\ are the initial and the terminal points
respectively of every geodesic arc obtained by transferring g by every element
of Ή.

The case dim R > 0. By the same way as above, we can see that near
H(XQ) there exists a closure manifold which has higher dimension than H(x0).

These two cases show that, in a fibering of M, the closure manifolds can
not become its fibers.

The above 1), 2) prove our theorem.
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