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1. Introduction. The unboundedness of the sequence of Lebesgue con-
stants implies the existence of a continuous function whose Fourier series
diverges at a point, and this is also the case with many summability methods.
The estimation of such constants for various summability methods has been
calculated by K. Ishiguro [2], [3], A. E. Livingston [4], and L. Lorch [5], [6], [7], [8].

In this paper we shall study the behavior of the Lebesgue constants for
a family of summability methods. A. Meir [9] has introduced a family of
summability methods which is defined by two parameters a and q, and has
shown that this family contains Borel, Valiron, Euler, Taylor and Sa-
transformation.

If we define LF(a, q(p)) by the Lebesgue constants for this family of
summability methods, then we obtain the following formula:

(1.1) LΛ*, ?(/>))= -r log4αg(» + A + O(logg/VT") as £->o

where A is the constant such as
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and

which is Euler-Mascheroni's constant.
The proof of formula (1.1) consists of two parts; 1°) the case where

q=q(p) is integer and 2°) the case where q = q(p) is not integer. In the last
section we shall show that from (1.1) we can obtain Lebesgue constants for
Borel, Valiron, Euler, Taylor and *Sα-transformation which are contained in
this family of summability methods.

Finally I wish to express my gratitude to Professor G. Sunouchi for his
kind suggestions.
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2. The Family F(a, q(p)) of Summability Methods. After A. Meir [9],
let us say the summability matrix [cpk] belongs to F(a, q(p)} if it satisfies the
following conditions : p is a discrete or continuous parameter a is a positive
constant; q=q(p) is a positive increasing function which tends to infinity as
p-* oo ; for every fixed 8 : 1/2 < δ < 2/3

as p— > oo uniformly in k for \k — q\^qs,

(2.2) <>+ Σ, kc»κ =
|Λ;-<?|>Qδ

where η is some positive number independent of p, and

(2. 3) *„* ̂  0 .

It is known that the family F(a,q(p)) with appropriate a and
contains such summability methods as Borel, Valiron, Euler, Taylor and Sa-
transformation, see G. H. Hardy [1] and A. Meir [9].

Let a function f(x) be integrable in Lebesgue's sense over the interval
— 7Γ rg x fg 7Γ and periodic with period 2ττ.

If we define Sn(f;x) by the n-ih partial sum of the Fourier series of
f(x) and tp(f\x) by the transformation of Sn(f;x) by means of summability
matrix [cpk], then we have

When we suppose that for all p

(2.4) Σ*k

Σ

If the summability matrix [cpk] belongs to F(a, q(p))> then the condition
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(2.4) is satisfied and Lebesgue constants for this methods LF(a, q(p)) are
defined as follows:

(2. 5)
7Γ Jo sm u ~

u du.

3. Three Lemmas. To prove formula (1.1), we require the following three
lemmas.

LEMMA 3.1. When p tends to infinity, we get:

/O -I -I \ ^ I -1- V k / "" -—vΛ,-yr /c l / Π ^ J L , . /o7 , ι N 1 - 7
(3.1.1) I — > v ^ ~^ sm(2^-fl)w αw

— '- «•«—-• *—^ "» Tj-g r̂ v x

= 0(logg/V'gΓ)

(3.1.2)

PROOF, i) We can suppose 0 < l/q < ττ/2 for sufficiently large p, and
set 7n, 1 1 2 as follows :

2 Γ/2 1 v- ./ α ~ξ-u^ι) l^-g|+l , . /0, ,. , ,
— I — - 2^ V - e - - \sm(2k+l)u\du7r J0 sm t< S > τrg g

2 , Y- k -- - , . /0, 1 1 Λ . ,
+ — : - > V - e - - sm(2£+l)M αw

>

= 1̂ 1 + I\ 2

Since we have

a -±-(>c-m* \k—q\+l , . . , Λ ,
r^ - „ - |sm(2*+l)«|
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then we obtain

and

sin

as

Therefore (3.1.1) has been proved.

ii) We can prove (3.1.2) by the same method as in (i).
We suppose that 0 < ί/q < ττ/2 similar as in (i) and set 721, /22 as follows :

o sm u ,

Since we have

Σ
\*-,\*f
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then we obtain

and
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o sin

Sln

as

Therefore (3.1.2) has been proved.

LEMMA 3.2. 7/~ q=q(p) is an integer valued function of p, then we have

(3.2) — fN 7Γ Jo smw

2 r/a

= VJo sin u
du

PROOF. When we set n=k—q(p), we have

Using the property of Theta function [10], we get

+°°
~n*+2uni r-^

= Σ

and for 0 ̂  w ̂  ττ/2
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Σ . / a
V

-*l^ "4

_qu*

"

\n\>Q8

u

Therefore we get

-/7Γ «/o

_<•»•~
sin(2n+2q+l)uy

7Γ r smu
du -f o(l/g) as p —> oo .

and consequently we have proved Lemma 3.2.

LEMMA 3.3 Let f(u, q) be defined over q^G and O^u^ -7^-, and let

=fu(u, q) exist for q > 0, and fu(u, q) be integrable over [0, ττ/2] .

if
then we have

-- sn

In order to prove this lemma, see L. Lorch [5].

4. Lebesgue Constants. In this section we calculate Lebesgue constants
for a family of summability methods whose matrix [cpk] belongs to F(a, q(p)\

THEOREM. Let LF(a, q(p)) denote the Lebesgue constants for a family
of summability methods whose matrix [cpk] belongs to F(a, q(ρ)}.

Then we get the following formula :

(1. 1) LF(a, q(p)) = ~- log 4aq(p) + A + O(lo as p oo
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where constant A is defined by (1.2).

PROOF. 1°) The case where q = q(p) is integer.
From (2.5) we have

^^» = vΓdM _Σ + Σ )•
We set n, L(a, q) and E as follows:

n = k - q(p)

sin(2k+ί)u du.

(4.1)

Using (2.2), we have

(4. 3) \E\ =

We get from Lemma 3.2,

(4.4)
7Γ sm

= _2_ r
π Jo sin

Applying (4.3) and Lemma 3.1 to (4.1), we obtain

(4. 5) L(a, q) = —v '^y

1 + 0 W + i
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_
du + O(logg/V q )

2 Γ/2

= - I
77* j o sin u

2
= — I

7Γ Jo
sin (2g+ 1) u du + O(l/q) + O(log g/V

If we define L(q) as follows

then from L. Lorch [5], [6] we obtain

(4. 6) L(q) = sin u du

7Γ

where A and c are defined by (1.2).
If we set d(q) = L(q)—L(a,q), then from (4.5) we have

du
2 f*72 1 -wϊ

- -̂ - -^-(l-e~ α

7Γ Jo U

_
where f(u9 q) = -̂ - (1- e α ).

Since the function /(w,
L. Lorch [5]), we have

satisfies the conditions of Lemma 3.3, (see

Λ1 1

7Γ * Q U 7Γ U
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M
-ΓΛJi ue

du

Consequently we obtain

(4.7)

l+A + O(logq/+/-
'/I

From (4.1), (4.2), and (4.7), we get

= L(a, q)

2
αg(/>) + A + O(logg/V a ), as ρ

Therefore we have proved (1.1) when q=q(p) is integer.

2°) The case when q=q(p) is not integer.
Let [g] denote the integral part of q=q(p) and g0 =
We set Dl9 Z>2, ^D3, D4 as follows:

(4.8)
W o S1D

_ JL Γ
7Γ •/ o

α e-^-»'sm(2k+I)u

Σ du
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f τlί-±
Jo sm

sin u

= A + A + A + A,

where we take /> large enough.

i) In case where q<qQ^k^q + (f, we have

0 <z (£- go)A/~?Γ < (*- vW~q~ < (k~

Hence the following inequality results:

(4.9)

u \ du
'

in JM

= θl-±- Γ'ΐxer ^dx}
w'α^ ' — /

We shall estimate Dl9 by dividing the range of integration of Dl in (4.8)
into two parts. We set Dn, D12 as follows:

/g

du

= Dn + Dn ,

where we can suppose 0 < ί/g < τr/2 for sufficiently large p.
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From (4.9), we get

l/Q

and

du =
V ?

Therefore

(4. 10) A = Ai + A, =

ii) In case where k ̂  [q] < g < g0, we have

Hence the following inequality results similarly to (4.9):

(4.11)

πq

O

o

\k-[g]\ _l
[q] +[q]
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We divide the range of integration of D2 in (4.8) into two parts for
sufficiently large p and set D2ί,D22 as follows:

1/Q

Σ •π q

= Ai + Aι

From (4.11), we get

/»ι/α
-τ̂ -

Λ smw

and

τr/2

sm
\k-[q]\ ,

*

sin uj.

Therefore

(4.12) A = Ai + As = 0(log g/V"

Next we shall estimate A> A and we get for sufficiently large p,

(4.13)

-1 Γ/2^—
Jo sin u
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9 f*/2 1
(4.14) A = ̂ rJ -±^ Σ

πq
α | du

Using (4.8), (4.10), (4.12), (4.13), (4.14) and setting nQ = k-q0, we obtain

2
7Γ o sin u πq

du

2_
7Γ

du+

Since we have from (4.7)

9 Γ*/2 1— ί y
7r Jo sinw , "bl

= —y log 4
7Γ

A + O(log g0/V

we obtain

(4. 15) o sm irq

7Γ
A+

From Lemma 3.1, (4.3) and (4.15), we have

2 Γ/2

= VJo

7Γ
A + O(log g/V ff ) , as
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Thus we have obtained the Lebesgue constants for a family of summability
methods whose matrix [cpk] belongs to F(a,q(p)\

5. Lebesgue constants for Borel, Valiron, Euler, Taylor and Sa

transformation.

i) Borel-transformation. See L. Lorch [5].
The summability matrix of this transformation is defined by

<hk

r , — p-v -£— (^pk — ^ 7 i \

where p> 0, a = — , and q — p, see A. Meir [9].
£

Therefore from (1.1) we get Lebesgue constants for Borel-transformation
LB as follows :

LB =

This Lebesgue constants have been obtained already by L. Lorch [5] whose
remainder term is O(l/V~/>~)

ii) Valiron-transformation.
The summability matrix is defined by

e~~'V (#»=1,2, , * = 0,1,2, . .)

where a > 0, a — ci and q = p, see A. Meir [9].
Therefore from Theorem 1°) in section 4 we get Lebesgue constants for

Valiron-transformation L(Γ>α) as follows :

L(Γ|β) = LF(a, p) = ~^log4ap + A + O(1/V7~)

iii) Euler-transformation. See L. Lorch [7] and A. E. Livingston [4].
The summability matrix of this transformation is defined by

*(l-α)*-*, (/»= 1,2,..-,* = 0,1,2,...)

where 0 < α < 1, a = 1/2(1— α) and q = ap, see A .Meir [9].
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Therefore we get from (1.1) Lebesgue constants for Euler-transformation
L(E)a) as follows:

-A

L. Lorch has obtained Lebesgue constants for (£, ~^~) in [7] and has shown

that the remainder term is

iv) Taylor-transformation. See K. Ishiguro [2].
The summability matrix is defined by

(O^k^p-I)

where 0 < r < 1, a = r/2(l — r) and q = p/r, see A. Meir [9],
Therefore we get from (1.1) Lebesgue constants for Taylor-transformation

L(Γ,r) as follows :

0(log ^>/V

v) ^-transformation. See K. Ishiguro [3].
The summability matrix of this transformation is defined by

= 0,1,2,- . ,^=1,2, . .-)pk

where 0 < α < 1, <z = (l-a)/2 and q = ap/(l-ct), see A. Meir [9].
Therefore we get from (1.1) Lebesgue constants for ,Sα -transformation

L(s,α) as follows :

L(ifβ) = LF((l-ά)/2,ap/(l-a. ) )

A+
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