ON DERIVATIONS OF NILPOTENT LIE ALGEBRAS

Terukiyo Satô

(Received June 15, 1965)

By E. Schenkman and N. Jacobson [1], it is shown that a nilpotent Lie algebra over a field of characteristic 0 always has a non-inner derivation. That is, denote by $\mathfrak{D}(N)$ and $\mathfrak{J}(N)$ the derivation algebra and the collection of all inner derivations of a nilpotent Lie algebra N respectively, then $\mathfrak{D}(N) \cong \mathfrak{J}(N)$. Clearly $\mathfrak{J}(N)$ is contained in the maximal nilpotent ideal \mathfrak{N} of $\mathfrak{D}(N)$, hence $\mathfrak{J}(N)$ is contained in the radical \mathfrak{R} of $\mathfrak{D}(N)$. In the present note we shall show that \mathfrak{R} does not coincide with $\mathfrak{J}(N)$. That is, the Schenkman-Jacobson's result may be strengthened as follows:

THEOREM. Let $\mathfrak{D}(N)$ be the derivation algebra of a nilpotent Lie algebra N over a field of characteristic 0, then the radical \mathfrak{R} of $\mathfrak{D}(N)$ always contains a non-inner derivation.

To prove the theorem we prepare the following lemma.

LEMMA. Let N be a nilpotent Lie algebra whose center Z(N) is contained in the derived subalgebra [N, N], and let us suppose that for any ideal M with codimension 1 of N, the center Z(M) of M is not contained in [N, N]. Then N belongs to either of following two types:

Type (i). N has an ideal M with codimension 1 and an element e such that

 $e \in M, [e, [N, N]] = 0 \text{ and } [e, Z(M)] \cong Z(N).$

Type (ii). N has a basis $\{e_{11}, e_{12}, e_{21}, e_{22}, \cdots, e_{r_1}, e_{r_2}, z_0\}$ which satisfies the conditions

$$[e_{ij}, e_{kl}] = 0$$
 for $i \neq k$,
 $[e_{i1}, e_{i2}] = z_0$,
 $[e_{ij}, z_0] = 0$.

PROOF. Let M be an arbitrary ideal with codimension 1. We note first that such an ideal M always contains the derived subalgebra [N, N]. In fact,

let a be an element of N which does not belong to M, then it holds that for any scalars λ and μ ,

$$[\lambda a+M, \mu a+M] \subset \lambda[a, M] + \mu[M, a] + [M, M] \subset M.$$

Now let *e* be an element of Z(M) which does not belong to [N, N], and we take an ideal M' which satisfies $N = \{e\} + M'$.¹⁾ In virtue of [e, [N, N]] = 0, it holds that $Z(M') \cap [N, N] = Z(N)$. We extend the basis of Z(N) to the one of Z(M') by adjoining z_1, \dots, z_s . Then $[e, z_i] \in Z(N)$, hence the restriction of ad *e* to the space $\{z_1, \dots, z_s\}$ gives a homomorphism into Z(N). Actually, this is an isomorphism. In fact, if $[e, \sum \alpha_i z_i] = 0$ then $\sum \alpha_i z_i \in Z(N)$ and $\sum \alpha_i z_i = 0$. Hence if this is not an onto-isomorphism, N has the type (i). Otherwise, dim Z(N) = s and $[e, z_1], \dots, [e, z_s]$ constitute a basis of Z(N). Let us set

$$M' = \{z_1, z_2, \cdots, z_s, m_1, \cdots, m_t, [N, N]\}$$

and

$$M^{\prime\prime} = \{e, z_2, \cdots, z_s, m_1, \cdots, m_t, [N, N]\}$$

Then we may suppose that $[z_1, Z(M'')] = Z(N)$, because N belongs to the type (i) if it not so. If we represent an element z'' of Z(M'') which is not contained in [N, N] such as

$$z'' = \alpha e + \beta_2 z_2 + \cdots + \beta_s z_s + \gamma_1 m_1 + \cdots + \gamma_t m_t + n \quad (n \in [N, N]),$$

then $[z_1, z''] = \alpha[z_1, e]$. The element of the right-hand side is independent of the choice of z'', except for a scalar multiple. Hence dim Z(N) = 1, s = 1, and $\alpha \neq 0$. So we may replace e by z'' when we take the basis of M''. Thus we obtain

$$[z_1, m_i] = [z^{\prime\prime}, m_i] = [z_1, [N, N]] = [z^{\prime\prime}, [N, N]] = 0$$
. $Z(N) = \{[z_1, z^{\prime\prime}]\}$.

Now we suppose that t > 0, i.e. the set $\{m_1, \dots, m_t\}$ is not empty, and let f be the element of the center of the ideal $\{z_1, z'', m_2, \dots, m_t, [N, N]\}$ which does not belong to [N, N]. If we express f so that

$$f = \alpha_1 z_1 + \alpha_2 z^{\prime\prime} + \beta_2 m_2 + \cdots + \beta_t m_t + n \quad (n \in [N, N]),$$

¹⁾ By $\{a, b, c, \dots\}$ we mean the space generated by a, b, c, \dots linearly independently.

T. SATÔ

then from the relations $[f, z_1] = [f, z''] = 0$ and $[z_1, z''] \neq 0$, we get $\alpha_1 = \alpha_2 = 0$. Hence t > 0 implies that $t \ge 2$, and by changing the indices of m_i suitably, we may express N as follows:

$$N = \{m_1, z_1, z'', f, m_3, \cdots, m_t, [N, N]\}.$$

Again, let f' be the element of the center of the ideal $\{z_1, z'', m_1, m_3, \cdots, m_t, [N, N]\}$ which does not belong to [N, N]. Because of

$$f' \in \{m_1, m_3, \cdots, m_t, [N, N]\}$$

 $\overline{\in} \{m_3, \cdots, m_t, [N, N]\},$

we may replace m_1 by f', and we may suppose that $[f, f'] = [z_1, z'']$. By repeating this process and by changing the notations such as $z_1 \rightarrow e_{11}$, $z'' \rightarrow e_{12}$, $f \rightarrow e_{21}$, $f' \rightarrow e_{22}, \cdots$, we may conclude that our case is the type (ii).

PROOF OF THE THEOREM. We shall prove the theorem by constructing a non-inner derivation D_0 contained in a certain solvable ideal of $\mathfrak{D}(N)$. We devide the cases into following three (1), (2) and (3).

(1) The center Z(N) is not contained in [N, N].

We extend the basis of $Z(N) \cap [N, N]$ to the one of Z(N) by adding z_1 , \dots, z_k . The subspace A generated by z_1, \dots, z_k is an abelian ideal of N and N is decomposed in a direct sum of ideals such as

$$N = A + M \quad (M \supset [N, N]),$$

and the center Z[M] of M is contained in [M, M] = [N, N]. According to S. Togo [2], $\mathfrak{D}(N)$ is decomposed into the following form:

$$\mathfrak{D}(N) = \mathfrak{D}(A) + \mathfrak{D}(M) + \mathfrak{D}(A, M) + \mathfrak{D}(M, A),$$

where $\mathfrak{D}(A)$ is the set of all derivations which transform A into A and M into 0, and $\mathfrak{D}(A, M)$ is all of the derivations which transform A into Z(M)and [A, A] + M into 0. $\mathfrak{D}(M)$ and $\mathfrak{D}(M, A)$ are also defined similarly. Now let D_0 be the derivation which acts on A identically and transforms M into 0, then obviously it holds that

$$\begin{split} & [D_0,\mathfrak{D}(A)] = [D_0,\mathfrak{D}(M)] = 0, \\ & [D_0,\mathfrak{D}(A,M)] = \mathfrak{D}(A,M), \qquad [D_0,\mathfrak{D}(M,A)] = \mathfrak{D}(M,A). \end{split}$$

246

and

And if we denote by $\mathfrak{S}(M)$ the set of all derivations if $\mathfrak{D}(M)$ which transform M into Z(M), then

$$\mathfrak{D}(M,A)\mathfrak{D}(A,M)(A)\subset\mathfrak{D}(M,A)(Z(M))\subset\mathfrak{D}(M,A)([M,M])=0$$
 ,

hence

$$[\mathfrak{D}(M, A), \mathfrak{D}(A, M)] \subset \mathfrak{C}(M).$$

And by the same reason, we get

$$[\mathfrak{D}(M,A),\mathfrak{G}(M)]=\mathfrak{D}(M,A)\mathfrak{G}(M)=0$$

and similarly

$$[\mathfrak{D}(A, M), \mathfrak{C}(M)] = 0.$$

Hence

 $\mathfrak{D}' = \{D_0, \mathfrak{D}(A, M), \mathfrak{D}(M, A), \mathfrak{S}(M)\}$

is an ideal of $\mathfrak{D}(N)$, and it holds that

 $[\mathfrak{D}',\mathfrak{D}'] \subset \{\mathfrak{D}(A,M),\mathfrak{D}(M,A),\mathfrak{C}(M)\}$ $[[\mathfrak{D}',\mathfrak{D}'],[\mathfrak{D}',\mathfrak{D}']] \subset \mathfrak{C}(M).$

Since $\mathfrak{G}(M)$ is abelian, \mathfrak{D}' is a solvable ideal. It is obvious that D_0 is a non-inner derivation, for any inner derivation sends the element of the center into 0.

(2) $Z(N) \subset [N, N]$ and there exists an ideal M with codimension 1 whose center Z(M) is contained in [N, N].

Let us set $N = \{e\} + M$, $N^1 = N$, and $N^i = [N, N^{i-1}]$ for $i \ge 2$. Now we suppose that

$$Z(M) \subset N^i$$
 and $\not\subset N^{i+1}$.

Then by our assumption it must be $i \ge 2$. We choose an element z such as

$$z \in Z(M)$$
 and $\overline{\in} N^{i+1}$.

Then the linear transformation D_0 sending e to z and M to 0 is a derivation of N. In fact, for $m, m' \in M$,

T. SATÔ

and

$$[D(\lambda e + m), \mu e + m'] + [\lambda e + m, D(\mu e + m')]$$

 $D([\lambda e + m, \mu e + m']) = 0$

$$= \lambda \mu[z, e] + \lambda \mu[e, z] = 0$$

Now we suppose that D_0 is represented as $\operatorname{ad} q$. Then $[q, M] = D_0(M) = 0$. We express q as $\lambda e + m$ where $m \in M$. Since $[\lambda e + m, m] = 0$, if $\lambda \neq 0$, then we obtain [e, m] = 0. Hence $z = [\lambda e + m, e] = [m, e] = 0$. But this contradicts to our assumption $z \in N^{i+1}$. Therefore $\lambda = 0$ and $q \in Z(M)$. Then

$$z = [q, e] \in [Z(M), e] \subset [N^i, N] = N^{i+1},$$

which is impossible. Hence D_0 is not inner. Now,

$$\mathfrak{D}' = \{ D \in \mathfrak{D}(N) ; D(N) \subset [N, N] \}$$

is an ideal of $\mathfrak{D}(N)$ containing D_0 . And this is nilpotent. In fact for $D, D' \in \mathfrak{D}'$,

$$DD'(N) \subset D([N,N]) \subset [D(N),N] \subset N^3$$
, etc.

(3) $Z(N) \subset [N, N]$, and for any ideal M of codimension 1, Z(M) is not contained in [N, N].

By the above lemma it is sufficient to treat two types (i) and (ii). Type (i) Let us take the ideal M with codimension 1 such that

$$N = \{e\} + M, \quad [e, [N, N]] = 0,$$

 $[e, Z(M)] \cong Z(N).$

and

Then we may choose the element z such that

$$z \in Z(N)$$
, and $\overline{\in} [e, Z(M)]$.

We denote by D_0 the endomorphism of N which sends e to z and M to 0. Similarly as in the case (2) we may show that D_0 is a derivation, but is not inner. In fact, if $D_0 = \operatorname{ad} q$, then $q \in Z(M)$ and $z = [q, e] \in [e, Z(M)]$ which is a contradiction. And we may prove that D_0 is contained in a nilpotent ideal in a quite similar way.

248

Type (ii) The endomorphism D_0 such that $e_{ij} \rightarrow e_{ij}$, $z_0 \rightarrow 2z_0$ is a derivation and is not inner, for $D_0(N)$ is not contained in [N, N]. We denote by $\mathfrak{C}(N)$ the set of all derivations which send N into Z(N), and let D be an arbitrary derivation. D_0 and D have the following matrix forms:

$$D_{0} = \begin{pmatrix} 1 & & & & \\ 1 & & & & \\ & \ddots & & & \\ 0 & & 1 & \\ & & & & 2 \end{pmatrix}, \qquad D = \begin{pmatrix} & & 0 & \\ & 0 & & \\ & & \cdot & \\ & & & \cdot & \\ & & & 0 \\ * & * & \cdots & * & * \end{pmatrix}.$$

Hence $[D, D_0]$ has only 0 elements except for the lowest row, namely $[D, D_0] \in \mathfrak{C}(N)$. Hence $\{D_0, \mathfrak{C}(N)\}$ is an ideal of $\mathfrak{D}(N)$. And its derived subalgebra is contained in abelian ideal $\mathfrak{C}(N)$. Therefore $\{D_0, \mathfrak{C}(N)\}$ is a solovable ideal.

Thus the theorem is proved.

REMARK. It may occur that the maximal nilpotent ideal \mathfrak{N} of $\mathfrak{D}(N)$ consists of only inner derivations. For example, let N be a Lie algebra whose basis $\{e_1, e_2, e_3\}$ satisfies the following multiplication rules:

$$[e_1, e_2] = e_3$$
, $[e_1, e_3] = [e_2, e_3] = 0$.

Then N belongs to the type (ii) mentioned above. And it is easily shown that \Re is generated by ad e_1 and ad e_2 .

Prof. S. Togo and Prof. J. Takeda gave valuable advices to the author reading the manuscript of this paper, to whom the author wishes to express his thanks.

References

- N. JACOBSON, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc., 6(1955), 281-383.
- [2] S. TOGO, On the derivation algebras of Lie algebras, Canadian Journ. Math., 13(1961), 201-216.

IBARAGI UNIVERSITY.