SOME REMARKS ON ANDO'S THEOREMS

TEISHIRÔ SAITÔ

(Received June 27, 1966)

1. In [1] T. Andô has proved the following result.

Theorem A. Let T be a compact operator on a Hilbert space H. Then every subspace which is invariant under T reduces T if and only if T is a normal operator.

The purpose of this paper is to remark that the above theorem is generalised to an operator such as T^m is compact for some integer $m \ge 0$ and to prove a related result.

2. In the sequel, an operator means a bounded linear operator on a Hilbert space H. We denote by $\sigma(T)$ the spectrum and by $\sigma_p(T)$ the point spectrum of an operator T. $\mathfrak{N}_r(\lambda)$ means the λ -th proper subspace of an operator T and $P_{\mathfrak{m}}$ is the orthogonal projection onto a closed subspace $\mathfrak{M} \subset H$.

The following lemma is essentially proved in [5], but we give a proof for convenience' sake.

LEMMA 1. Let T be an operator such as T^m is compact for some integer $m \ge 0$. Then $\mu \in \sigma(T) \cap \{\lambda : |\lambda| = ||T||\}$ implies $\mu \in \sigma_p(T)$.

PROOF. If $\mu \in \sigma(T)$ and $|\mu| = ||T||$, there exists a sequence $\{x_n\}$ of unit vectors in H such as $||Tx_n - \mu x_n|| \to 0$ $(n \to \infty)$. Since T^m is a compact operator, we may assume that (if necessary, by choosing a suitable sub-sequence) the sequence $\{T^m x_n\}$ converges to a certain vector $x \in H$. Then we have

$$||T^{m-1}x_n - \frac{1}{\mu}T^mx_n|| \leq \frac{||T^{m-1}||}{|\mu|}||Tx_n - \mu x_n|| \to 0 \quad (n \to \infty)$$

and

$$||T^{m-1}x_n - \frac{1}{\mu}x|| \leq ||T^{m-1}x_n - \frac{1}{\mu}T^mx_n|| + \frac{1}{|\mu|}||T^mx_n - x|| \to 0 \quad (n \to \infty).$$

Continuing the above argument successively, we can conclude that $\{x_n\}$ converges to a certain non-zero vector $x_0 \in H$. Hence we have

$$||Tx_0 - \mu x_0|| \le ||Tx_0 - Tx_n|| + ||Tx_n - \mu x_n|| + ||\mu x_n - \mu x_0||$$
$$\le 2||T|| ||x_n - x_0|| + ||Tx_n - \mu x_n|| \to 0 \quad (n \to \infty).$$

Therefore $Tx_0 = \mu x_0$, which completes the proof.

THEOREM 1. Let T be a normal operator such as T^m is compact for some integer $m \ge 0$ and $\mathfrak{M} \subset H$ a subspace which is invariant under T, then \mathfrak{M} reduces T.

PROOF. Since T is a normal operator, $\{\mathfrak{N}_T(\lambda) \colon \lambda \in \sigma_p(T)\}$ is a mutually orthogonal family of reducing subspaces. Let P and $P_\lambda(\lambda \in \sigma_p(T))$ be the orthogonal projections onto \mathfrak{M} and $\mathfrak{N}_T(\lambda)$ respectively, $H_0 = \sum_{\lambda \in \sigma_p(T)} \mathfrak{M}_T(\lambda)$, $H_1 = H_0^\perp$ and Q the orthogonal projection onto H_1 . Then T_1 , the restriction of T onto H_1 , is 0. For, if $T_1 \neq 0$ there is a $\mu \in \sigma(T_1)$ such as $\|T_1\| = |\mu|$ by normality of T_1 , and $\mu \in \sigma_p(T_1)$ by Lemma 1 and this is a contradiction. From now the argument is quite similar to that of Andô [1]. By the ergodic theorem,

$$\frac{1}{n} \sum_{k=1}^{n} (\lambda^{-1} T)^k \to P_{\lambda}$$
 (in the strong topology)

for each $\lambda \in \sigma_p(T)$. Similarly,

$$\frac{1}{n} \sum_{k=1}^{n} (\lambda^{-1} PTP)^k \rightarrow Q_{\lambda}$$
 (in the strong topology)

for each $\lambda \in \sigma_p(T)$, where Q_{λ} is a projection. Since $(PTP)^k = PT^kP$ $(k=1,2,\dots)$, we have $Q_{\lambda} = PP_{\lambda}P$ for each $\lambda \in \sigma_p(T)$, and hence $PP_{\lambda}P$ is a projection. Thus we have, for each $x \in H$,

$$\begin{split} \|PP_{\lambda}Px - P_{\lambda}Px\|^2 \\ &= (PP_{\lambda}Px, PP_{\lambda}Px) - (PP_{\lambda}Px, P_{\lambda}Px) \\ &- (P_{\lambda}Px, PP_{\lambda}Px) + (P_{\lambda}Px, P_{\lambda}Px) \\ &= (Q_{\lambda}x, x) - (Q_{\lambda}x, x) - (Q_{\lambda}x, x) + (Q_{\lambda}x, x) = 0 \; . \end{split}$$

Hence, $P_{\lambda}P = PP_{\lambda}$ for each $\lambda \in \sigma_p(T)$. It follows that $T * \mathfrak{M} \subset \mathfrak{M}$. For, if $x \in \mathfrak{M}$,

406 T. SAITÔ

$$T^*x = \sum_{\lambda \in \sigma_p(T)} T^*P_{\lambda}Px + T_1^*(QPx) = \sum_{\lambda \in \sigma_p(T)} T^*P_{\lambda}Px \quad \text{(since } T_1 = 0)$$

$$= \sum_{\lambda \in \sigma_p(T)} \overline{\lambda}P_{\lambda}Px \quad \text{(since } T^*z = \overline{\lambda}z \text{ for } z \in \mathfrak{N}_T(\lambda))$$

$$= \sum_{\lambda \in \sigma_p(T)} P\overline{\lambda}P_{\lambda}x = PT^*\left(\sum_{\lambda \in \sigma_p(T)} P_{\lambda}x\right) \in \mathfrak{M}.$$

Therefore the theorem is proved.

REMARK. In Lemma 1 and Theorem 1 the assumption of compactness of T^m is replaced by the assumption of compactness of operator $T^{*p_1}T^{q_1}\cdots T^{*p_r}T^{q_r}$ for some non-negative integers $p_1, q_1, \cdots, p_r, q_r$.

The following theorem is the converse of Theorem 1.

THEOREM 2. Let T be an operator such as T^m is compact for some integer $m \ge 0$. If every subspace which is invariant under T reduces T, then T is necessarily a normal operator.

PROOF. Since each $\mathfrak{N}_T(\lambda)$ $(\lambda \in \sigma_p(T))$ is invariant under T, $\mathfrak{N}_T(\lambda)$ is a reducing subspace for each $\lambda \in \sigma_p(T)$, and we have $TT^*x = \lambda T^*x$ for $x \in \mathfrak{N}_T(\lambda)$. It follows that

$$||T^*x - \overline{\lambda}x||^2 = (TT^*x, x) - \lambda(T^*x, x) - \overline{\lambda}(Tx, x) + |\lambda|^2 ||x||^2$$

$$= \lambda(T^*x, x) - \lambda(T^*x, x) - |\lambda|^2 ||x||^2 + |\lambda|^2 ||x||^2$$

$$= 0.$$

Thus $\{\mathfrak{N}_T(\lambda): \lambda \in \sigma_p(T)\}$ is a mutually orthogonal family of reducing subspaces and the restriction of T onto $H_0 = \sum_{\lambda \in \sigma_p(T)} \oplus \mathfrak{N}_T(\lambda)$ is a normal operator. Let Q be the orthogonal projection onto $H_1 = H_0^{\perp}$. It is sufficient to show that TQ = 0. Now, suppose the contrary. Then $T^mQ = (TQ)^m \neq 0$. In fact, if $(TQ)^m = 0$, $(TQ)(TQ)^{m-1}x = 0$ for $x \in H_1$ and $0 \in \sigma_p(T)$, which is a contradiction. By this fact, Andô's discussion [1: p.339] is fairly applicable to the compact operator $(TQ)^m$ since a polynomially compact operator*) has a non-trivial invariant subspace by a recent result [3], and we can conclude that TQ = 0. For the

^{*)} An operator T is called polynomially compact if p(T) is a compact operator for some polynomial p(.).

sake of completeness, we shall state the detail of the proof. Consider the family F of all subspaces $\mathfrak{M} \subset H_1$ which are invariant under T_1 , the restriction of T onto H_1 , and satisfy the condition $\|P_mT_1^m\| = \|T_1^m\|$. Then we can see that the family F contains a minimal member \mathfrak{M}_0 . This is an immediate consequence of Zorn's lemma and Lemma 2 which will be proved later. Of course, $\mathfrak{M}_0 \neq (0)$ since $T_1^m \neq 0$. If dim $\mathfrak{M}_0 \geq 2$, \mathfrak{M}_0 contains a non-trivial subspace \mathfrak{M} which is invariant under T_1 by [3]. \mathfrak{M} reduces T_1 by hypothesis and we have

$$||T_1^m|| = ||P_{\mathfrak{m}_0}T_1^m|| = \operatorname{Max}\{||P_{\mathfrak{m}}T_1^m||, ||(P_{\mathfrak{m}_0}-P_{\mathfrak{m}})|T_1^m||\}.$$

It follows that either \mathfrak{M} or $\mathfrak{M}_0 \cap \mathfrak{M}^\perp = \mathfrak{M}_0$ is a member of F, and this contradicts the minimality of \mathfrak{M}_0 . In case dim $\mathfrak{M}_0 = 1$, $\mathfrak{M}_0 = \{\alpha x : \alpha \text{ complex}\}$ for some unit vector $x \in H_1$ and $Tx = \lambda x$ for some complex number λ , which is also a contradiction. At any rate, it does not happen that $T_1 \neq 0$ and the proof of the theorem is finished if Lemma 2 is proved.

The following lemma shows that the family F in the proof of Theorem 2 is inductive and assures the existence of \mathfrak{M}_0 .

LEMMA 2. Let A be a compact operator on a Hilbert space H and $\{\mathfrak{M}_{\alpha}\}$ be a totally ordered family (by inclusion) of subspaces each of which is invariant under A and satisfies $\|P_{\mathfrak{m}_{\alpha}}A\| = \|A\|$. Then $\|P_{\mathfrak{n}}A\| = \|A\|$ where $\mathfrak{N} = \cap \mathfrak{M}_{\alpha}$.

PROOF. Let $\varepsilon > 0$ be given. For each α , there exists a unit vector $x_{\alpha} \in H$ such as

$$\|(P_{\mathfrak{n}}\!-\!P_{\mathfrak{m}_{\pmb{lpha}}})Ax_{\pmb{lpha}}\|>\|(P_{\mathfrak{n}}\!-\!P_{\mathfrak{m}_{\pmb{lpha}}})A\|-rac{\mathfrak{E}}{4}.$$

Since $\{x_{\alpha}\}$ is a bounded set and A is a compact operator, we can choose a subnet $\{x_{\alpha_{\nu}}\}$ and an $x \in H$ such that $\{Ax_{\alpha_{\nu}}\}$ converges to x strongly. As P_{π} is a strong limit of $P_{\pi_{\alpha}}$ there exists a ν such that

$$\|(P_{\mathfrak{m}_{\alpha_{\nu}}}-P_{\mathfrak{n}})x\|<\frac{\varepsilon}{4},\quad \|Ax_{\alpha_{\nu}}-x\|<\frac{\varepsilon}{4}.$$

Then we have

$$\begin{split} \|(P_{\mathfrak{n}} - P_{\mathfrak{m}_{\alpha_{\mathcal{V}}}})A\| &< \|(P_{\mathfrak{n}} - P_{\mathfrak{m}_{\alpha_{\mathcal{V}}}})Ax_{\alpha_{\mathcal{V}}}\| + \frac{\mathcal{E}}{4} \\ &\leq \|(P_{\mathfrak{n}} - P_{\alpha_{\alpha_{\mathcal{V}}}})(Ax_{\alpha_{\mathcal{V}}} - x)\| + \|(P_{\mathfrak{n}} - P_{\mathfrak{m}_{\alpha_{\mathcal{V}}}})x\| + \frac{\mathcal{E}}{4} \end{split}$$

408 T. SAITÔ

$$\leq 2\|Ax_{\alpha_{\nu}}-x\| + \|(P_{\mathfrak{n}}-P_{\mathfrak{m}_{\alpha_{\nu}}})x\| + \frac{\varepsilon}{4} < \varepsilon.$$

As $\varepsilon > 0$ is arbitrary, we have

$$\|P_{\mathfrak{n}}A\| = \lim_{\nu} \|P_{\mathfrak{m}_{\alpha_{\nu}}}A\| = \|A\|$$

which completes the proof.

3. In connection with the results in section 2 and [5] we shall prove a theorem. Following V. Istrătescu [4], an operator T is called of class (N) if $||T^2x|| \ge ||Tx||^2$ for all unit vectors $x \in H$. Then the following theorem is a special case of the result in [5].

THFOREM B. Let T be an operator of class (N) such as T^m is compact for some integer $m \ge 0$. Then T is necessarily a normal operator.

The following lemma is an easy exercise (see [2]) and we omit the proof.

LEMMA 3. Let T be a hyponormal operator and P a projection. If PTP=TP and TP is normal, TP=PT.

From Theorem B and Lemma 3, we have the following theorem.

THEOREM 3. Let T be a hyponormal operator and \mathfrak{M} a subspace which is invariant under T. If T^mP_m is a compact operator for some integer $m \ge 0$, then \mathfrak{M} reduces T.

PROOF. For a unit vector $x \in H$,

$$||TP_{\mathfrak{m}}x||^2 = (T^*TP_{\mathfrak{m}}x, x) \leq ||T^*TP_{\mathfrak{m}}x||$$

 $\leq ||T^2P_{\mathfrak{m}}x|| = ||(PT_{\mathfrak{m}})^2x||.$

Hence $TP_{\mathfrak{m}}$ is an operator of class (N). On the other hand, $T^{\mathfrak{m}}P_{\mathfrak{m}}=(TP_{\mathfrak{m}})^{\mathfrak{m}}$ is a compact operator by the hypothesis and so $TP_{\mathfrak{m}}$ is a normal operator by Theorem B. Therefore $TP_{\mathfrak{m}}=P_{\mathfrak{m}}T$ by Lemma 3.

ADDENDUM. Professor T. Andô has kindly remarked in a private communication that when T is a normal operator T^m is a compact operator if and only if T is a compact operator and hence our Theorem 1 is an immediate consequence of Theorem A.

REFERENCES

- [1] T. Andô, Note on invariant subspaces of a compact normal operator, Archiv Math., 14(1963), 337-340.
- [2] S. K. Berberian, Introduction to Hilbert space, Oxford University Press, New York, 1961.
- [3] A. R. BERNSTEIN AND A. ROBINSON, Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific Journ. Math., 16(1966), 421-431.
- [4] V. ISTRATESCU, On some hyponormal operators, to appear in Pacific Journ. Math.
- [5] V. ISTRATESCU, T. SAITÔ AND T. YOSHINO, On a class of operator, to apcear in Tôhoku Math. Journ.

TÔHOKU UNIVERSITY.