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ON KITAGAWA'S FUNCTIONAL INTEGRAL

PEGGY STRAIT

(Received September 26, 1966)

The purposes of this note are to show that the measure underlying

T. Kitagawa's functional integral is the measure induced by a Gaussian

process, and that furthermore this process is an extension of the Brownian

process into 2-dimensional parameter space.

T. Kitagawa defined functional integration [1] in the space C2 of real

valued continuous functions x(t9 r) on the unit square 0 rg ί, T 5g 1 satisfying

x(Qy τ ) = χ(t, 0) = 0, and for real valued functionals of the type H[x(tl9 TX),

• , x(tr, τs)] where {th}, {τk} are preassigned division points satisfying

0 = t0 ^ tx ^ ^ tr ^ trΛΛ = 1, 0 = τ0 ̂  τλ ^ ^ τ s ̂  τ s + 1 = 1 to be

( 1 ) ί / t ^ j , T l ) , , Xifr, T,)] rfw
J ί7

= f
h=\ k=l

where

( 2 ) P(Δhk) = W(th — th_Λ(τk — Tifc_1)]~~Γexp| W^~^,fc-l~"^-l,fc + ̂ -l,fc-l)

J. Yeh proved [3] that the family of distributions

( 3 ) F((l.Tι)...((p,τ.)(«11, , ars) = f" • • /"" Π Π P ( Δ M ) ̂ n ^ r s

obtained from the Kitagawa functional integral can be extended to a measure

w that is defined on the algebra of Borel cylinders on the space C2.

In Theorem 1, we shall show that the distribution (3) is the joint distri-

bution of the random vector {f(ίl)Tl) — ξ{tr,τs)} obtained from the Gaussian

process {ξt>τ: 0 5g t r=g 1, 0 fg τ 5g 1} with mean values E(ξt}T) = 0 and covariance

^th,rkξtP,τq) = -^rmn(thytp)mm(τk,τQ). Theorem 2 gives further properties of
ZJ

this process.
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THEOREM 1. Let [ξttT: 0 ̂  t ̂  1, 0 ̂  T ̂  1} be the Gaussian process

with mean values E(ξttT) = 0 α n J covariance E(ξthtTkξtP,τQ) = l-^-Jmm(th9tp)

m i n ^ , Tg). L#£ {£Λ} α?z<i {T^} έe points satisfying 0 = ί0 = t\ = * * * = tr

^ * r + 1 = 1, 0 = τ 0 ^ T l ̂  ^ τs ̂  τ s + 1 - 1. 7

Jr^r* /tan

••• /

\ ft ίh~m\ / \ Λ Λ 1/

PROOF. Write ^Λ>fc = ξthtTk and consider the random variables

ζfι,k — b/i./b ~ ζh,k-l ζh-l,k + ζh-l,k-l

Observe that the following statements (i), (ii) and (iii) hold.

( i ) £(&>,,) = E(ξh>k - ξhtk_λ - ξh_ltk + ̂ , ^ 0 - 0

( i i ) E(ζh)kξh>k) = £(β ι J f c + a,.-i + ξU,k + β.i,*-i ~ ̂ Λ , * ^ , ^ - 2ξhtkξh.ltk

+ 2ςΛ,Jfc?Λ-l,ifc-l + 2,ζh,k-lζtι-l,k-l Zζh,k-1 ζh-l,k-l ~~ 2 f Λ_i,fc f Λ

= -τr(thτk + ίΛTV.! 4- ίΛ-iTjt + th_1τk_ι - 2thτk_1 - 2th_ιτk

4- 2 ^ - ! ^ . . ! + 2ίΛ_1τA._1 — 2ίΛ_1τA._1 — 2ί/i_1τ fc_1)

= ~^(βhτk ~ thτk-\ ~ tfι-lτk + ^Λ-lτA:-l)

(iii) £(fΛ,*^,,) = 0 when (A, *) Φ (j>, q).

To prove (iii) consider each of the cases (p = h, q < k), (p < h, q> k),

(P>h, q< k\ (p<h, q = k\ (p<h, q< k\ (p = h, q > k), (p> h, q = k),

(p> h, q > k), sepearately. The desired answer is a simple consequence of

the direct application of the formula E(ξhtkξPίQ) = —min(ίΛ, tp) minfo, τq) to the

term on the right of E(ξhfkξp§q) = E{(ξh>k - ξh^k - ξh)k^ + fΛ-i,*-i) (ξP.q - ξP-i,q

~ ζp,q-l + ζp-l,q~l)}
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Hence the random variables ξhtk are independent Gaussian random

variables with mean 0 and variance σ\k = —(t h — th_^)(τk — τk_^). (Because ζhtk9

as linear combinations of Gaussian random variables, are themselves Gaussian
and zero covariance implies independence.)

Thus we may write

= P\.ζh,k ~ ζh-\,k ~ ζh,k-\ + ζh-l,k-l <C Cίfik — ζh-l,k ~~ ζh,k-l + ζh-l,k-l j

h = 1, , r k = 1, , 5}

f αn-7/r-i,ι-i?-,«-i+i?r-M-i

• / Π Π P(Δhk) dηu d(ηrs — ηr-i,s — ηr,s-i + Vr-i,s-i)

= ί f Π Π P ( Δ ω ) ^ n . ^rs

THEOREM 2. TΛ^ Gaussian process of Theorem 1 has the following
properties.

(a) Almost all sa?nple functions are Lipschitz-β continuous for 0 < β < — .
Δ

(b) Along any fixed coordinate, say, t = constant or τ=constant, the process
is Brownian motion in 1-dimensional parameter space.

PROOF. For a proof of property (a) refer to Lemma 1 which is stated below.
For our purpose it suffices to show that E(\ξt>τ — ξs,σ\

2) ^ K+/(t—s)2 + (τ—σ)2

for some constant K. Thus observe that

~?r I tτ — min(t, s) min(τ, σ) \ + -^- | sσ—min(ί, s) min(τ, σ) |

< \t-s\ + | τ - σ | .

The last inequality is obtained by substituting all possible values of min(/, s)
min(τ, σ) into term on the left of that inequality. Hence it follows that

t,r

Property (b) follows immediately upon observation that the covariance
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function of Theorem 1 reduces to the covariance function of the Brownian
process in 1-dimensional parameter space upon substituting a constant for
either the variable t or the variable T.

LEMMA 1. Let {ξt;tz RN} be a Gaussian process, E(ξt) = 0, and T
a compact subset of RN (N-dimensional Euclidean space). If there are
constants a > 0 and K such that

(6) Eίttt-ξ.M^KWt-sV

for t, s in RN, then almost all sample functions of the process are Lίpschitz-β
continuous in T for 0 < β < a/2.

A statement and proof of the lemma is found in [2]. It should be noted
here that in [2] the term "almost all" is used in a special sense but that it
takes on the usual meaning if we assume the process in question is separable
and is separated by the subset D of the parameter space consisting of all dyadic
coordinates. Thus, in order to avoid unnecessary complications we should
assume throughout this note the process {ξt,τ 0 ̂  t, r 5s 1} is separable and
is separated by the set D = {(t, r) : 0 fg t, r ^ 1, and both t and r are dyadic
numbers]. || || denotes the Euclidean norm.
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