Tôhoku Math. Journ. Vol. 19, No. 1, 1967

ON KITAGAWA'S FUNCTIONAL INTEGRAL

PEGGY STRAIT

(Received September 26, 1966)

The purposes of this note are to show that the measure underlying T. Kitagawa's functional integral is the measure induced by a Gaussian process, and that furthermore this process is an extension of the Brownian process into 2-dimensional parameter space.

T. Kitagawa defined functional integration [1] in the space C_2 of real valued continuous functions $x(t, \tau)$ on the unit square $0 \leq t, \tau \leq 1$ satisfying $x(0, \tau) = x(t, 0) = 0$, and for real valued functionals of the type $H[x(t_1, \tau_1), \cdots, x(t_r, \tau_s)]$ where $\{t_h\}$, $\{\tau_k\}$ are preassigned division points satisfying $0 = t_0 \leq t_1 \leq \cdots \leq t_r \leq t_{r+1} = 1, 0 = \tau_0 \leq \tau_1 \leq \cdots \leq \tau_s \leq \tau_{s+1} = 1$ to be

(1)
$$\int_{c_2}^{w} H[x(t_1, \tau_1), \cdots, x(t_r, \tau_s)] d_w x$$
$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} H[\eta_{11}, \cdots, \eta_{rs}] \prod_{h=1}^{r} \prod_{k=1}^{s} P(\Delta_{hk}) d\eta_{11} \cdots d\eta_{rs}$$

where

(2)
$$P(\Delta_{hk}) = [\pi(t_h - t_{h-1})(\tau_k - \tau_{k-1})]^{-\frac{1}{2}} \exp\left\{-\frac{(\eta_{hk} - \eta_{h,k-1} - \eta_{h-1,k} + \eta_{h-1,k-1})^2}{(t_h - t_{h-1})(\tau_k - \tau_{k-1})}\right\}.$$

J. Yeh proved [3] that the family of distributions

(3)
$$F_{(t_1,\tau_1)\cdots(t_r,\tau_s)}(\alpha_{11},\cdots,\alpha_{rs}) = \int_{-\infty}^{\alpha_{rs}}\cdots\int_{-\infty}^{\alpha_{11}}\prod_{k=1}^r\prod_{k=1}^s P(\Delta_{hk})\,d\eta_{11}\cdots d\eta_{rs}$$

obtained from the Kitagawa functional integral can be extended to a measure w that is defined on the algebra of Borel cylinders on the space C_2 .

In Theorem 1, we shall show that the distribution (3) is the joint distribution of the random vector $\{\xi_{(t_1,\tau_1)}\cdots\xi_{(t_r,\tau_s)}\}$ obtained from the Gaussian process $\{\xi_{t,\tau}: 0 \leq t \leq 1, 0 \leq \tau \leq 1\}$ with mean values $E(\xi_{t,\tau}) = 0$ and covariance $E(\xi_{t_h,\tau_k}\xi_{t_p,\tau_q}) = \frac{1}{2}\min(t_h,t_p)\min(\tau_k,\tau_q)$. Theorem 2 gives further properties of this process.

P. STRAIT

THEOREM 1. Let $\{\xi_{t,\tau}: 0 \leq t \leq 1, 0 \leq \tau \leq 1\}$ be the Gaussian process with mean values $E(\xi_{t,\tau}) = 0$ and covariance $E(\xi_{t_{h},\tau_{k}}\xi_{t_{p},\tau_{q}}) = \left(\frac{1}{2}\right)\min(t_{h},t_{p})$ $\min(\tau_{k},\tau_{q})$. Let $\{t_{h}\}$ and $\{\tau_{k}\}$ be points satisfying $0 = t_{0} \leq t_{1} \leq \cdots \leq t_{r}$ $\leq t_{r+1} = 1, 0 = \tau_{0} \leq \tau_{1} \leq \cdots \leq \tau_{s} \leq \tau_{s+1} = 1$. Then

$$(4) \quad P\{\xi_{t_1,\tau_1} < \alpha_{11}, \cdots, \xi_{t_r,\tau_s} < \alpha_{rs}\} = \int_{-\infty}^{\alpha_{rs}} \cdots \int_{-\infty}^{\alpha_{n1}} \prod_{k=1}^{r} \prod_{k=1}^{s} P(\Delta_{kk}) \, d\eta_{11} \cdots d\eta_{rs}$$

where

(5)
$$P(\Delta_{hk}) = [\pi(t_h - t_{h-1})(\tau_k - \tau_{k-1})]^{-\frac{1}{2}} \exp\left\{-\frac{(\eta_{hk} - \eta_{h,k-1} - \eta_{h-1,k} + \eta_{h-1,k-1})^2}{(t_h - t_{h-1})(\tau_k - \tau_{k-1})}\right\}$$

PROOF. Write $\xi_{h,k} = \xi_{t_h,\tau_k}$ and consider the random variables

$$\zeta_{h,k} = \xi_{h,k} - \xi_{h,k-1} - \xi_{h-1,k} + \xi_{h-1,k-1}$$

Observe that the following statements (i), (ii) and (iii) hold.

$$\begin{array}{ll} (i) \quad E(\xi_{h,k}) = E(\xi_{h,k} - \xi_{h,k-1} - \xi_{h-1,k} + \xi_{h-1,k-1}) = 0 \\ \\ (ii) \quad E(\xi_{h,k}\xi_{h,k}) = E(\xi_{h,k}^2 + \xi_{h,k-1}^2 + \xi_{h-1,k}^2 + \xi_{h-1,k-1}^2 - 2\xi_{h,k}\xi_{h,k-1} - 2\xi_{h,k}\xi_{h-1,k} \\ &\quad + 2\xi_{h,k}\xi_{h-1,k-1} + 2\xi_{h,k-1}\xi_{h-1,k-1} - 2\xi_{h,k-1}\xi_{h-1,k-1} - 2\xi_{h-1,k}\xi_{h-1,k-1}) \\ &\quad = \frac{1}{2}(t_h\tau_k + t_h\tau_{k-1} + t_{h-1}\tau_k + t_{h-1}\tau_{k-1} - 2t_h\tau_{k-1} - 2t_{h-1}\tau_k \\ &\quad + 2t_{h-1}\tau_{k-1} + 2t_{h-1}\tau_{k-1} - 2t_{h-1}\tau_{k-1} - 2t_{h-1}\tau_{k-1}) \\ &\quad = \frac{1}{2}(t_h\tau_k - t_h\tau_{k-1} - t_{h-1}\tau_k + t_{h-1}\tau_{k-1}) \\ &\quad = \frac{1}{2}(t_h-t_{h-1})(\tau_k-\tau_{k-1}) \end{array}$$

(iii) $E(\zeta_{h,k}\zeta_{p,q}) = 0$ when $(h,k) \neq (p,q)$.

To prove (iii) consider each of the cases (p = h, q < k), (p < h, q > k), (p > h, q < k), (p > h, q = k), (p < h, q < k), (p = h, q > k), (p > h, q = k), (p > h, q < k), (p > h, q = k), (p > h, q > k), sepearately. The desired answer is a simple consequence of the direct application of the formula $E(\xi_{h,k}\xi_{p,q}) = \frac{1}{2}\min(t_h, t_p)\min(\tau_k, \tau_q)$ to the term on the right of $E(\zeta_{h,k}\zeta_{p,q}) = E\{(\xi_{h,k} - \xi_{h-1,k} - \xi_{h,k-1} + \xi_{h-1,k-1}) \cdot (\xi_{p,q} - \xi_{p-1,q} - \xi_{p,q-1} + \xi_{p-1,q-1})\}.$

76

Hence the random variables $\zeta_{h,k}$ are independent Gaussian random variables with mean 0 and variance $\sigma_{h,k}^2 = \frac{1}{2}(t_h - t_{h-1})(\tau_k - \tau_{k-1})$. (Because $\zeta_{h,k}$, as linear combinations of Gaussian random variables, are themselves Gaussian and zero covariance implies independence.)

Thus we may write

$$P\{\xi_{h,k} < \alpha_{hk}; h = 1, \cdots r; k = 1, \cdots, s\}$$

$$= P\{\xi_{h,k} - \xi_{h-1,k} - \xi_{h,k-1} + \xi_{h-1,k-1} < \alpha_{hk} - \xi_{h-1,k} - \xi_{h,k-1} + \xi_{h-1,k-1}; h = 1, \cdots, r; k = 1, \cdots, s\}$$

$$= \int_{-\infty}^{\alpha_{rs} - \eta_{r-1,s} - \eta_{r,s-1} + \eta_{r-1,s-1}} \cdots \int_{-\infty}^{\alpha_{ll}} \prod_{h=1}^{r} \prod_{k=1}^{s} P(\Delta_{hk}) d\eta_{11} \cdots d(\eta_{rs} - \eta_{r-1,s} - \eta_{r,s-1} + \eta_{r-1,s-1})$$

$$= \int_{-\infty}^{\alpha_{rs}} \cdots \int_{-\infty}^{\alpha_{ll}} \prod_{h=1}^{r} \prod_{k=1}^{s} P(\Delta_{hk}) d\eta_{11} \cdots d\eta_{rs}$$

THEOREM 2. The Gaussian process of Theorem 1 has the following properties.

(a) Almost all sample functions are Lipschitz- β continuous for $0 < \beta < \frac{1}{2}$.

(b) Along any fixed coordinate, say, t = constant or $\tau = constant$, the process is Brownian motion in 1-dimensional parameter space.

PROOF. For a proof of property (a) refer to Lemma 1 which is stated below. For our purpose it suffices to show that $E(|\xi_{t,\tau}-\xi_{s,\sigma}|^2) \leq K\sqrt{(t-s)^2+(\tau-\sigma)^2}$ for some constant K. Thus observe that

$$\begin{split} E(|\xi_{t,\tau} - \xi_{s,\sigma}|^2) &= E(\xi_{t,\tau}^2) - 2E(\xi_{t,\tau}\xi_{s,\sigma}) + E(\xi_{s,\sigma}^2) \\ &\leq |E(\xi_{t,\tau}^2) - E(\xi_{t,\tau}\xi_{s,\sigma})| + |E(\xi_{s,\sigma}^2) - E(\xi_{t,\tau}\xi_{s,\sigma})| \\ &= \frac{1}{2} |t\tau - \min(t,s)\min(\tau,\sigma)| + \frac{1}{2} |s\sigma - \min(t,s)\min(\tau,\sigma)| \\ &< |t-s| + |\tau - \sigma| . \end{split}$$

The last inequality is obtained by substituting all possible values of $\min(t, s)$ $\min(\tau, \sigma)$ into term on the left of that inequality. Hence it follows that

$$E(|\xi_{t,\tau}-\xi_{s,\sigma}|^2) \leq \sqrt{2}\sqrt{(t-s)^2+(\tau-\sigma)^2}.$$

Property (b) follows immediately upon observation that the covariance

P. STRAIT

function of Theorem 1 reduces to the covariance function of the Brownian process in 1-dimensional parameter space upon substituting a constant for either the variable t or the variable τ .

LEMMA 1. Let $\{\xi_t; t \in \mathbb{R}^N\}$ be a Gaussian process, $E(\xi_t) = 0$, and T a compact subset of \mathbb{R}^N (N-dimensional Euclidean space). If there are constants $\alpha > 0$ and K such that

$$E(|\xi_t - \xi_s|^2) \leq K ||t - s||^{\alpha}$$

for t, s in \mathbb{R}^{N} , then almost all sample functions of the process are Lipschitz- β continuous in T for $0 < \beta < \alpha/2$.

A statement and proof of the lemma is found in [2]. It should be noted here that in [2] the term "almost all" is used in a special sense but that it takes on the usual meaning if we assume the process in question is separable and is separated by the subset D of the parameter space consisting of all dyadic coordinates. Thus, in order to avoid unnecessary complications we should assume throughout this note the process $\{\xi_{t,\tau}: 0 \leq t, \tau \leq 1\}$ is separable and is separated by the set $D = \{(t,\tau): 0 \leq t, \tau \leq 1\}$ is separable and is separated by the set $D = \{(t,\tau): 0 \leq t, \tau \leq 1\}$ and both t and τ are dyadic numbers}. $\|\cdot\|$ denotes the Euclidean norm.

References

- T. KITAGAWA, Analysis of variance applied to function spaces, Mem. Fac. Sci. Kyusyu Univ. Ser. A, 6(1951), 41-53.
- [2] P. STRAIT, Sample function regularity for Gaussian processes with the parameter in a Hilbert space, Pacific Journ. Math. 19(1966) 159-173, esp. Corollary 1, page 164.
- [3] J. YEH, Wiener measure in a space of function of two variables, Trans. Amer. Math. Soc., 95(1960), 433-450.

QUEENS COLLEGE, CITY UNIVERSITY OF NEW YORK NEW YORK, U.S.A.

78