Tohoku Math. Journ.
Vol. 19, No. 2, 1967

ON A CONFORMALLY FLAT RIEMANNIAN SPACE
WITH POSITIVE RICCI CURVATURE
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1. Introduction. A Riemannian space is called conformally flat when its
Weyl conformal curvature tensor vanishes. It is well known that the p-th
(0 < p< n) Betti numbers of a compact orientable conformally flat Riemannian
space with positive Ricci curvature are all zero.” In this paper we shall
prove the following theorems in the case when its scalar curvature is constant.

THEOREM A. Let M be a compact orientable conformally flat
Riemannian space with constant scalar curvature and with positive Ricci
curvature, then M is of constant curvature.

In the proof of this theorem, we can find that the same conclusion is
obtained by replacing the condition about the Ricci curvature by that of
positive sectional curvature. Hence we have:

THEOREM B. Let M be a compact orientable conformally flat
Riemannian space with constant scalar curvature and with positive sectional
curvature, then M is of constant curvature.
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2. Definitions and notations. Let M be an #n-dimensional Riemannian
space and p be a point in M. 7T,(M) and {zx*} denote the tangent space to
M at p and a local coordinate system around p, respectively. As usual, ¢q,
R%.s and R,, = R%,, denote the Riemannian metric, the curvature tensor and
the Ricci tensor, respectively. Take an orthonormal basis X;,---,X, at p
then we have

Gab X° ij = sz >

1) K.Yano and S.Bochner, [1], pp.79-80.
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where X,=X,"0/0x2% The sectional curvature of 2-plane spanned by X, and
X, is given by

P(Xi, X;) = —Rapea Xi* ijch X,
where Rucqa = §ue R%.q and we have
Z P(Xi, X)) = Ry Xi° X0
j
We call R, X,*X;* the Ricci curvature with respect to X;. The scalar curvature
R is given by

R =3 pX; X,).
i
The Weyl conformal curvature tensor is defined by

1
Cabcd = Rabcd - m (Rbcsg - Rbdsg + gbcRad - gbdRac)

R (A a,
+ =1)(n=2) (95:8% — 95a82) .

A Riemannian space is called conformally flat if C%,, =0 for >3 and if
Cyea = 0 for n=3, where the tensor C,., is defined by

1 1
Ciea = m(Vdec_chbd) - )(gbcvdR_gbdch)>

2(n—1)(n—2

VR and VR being the covariant derivatives of R,, and R.
Generally it is known that the following relation holds between the two
tensors C%.,; and Cy.q:

va Cabcd = (77_3) Cbcd .
Therefore, if the space is conformally flat (n = 3), then the relation C,,, =0

is always true.
In our case, R being constant, we have

(2- 1) vdec — Ve Rbd =0.

Now we consider about Lichnérowicz formula.? Denoting the volume

2) A.Lichnérowicz, [2], p.10.
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element of M by dV, we have the following integral formula :
[ (TR = VR Roe= VRea) = K(B) AV
M

= (1/2) f (VR™% 7, Ryoas) AV,
M
where K is a real valued function defined on M as follows:
K(P) = _Racbc Radef Rbde'r + (1/2) Rabw Rcdef Refab + ZRucbd Rae“ Rcedf .

By (2.1) we have
(2.2) f K(p)dV =0.

On the other hand, as shown later, we obtain K(p) =0 under our assumption,
and arrive at the conclusion of Theorem A.

3. Calculation of K(p). In a conformally flat space, the curvature tensor
is given by

1
Ry = —2 (Rpe8% — Ryy 8 + 9y R*y — 94a R%)

R
~ i=D)(n=2) (95 8% — 90408 -

With respect to an orthonormal basis X,,-++, X, , we have
Ry =0, if 7, 7, £ and h are all different,
(3. 1) Rmn = "%_2Rma ifj ih,

1
n—2

R e .
Rijy = — (Ru + R;; —-n—_l—), if i#7.
Now we choose an orthonormal basis such that R;, =0, (j # h), then non-

vanishing components of the curvature tensor are only of the type R,;;;.
If we set

A= — Z Rikijihlijh.lm 5 B = (1/2) Z Rijlcthchlm leij s
i, J, kb i, 4,k
lL.m h,l,m
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C=2 z Rilcthtlijklhma

1,4,k
I,m

in accordance with our choice of the basis, we have

A=-2 Z Ry Rinai, B=2 Z Rihih-3 >

i,k,h i,k

C=2 Z RikikRih,tllechlch .

ik,h

As a result, it remains to calculate the following formula:

(1/2) K(P) = - Z RikikRihih2 + Z RilcikRihih Rkhkh .

i,k h ik, h

Substitution of (3.1) into this formula gives

(=20 sy = _ R __R Y
77 K@) = % (Rut R =y (Rt R = .05

(R B R R )

= 2 {(Rii3 + Ri*Run) + ;‘Ij—l (=R’ + Rann)}

i,k ha

= (n—1)(n—2) Z R, — (n—2) Z R;*(R—Ry)

+ n_Ril {—(n_l)(n—Z)ZRu2 + (n—2) ZRii(R - Rii)} >

—2)° R R
QEELK(p)=(n—1)LZR“3_2;R“2(R——R“)+ it~ T Z Rat

Since R® and R >_ R;? can be expressed in the forms

R = Z R;*+3 Z R (R—Ry;) + 6 Z R;iR;; Ry s

1<j<k

R Z Ruz = Z Rzi3 + Z Rii2(R - Rii) >
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we have
(n—l)in—2)2 K(p) = L"—_Dz(n;z) Z Ryt = (1=2) 5 Ri(R—Ru)

3.2) +3 3 RuR,;Ru

1<j<k

= Rii(Rii - Rjj)(R“' - Rkk) .
J.k
k

<

Next we shall prove that the right hand side of (3.2) is non-negative.
By the assumption we have R;; >0, ¢ =1,.--,7n Without loss of generality,
we can assume that R, <R,, =<-.--=<R,,. For the term for which i <j <<k
or j < k < i, we have

Ru(th - Rjj)(Rii - Rkk) = 0.

On the other hand for the term for which j <7<k, we can find a suitable
term such that the sum of these terms is non-negative, that is,

Rti(Rii - Rjj)(Rii - Rkk) + Rip(Rye — Rjj)(Rklc - Rn)
= (Ru - Rkk)z(Rkk + Rn - RH) =0.

Thus the right hand side of (3.2) can be expressed as the sum of only non-
negative terms. Consequently, we get K(p) =0 for each point of M. By
(2.2), as K(p) must be identically zero, every non-negative term is zero.
Therefore from (3.2), we have R,, =R, =---=R,,, and by (3.1) we
conclude that M is of constant curvature.
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