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1. Introduction. In the preceding paper [7], we studied the inversion

theory for some restricted class of convolution transform

( 1 ) f(x) = [ G{x-1) ect da{f) (c : real),
»/-oo

for which the kernel G(t) is of the form

( 2 ) G(t) = -±r- f [F(s)V e*' ds.
-ioo

Here F(s) is the meromorphic function with real zeros and poles only, and is

of the form F(s) = E1(s)/E2(s\

( 3 ) E&) = e»° Π (1 s/ak) es^, Et(s) = Π (1 -s/ck) έ"*,
1 1

oo oo

where b, {ak} Γ, {̂ A:} Γ are constants such that ^ al2 < oo, ]P cl2 < oo .
1 1

When E^s) and E2(s) are reciprocals of the generating functions of kernels

of class I and class II (or I, II) [3], [4], respectively, and F(s) satisfies some

conditions, we knew that the properties of the transform (1) are similar to

those of the convolution transform with the class I kernel.

In this paper we shall study the case in which both E^s) and E2(s) are

reciprocals of the generating functions of class II (or III) kernels and satisfies

the conditions:

(4 a) akck > 0, | ak \ ^ | ck | for all k and

(4 b) for some positive cί and any positive number i?,
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[F(s)Γ = O(|τ|-<a+">) | τ | ->oo, 5 = σ + iτ,

uniformly in the strip | σ | ^ R.
In this case we shall know that our kernel has similar properties to those

of the class III kernel and vanishes from a certain point on. If both Eγ(s)
and E2(s) are corresponding to class III kernels, then the last condition of (4 a)
is satisfied necessarily and the inversion theorem obtained without the
condition for a(t).

However, if Eλ(s) and E2(s) are corresponding to class II kernels and
satisfy (4a), then for the inversion theorem it is necessary to assume some
order condition for CL(£). Further, in the last section we shall show that even
if we remove the last condition of (4 a), our method cannot be applied, in
general, to the convolution transform without some order condition for cί(i).

2. Properties of the kernel. For brevity, we assume hereafter that the
constants ak, ck9 ere positive for all k.

Let us define

( ak e^-1 ( - oo < t < I / O
gilt) =

1 0 (I/a* < t < oo),

hk(t) = (l-ak/ck) gk(μ + l/ck) du
J-oo

where j(t) is the standard jump function, that is, j(t) = 1 for t > 0, 1/2 for
t = 0, and 0 for t < 0. It is easily verified that hk(t) is a normalized dis-
tribution function with mean 0 and variance ak

2 — ck

2> and

j e

the bilateral Laplace transform converging absolutely for 9Ϊ5 < ak.

T H E O R E M 2.1. If

1. F(s) satisfies conditions (4 a), (4 b) of § 1,
2. μ2 = multiplicities of a2 as a zero of F(s\ where cL2 = mmak9

3. G(t) = . I [ίfa)]"1 est ds (—oo < t < oo),

then\
oo oo

A. G(t) is a frequency function with mean b and variance ]Pa k

2 — 2Z ck

2

1 1
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B. I e stG(i) dt = [F(s)] \ the bilateral Laplace transform converging

absolutely in the half plane Vis < a2

C. GCί)eO(-00,00);

D. [G(ί)]<»> =
0

1

in = 0,1)
[q(t) e«>Jn) + O(e^+ε)t) t -> - 00 ,

for some £ > 0, where q(t) is a real polynomial of degree μ2 — 1.

PROOF. If we set

where operation # denotes the Stieltjes convolution for distribution functions,
n n

then Hn(t) is a distribution function with mean b and variance ]P α^2 — ̂  c^2.

From the condition (4 a), (4 b) of §1, it is easily seen [7] that distribution

function H(i) = lim Hn(t) is twice differentiable and G(i) = -3- H(t). Hence,
w-*oo dt

G(t) is a frequency function and by Humburger's theorem [8] we see that

f
• ' - c

the integral converging absolutely for 9ΐs < <X2. From these facts the conclu-
sion A, B, C and the second part of conclusion D are obvious. However, by
the direct calculation, it is seen that

for
i \ Δ c«!

and

- ' 1 *s_| f o r

This infinite product is either converges or diverges to 0 and

00

= H'(t) = 0 for t>b + Σ,te1-
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oo

From the conclusion C we have [G{t)]{n)=O (n=0,1) for t ^ b + ]Γ (α*1 - c*1).
1

This completes the proof.

The 'degeneracy' phenomenon of conclusion D of this theorem is the
characteristic property of class III kernels. In our case, however, G{t) is the
kernel which is generated by the ratio of two generating functions of class II
(or III) kernels.

T H E O R E M 2.2. [4, p. 108] If

1. Eλ{s) is defined as in §1,

2. d ( 0 = "T^T- I LEiO)]"1 est ds - oo < t < oo ,
— too

then:
oo

A. G^t) is a frequency function with mean 0 and variance Σ al2

1

B. I Gλ(t) e~st dt = [E1(s)]~1

9 the bilateral Laplace transform converging

absolutely in the half plane ΪRs <oί2;

C. G&)* C~(-oo,oo);
D. Gίn)(t) = O{^1) t —> oo, n = 0,1, 2, , where k is an arbitrary

{negative) real number,

Gίn)(t) = [e** qx(Mn) + O0 (* 2 + ε ) ί) t -> - oo, n = 0,1, 2, . ,

/or some £ > 0, where qx(t) is a real polynomial of degree μ2 —1

oo

If Gi(ί) is the class III kernel, then it vanishes for t Ξ> b + 2Z α^x.
1

The properties of kernel G2(t) which is generated by [E2(s)]~ι are similar
to those of Gx(t).

oo

3. Convergence. In our case, G(t) = 0 for t ^ b + Σ (a^1 — c^1), hence it
1

follows that we need not suppose cί(t) defined for all t and it is enough to
assume ci(t) defined for T<t <oo and of bounded variation in every subinterval

oo

provided that we consider only those x for which x > T + b + ]P (α^1 — c^1).
1

THEOREM 3.1. 7/
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1. oί{i) is defined for T < t < oo and is of bounded variation in every
interval T < tλ ̂  t ̂  t2 < oo,

2. I G(xo-t) da(t) converges for x0 > T + b + Σ (a^1 - cϊ1),
*/-oo 1

then

f G(x-t)da(t)

converges uniformly for x in any finite interval lying to the right of
oo oo

T+δ + ΣC^1-^"1); *.*. for T+b + Σia^-c^Xx^x^XzK^.

PROOF. Since G(t) vanishes for t ̂  b + ̂  (α^1 — cί"1), it is enough to

show that

(1) lim ί G(x-t)da(t) = 0,
Λ,B^ooJA

uniformly for x,x1^x<x2. From the conclusion D of Theorem 2.1,
G(t)^0 for negative t with sufficiently large absolute value and from the same
theorem

G(x-t)/G(xo-t) = CKX) t -* oo ,

uniformly for Λ:, xλ^x^x2. Using these equations we see by the usual
method that equation (1) holds uniformly for x, x1^Ξx^x2.

The following two theorems are well known [4, p. 124].

THEOREM 3.2. / /

1. d ( ί ) z class II,
2. oί(t) is of bounded variation in every finite interval,

then

3. I Gλ(xo — t)da(t) converges {conditionally),
J-oo

J Gλ{x-t)da(t)
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converges uniformly for x in any finite interval bounded on the left by x0

i.e. for x0 ^ x t=ί &\ < °°-

THEOREM 3.3. //

1. Gλ(t) € class III,
2. a(t) is defined and of bounded variation in every finite interval

T < tι ^ t ^ t2 < oo,

then

3. / G^XQ — t) dcί(t) converges for x0 > T +

\ Gλ{x-t)da{t)

converges uniformly for x in any finite interval lying to the right of

T + b + £>£* Le. for T + b + Σak~
1 <xx^x^x2 <oo .

k k

THEOREM 3.4. If

1. G(t), Gλ(t) are defined as in §2,
2. cί(t) is defined for t> T and is of bounded variation in every finite

interval T < tx 5i t ^ t2 < oo, then the transform I G(xo — t) da(t) converges

for x0 > T + & + ^ ( α ^ 1 — c^1) z/ α^ίi only if the transform \ G^XQ — fydait)
k J x

converges for all x, x > T.

PROOF. We suppose that the first transform converges. By Theorem 2.1
and Theorem 2.2, we have

G1(x0 - t)/G(x0 -t) = O(l) t -> oo ,

O(l/ 2) t -> oo .

From these facts it is easily seen that

lim I G^Xo-t) dcc(t) = 0
Λ.B^oc JΛ

and that the second transform converges for all x, x > T. Noticing that
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oo

G(xo—t) = 0 for t < x0 — b — Σ (α^x ~~ ̂ Λ1), we may similarly establish only
1

if part.

Under the same condition of this theorem, if Gx(t) ζ class IΠ, then the

transform / Gxixo — fydcLζf) converges, though cί(t) is defined for all t,
— OO

— oo < t < oo (i.e. T = — oo). However, if Gλ(t) «= class II and T= — oo, this
convergence is not guaranteed without some order condition for cί{t\ because
Gx(t) does not vanish on ( — oo, oo) (see §5). Concerning to this fact we have
the following theorem.

THEOREM 3.5. If a(t) is of bounded variation in every finite interval
and for some x0

( 1) cί{t) = OiG^Xo-t) ectYι t -> - oo (c: real),

then

( 2 ) \ Gx{x-t)e^da(ί)

converges uniformly for (xx ^ x < oo) for any xx > x0.

PROOF. Let Xι(t) = —logG^ί), then by the properties of Xι(t) it is
known [3] that

( 3 ) lim Gx(x

uniformly for (xλ ̂  x < oo) for any xx > x, and that

(4) f {G^x-tyG^Xo-ήl dt
• ' - o o

converges uniformly for (xλ % x < oo). Concerning to the equation (1) it is
also easily verified that

(5) ί Glx-i)IGx{x,-t)dt
* ^ - o o

converges uniformly for {xγ fg x < oo). Integrating by parts we have

da(t) = [Gάx
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Using (1), (3), (4) and (5) it is obvious that

rB

lim / G^x-t) ect dcί(t) = 0,

uniformly for (xx 5ΞΞ x < 00). This completes the proof.

In this theorem, when the transform (2) converges for some x=x0, it is

also familiar that

cί(t) = oiG^Xo-t) ectYι t -> -00 ,

hence, for the convergence of (2), the condition (1) for ct(t) is the best one.

4. Inversion theorem. We suppose that we are given a sequence [bn}
of real numbers such that b0 = 0, limbn = 0.

W-»oo

We define, as usual,

eφ-κ'D Π (l-D/ak

where D stands for differentiation and we interpret elD the operation of trans-

lation through a distance I [3], [4].

On the other hand, we define

= [Aχ-t)Glt)dt,

whenever this integral converges [9, p. 121].

Our main result in this section is the following.

T H E O R E M 4.1. If

1. Gχ(ί), G2(i) £ class II,
2. cί(t) is of bounded variation in every finite interval and for some xQ

a(f) = OlG^Xo-t) ectγι t -> oo ,

3. f(x)= I G(x-t)ect dct(t) converges,

4. a(i) is continuous at xl9 x2 (xu x2 > XQ),
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then:

A. c < CL2 implies that

lim f 2e-cxEhn(D)(lE2(D)r'f(x))dx = a(x2) - a{xλ);

B. c^oί2 implies that Λ( + OO) exists and that

lim f e-e*Eltn(PX[EΛ(D)]-ιf(x))dx = tf(+oo) - α ( ^ ) .

PROOF. From Theorem 2.1 and Theorem 2.2 for G2(t) it follows that
the bilateral Laplace transform of G(i) and G2(t) have a common region of
absolute convergence 3ΐs < <X2 and hence by the product theorem [8] that

( 1 )

Gx(x) = f G(x-t) G2{i) dt= [ G{x-t) G2(i) dt - oo < x < oo ,

both integrals converging absolutely, where λ = b + ]P (α*1 — c^1). From
1

Theorem 3.1 for arbitrary finite number A, B (A<0, J3>0) we have

( 2) ί IJ G{x-t-u) ecu da(u)) G2{t) dt =J If G{x-t-u) G2(f) dt\ ecu da{u).

Using Theorem 2.1 and Theorem 2.2 for G2(t) again, it is easily seen that

( 3 ) I G(x-t) Git) dt = P(A, B)q*(x) e°"x + Q(A, B)O(eia*+ε)x) x -> - oo,

where 0 < 8 < cί2 — ci2 and q*(x) is a real polynomial of degree μ2 — 1 and
P(A, B\ Q(A, B) axe bounded uniformly for A, B (α2 = min ck).

Further, it follows that if £ > 0 then

(4 ) J ^ ί G{x-t) G2(t) dt = O(G[(x)) + O(G(x-8)) x -> oo ,

independently of A, 2? with sufficiently large absolute value. In fact, G(x—1)=0
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for x jgB+X, therefore let A + λ <x <B + λ and let Lλ(t) and L2(t) be

defined by the relations

' ^ ck(ck+L2) '

then it is well known ([3], [4]) that L^t), Lt(t) e ], L,(oo) = oo, L2(oo) = <χ>

and

- [log G,(ί)]' = L,(ί+o(l)) ί -> oo ,

(5)

- [log Gf (ί)]' = I.,(ί+o(l)) ί -> oo .

The relation denning L2 may be written in the form

because

and thus

( AΣ ή* ck(ck+L2)

Since

\ ck(ck+L2)

(6) L

Consequently, by (5) and (6)

hence, if x is sufficiently large,

j - log Glx-X)/Gx{x-S) ^ 0,
ax
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or equivalently

Thus we have

( 7 ) Gι{x-\)/G1{x-B) = 0(1) x -> °o .

Now, integrating by parts we obtain

(8) -f- [ G(x-t)G2(t)dt = -G{x-B)G2(B) + \ G(x-t)G'2(t)dt.
a x

 JA
 Jx-λ

Since G(:r) is bounded and G2(t) € | for sufficiently large ί, using (7) we have

G(x-B) G2(B) = OiG^x-ε)) x | B + λ .

Consequently,

(9 ) G(^-B) G2(£) = OiG^x-ε)) x -> oo ,

independently of sufficiently large B. On the other hand, G'2(i) < 0 for
sufficiently large t and G( r) ^ 0 for all x, therefore,

(10) f G{x-t)G'lt)dt ^ f G{x-t)G'lt)dt = \G(x)\.

Combining (8), (9) and (10) we have the estimation (4). From Theorem 3.4
and the properties of the convolution transform with class II kernel we have

a(t) = o[e{a*-c)t r °*.-i>] ί - > o o , c < a2

a( + oo) - a(t) = o[e{a2-c)t r^-v] t -> oo , c ^ a2

and

Γ e-«2ί+cί ^ ̂  d t ( / = o, 1, 2, - -, |*2 - 1 ) , c < Λf

•/o

Γ β-«^- t\a(oo)-a(t)) dt (i = 0,1, 2, , /**-1), * ̂  «i
Jo

converges. From these facts and (3), integrating by parts, it is easily seen

that
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lim f If G(x-t-u)G2(t)\ ecuda(u) = 0,
D-+00 JD \JΛ j

independently of A, B. Now, if we take positive number S such that
£ <ix—xQ and use the estimation (4) and equations in the proof of Theorem
3.5, then it is also easily seen that

lim / If G{x-t-u) G2{t) dt) ecu da{u) = 0,
c->-°° J_oo Y A I

indepedently of A, B with sufficiently large absolute value. Thus, for all x

the integral of right hand side of (2) converges uniformly for A, B with
sufficiently large absolute value and we obtain

={ If G{x-t-u)<f«da{u)\Glt)dt

G{x-t-u)G2{t) dt\ ecu da{u)

= / Gx(x-u) ecu da(μ).

Thus obtained transform is the one with class II kernel Gx(t) and appealing
the familiar theorem [4, p. 136], we obtain our desired result.

COROLLARY 4.1. / /

1. Gx(t\ G2(t) € class II,
2. φ(t) is integrable on every finite interval and for so?ne x0

(μ) du = OlG^Xo-t)]-1 as t -> - oo ,

3. f(x)= I G{x—t)φ(t)dt converges,

4. <ρ(t) is continuous at t = x,

then

Ax)) = φ(x).

We now turn to the case Gx(t\ G2(t) € class IΠ. The demonstration of
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,the following results follows in the pattern of the preceding theorem, however,

ΓB

it is more easy, because both Gλ(x) and I G(x—t)G2(t)dt vanish for t ^ b
JA

4- £ aϊ1 and for all A, B.
1

THEOREM 4.2. If

1. Gλ(t\ G2(t) € class III,
2. #(/) is defined for T < t < °° α?z<i zs ojf bounded variation in every

finite interval T <Ctλi===t ^t2 < ° ° ,

3. f(x) = I G(x-i) ect da(i) converges for x > T + b + ]Π α^1,

4. o:(ί) **5 continuous at xl9 x2 (x , x2 > T),

A. c < a2 implies that

lim Γe-°*EUDXlEtΦ)rιAx))dx = a{x2) -J

B. c ^ Λ2 implies that cί(oo) exists and that

lim Γ e-^El
W-°° Jχx

COROLLARY 4.2. / /

2. <p(ί) Z5 defined for T < £ < °o αwd is integrable on every finite

interval T < tx ^ t ^ ί2 < oo,
1 G(x-t) φ{t) dt converges for x > T + b + X] α^1,

- o o 1

4. <p(ί) is continuous at t = x (x> T),

then

lim EUDMEtφ)]-* f(x)) = ψ{x).

5. Applications, (a) The Riemann-Liouville fractional integral equation

of order v+\ (y> —1)

X)= np

l

+ι) j\x-T)"( 1) H(X) = „, * (X-Γ)" Φ(T) dT (X> 0)
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becomes after an exponential change of variables X and T, putting f(x)
= H(ex)e'{v+1)x and φ(t) = Φ(e*)9

(2) A*) = f G{x-t)Ψ(t)dt

(3) G(t)= f

0 t<0.

The inversion function F(s) of integral equation (2) as a convolution transform
is given by

for σ > — 1, 5 = σ+iτ. By Stirling's formula

for all σ. Hence, if i/> 1, ^(5) satisfies the condition (4 b) of §1. F(s) has
zeros at — k (k = l, 2, ) and poles — (v+k) (k = l, 2, ), and satisfies the
condition (4 a) of §1. Therefore, our general theorem is applicable to this
transform (2). However, when the transform (1) converges for any v (—1
< v 5g 1), Hβ(X), the #-th integral of H{x\ always exists and

dT-

Hence, if we choose β such that β> 2 — v, then our general theorem is
applicable to this integral equation as a convolution transform [6].

We may similarly discuss the WeyΓs fractional integral of order z>+l (v> —1)

H(X) = Γ^+1) J (τ-xy Φ(T) dT.

In this case,

± l - έ γ e t t<0
( 4 )

^ 0
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and F(s) = Γ(v+2-s)/Γ(l-s), hence we may regard as E^s) = [Γ(l-s)]-1,

E2(s) = [T(v + 2-s)T\ G1(t) = e x p ( - * V . Let us take φ(t) = e x p ( O , then

the transform (1) with the kernel function (4) converges but \Gx{x—ί)φ{β)dt
" - o o

does not exist for any x (—oo < x < oo). From this fact we see that some

order condition for φ(t) is necessary for our inversion theorem.

(b) More generally, the integral equation

( 5 )

becomes, putting f{x) = H(ex) e-
ilu>+1)x, φ(t) = Φ(e*),

( 6 ) f(x)= ΓG(x-t)<p(t)dt,

G(t) = {
0 t < o

The inversion function F(s) of transform (6) is given by

F(s) has zeros at — (kh + 1) and poles —(kh + hv+l) (£ = 1,2, — ) and

\F(o'+iτ)\-1 = OCITI^" 1 ) as | τ | - > o o for all σ . Therefore, if z;> 1, F(5)

satisfies the condition (4 a), (4 b) of §1 and our theorem applicable to (6).

However, we may similarly discuss the integral equation (5) for — 1 < v ίg 1

as in example (a).

(c) T.P.Higgins [2] introduced a hypergeometric function transform

H(X) - ^ - J 1 (T-X) c- F(a, b, c 1-T/X) Y(T) dT (X > 0)

and obtained the inversion formula. More generally, we introduce the integral

transform
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H(X) = - ^ - j (T-X)- 1 F(a, b; c • 1-T/X) Y(T) dT (X > 0).

This becomes after an exponential change of variables, putting f(x) =

(7) f{x)= ( G{x-t)φ(t)dt,
• ' - o o

G{t) = Γ(c)

^ 0

The inversion function of (7) is given by

t < 0

-ej-1 F(a, b; c; l-e'*) e~si dt

T(a-s)Tφ-s)

provided that c > 0, ϋis <a and ϋis < b.
F(s) has zeros at α, α + 1, α + 2, δ, 6 + 1, έ + 2, and poles at c, c + 1,

c + 2,"-;a + b,a + b-\-l,a + b + 2, — -;and I F ^ + z V ) ! " 1 = O(\r\-°) a s | τ | - > o o
for all σ. Hence, for instance, if c > 2, c > 6 > 0, c > α + &, then our
theorem is applicable to this transform. We may also discuss for 0 < c 5Ξj 2
in usual way. Further, we may similarly discuss the integral transform

HiX) = - — - j\x-Trι F(a, b; c; 1-T/X) Y(T) dT (X> 0).

(d) K. N. Srivastava [5] introduced the integral equation

H(X) = ί (T2-X2)k+"I(n,k + a, -/3,T/X)Φ(T)dT,

where I(n,k + a, —β,T/X) is Jacobi polynomial and = F( — n, n + k + oί—18 + 1;
k-\-a + l\ 1 — T2/X2\ n is positive integer, k is zero or positive integer,
k > a > —1 and — 1 < β < 1. Under some conditions for H(X) he obtained
the inversion formula, using the relations of fractional integrations. More
generally, we introduce the integral equation
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H(X) =

This becomes after an exponential change of variables, putting f(x)=e2{n+1)xF(ex),
<p(t) = Φ(et\ the convolution transform with the kernel

f ( ) ( , ; ;-e-2t)e2(n+1)t t < 0
Git) =

1 o ί^o

and the inversion function

a- β + 2- —

has zeros at 2(m + l), 2(2^ + ̂  + ̂ -/9 + 2) + 2m (m = 0,1, 2, •); a n d poles
at 2(n + ̂  + Λ + 2) + 2m; 2(w + yfe + Λ-/3) + 2m (m=0,1, 2, )•

Since IFCσ' + zV)!"1 = O(|τ|"A :~a"2) as | τ | —>oo for all σ, our theorem can
be applied to this transform, if necessary, after some modification.

6. In this section, concerning to the last condition of (4a) of §1, we
show that even if we remove this condition, our method cannot be applied,
in general, without some order condition for φ(t). To see this, we introduce
the integral transform

H(X) = f exp [ - - |- X2T2] D-IXT) Φ(T) dT X > 0, v > 0,

where D-V(z) is the parabolic cylinder function [1, p. 116]. This becomes after
an exponential change of variables X and T

( 1) H(ex) ex = ( G{x - i) Φ^1) dt,

= exp ( - ^

Since for ΊSts < 1
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J e~st exp ( - -j-e2t^ D-V(eι) eι dt = ί e~^v' D-υ(v) v~° dv

= l+i -s

2 2

the inversion function F(s) is the reciprocal of the last function and we may
suppose Ex(s) be [Γ(l—s)]"1, which is the inversion function of the Laplace
transform as a convolution transform [4, p. 66]. It is obvious that F(s) has
zeros at k, poles at v+2k (k = l, 2, ) and satisfies the condition (4 b) of §1
but not (4 a). Now, if we take em)T* for Φ(T), that is, φ{f) = exp (1/4 e~u\

then I Gx(x—t)φ(t)dt diverges, because I e~xτe^ dT — oo for all X .

On the other hand, since [1, p. 122]

it is clear that

Dυ(z)~~e 4 zv \z\ - * o o ,

J exp Γ - ^j- X2T2λ D-XXT)

converges for X> 2~1/2 and accordingly the integral (1) converges for x> log 2 1/2.
This difficulties may be caused by the fact that G(t) decreases more rapidly
than Gι(t) as t —> oo.

It is shown by direct computations that if oL(t) is of bounded variation
in every finite interval and (1) converges (conditionally) at x = x0, then (1)
converges uniformly for x in any finite interval bounded on the left by x0.
Therefore, what is interesting is that (1) has an abscissa of covergence. Of

course, if the transform (1) and I Gλ{x — t)φ{t)dt converges absolutely, then

Widder's method [9] and ours can be applied.
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