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ON CONTRACTION OF WALSH FOURIER SERIES

YASUO OKUYAMA

(Received December 10, 1966)

The purpose of this note is to prove the Walsh analogue of results due
to M. Kinukawa [3] and an extension of the theorem on contraction of
C. Watari [4].

We begin with some notations and definitions:

Following A. Beurling, g(x) is called a contraction of f(x) if

\g{x)-g{x')\^\f{x)-f(x)\ for x,x e(0,l).

A sequence {an} is called a contraction of sequence {cn} if

\am-an\ ^ \cm-cn\ for every m and n.

The Rademacher functions are defined by

φβ(*) = l ( 0 ^ * < l / 2 ) , φo(*)=-l (1/2 ^ * < 1 )

φlx) = φlx +1), φn(x) = φo(2n -x) {n = 1, 2, . ) .

The Walsh functions are then given by

for n = 2wC1) + 2n ( 2 ) + + 2 n ( r ) ^ 1, where the integers n(i) are uniquely
determined by w(£ +1) < n(i). For basic properties of Walsh functions, the
reader is referred to N. J. Fine [2]. Finally, A denotes a positive absolute
constant not always the same. The author wishes to express his hearty
thanks to Prof. C. Watari for his valuable suggestions and encouragements
in the preparation of this paper. The author also thanks Prof. S. Igari for
better presentation.

Our results are as follows:

T H E O R E M 1. Let
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and

Suppose that

f \g(x+h) - g(x)I*dx ̂  Γ
Jo Jo

/or any h, and suppose that there exists a positive sequence {yn} such that

(i) \cn\^Ίn and

~ in \p/2 00

(ϋ) E *-3p/2 Σ "2^ + Σ n-*ι* [Σ, y

w=0

in \p/2 00 / 00 \p/2

ή
then

00

Σ Klp<oo

where 2/3 <ρ^2.

The following theorem is the dual for Theorem 1.

T H E O R E M 2. Let

For a given [an], if an —•O

Σ \am(n,»- an\2 ^ Σ km<n,.O ~ Cn\
2 for

where m(n,j) = w-f 2 j, αw<i i / ί/ι^re exists a function y(x) such that

(i) I f{x) I ̂  7(Λ:)
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/•I / Λl \ P/2 z l / Λ Ϊ \ p/2

(ii) J Λ:"p/1ίJ ΎS(*)Λ1 ά* + J ^ 3 ί ? / 2 ( j 0 ί ! ^ ) ώ dx<oo

where l^p^29 then there exists a function g(x) belonging to Lp(0,1)
such that

#0*0
w=0

The case p = 1 of Theorem 1 was proved in [4], and the case p = 2 is
trivial. Hence in the proof of Theorem 1, we suppose that 2/3 < p < 2.
Moreover we suppose that £ = k(v) is the integer satisfying 2kt=ί v < 2fc+1 in
Lemmas 1—3.

LEMMA 1. (ii) is equivalent to (ii')

oo /2«-l \ p/2 oo /co \ p/2

(ii') £2 ( 1 - 3 P / 2 ) B Σ22*γ? + E
n=l \v=l I n=X

PROOF. The equivalence between

P/2 oo / oo \ p/2

is nothing but Cauchy's condensation theorem. On the other hand

p/2

.7=0 n=

/2' + 1 -l \ p/2

Σ ^ T Ϊ
\y=l /

p/2

p/2
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and
n \ p/2

2J +»-l / n \ p/2

Σ (SO"3"72 Σ 2 ! * ϊ J
.7=0 ?ι=2' V = l /

p/2

P/2

Q.E.D.

LEMMA 2. For any sequence {an}, if the series on the right-hand side
converges, then we have

p/a

-where 2/3 < p < 2.

PROOF. By dissecting the range of summation and using Holder's
inequality, we have

oo 2 ' « - l

oo 2 ί + i - l

Σ2-M"Σ2 j p Σ
w=l j=0 υ=2^

oo 2 n - l

/2"-l \p/2

A S 2 " " \ S ( 2 ί : ! > | α i ' ! T / I S 1
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p/2

= A £ 2-w^ 2 22k\aυ\Λ
n=l V=l

Q. E. D.

LEMMA 3. Under the assumption of Theorem 1,

This lemma is due to C. Watari [4], where there is an obvious misprint in
the statement (see his proof in [4]), which we state in corrected form.

PROOF OF THEOREM 1. By lemmas 2 and 3, we have

p/2

P/2 oo / oo \p/2

+ A £ 2(1-p/2)

which is convergent by lemma 1 and the assumption of Theorem 1.

LEMMA 4. Let f(x) = Σ cnylrn(x) with Σ \cn\
2 < oo . If the sequence

71 = 0 71 = 0

{an} is a contraction of a sequence [cn], then there exists a function g(x\
belonging to L2(S, 1) for any positive number £, such that

g(x)(φj(x) -1) — Σ ( α m ( n , D - a n ) ψn(x) for every integer j .
71=0

Moreover, this function g(x) satisfies the following inequality

PROOF. Since {an} is a contraction of [cn], we have, by Parseval
theorem,
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Σ KθU> " « n | 2 ^ Σ k«<..Λ - CnV = f I/(^(φ/x) -1) | 2 J * < oo.
w=0 n=0 J »

Thus we have

oo

( * ) Σ I ««(»J) - «̂ 12 < °° for every integer j .

2"- l

Put £„(#) = Σ avψv(x), then

Hence, by (*)

(2) (2)

l.i.m. {gn(xXφj(x)-ΐ)} = l.i.m.

n-,00 n->oo

which we can write

= flfO)0c)(Φ/*)-l), say,
where ga:>(x) is defined for almost all 3; belonging to the set Ej= [x\(2v—l)/2j+1

^x< 2z//2j+1, i;=l, 2, , 2j} and the Walsh Fourier series of gυ\x)(φj(x)-l)
is Σ C ^ ^ j ) - ^ ) ^ ^ ) . Since

Φ i ( ^ ) = Φ ^ ) = - l for xzEiΠEj (ij = 1,2,-•-),

we have clearly

yCi)^) = gi»(χ) for almost all x z E% Π E, (ί ^ / ) .

As the union of the sets E5 is (0,1), let us define the function g(x) on the
open interval (0,1) according to the following rule

g(x)=9v\x) for xzEj 0" = 1,2, •.•)•

Thus g{x) is well-defined almost everywhere in the open interval (0,1). It
is clear from the definition of the function g(x) that
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g(x)(Φi(x)-ϊ) ~~ Σ (μmintn-an)ψn(x) for any integer j
n=0

and

g(x) <= L2(£, 1) for every positive number £.

Since

for each positive integer k
71=0

and a sequence {αw} is a contraction of a sequence [cn], we have

^ 0 n=0

^Σlwr f .1 1 = Γ l/(^)(Φ^)-i)la^.
71 = 0 J 0

By the definition of Rademacher function, we have

φk(x) - 1 (0 < x < 2-*-1), φk(x) = - 1 (2-fc-» g a: < 2"*).

Hence we have

\g(x)\*dx = f \g{x){φk{x)-l)\* dx
2~k~ι

^ f \g(χ){Φlχ)-l)Vdx^ f \Aχ)(Φ*(*)-i)\2

Jo Jo

= f WxXΦM-Wdx^if \f(x)\*dx.

Thus we have

f \g(x)\*dx<f \Ax)\*dx = j:f \fix)\*dx.
^2-ie-l *'2-*-l i = 0 ^ 2 - -ί

If x=2~k

9 then we have
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= Σ, Γ tηg(t)\*dt^Σ.2-v f \g{t)\*dt

^AΣ,2»f \f{t)Vdt = AΣ,(Σ, + Σ\z-ίi f \f{t)Vdt

=g A 12"2* Γ \βt) 12 dt + Σ, Σ 2-2j f2 |/(ί) i2

=£ A 12-2ί: Γ |/(ί) 12 Λ + Σ. ί2 ί21/(012 dt\
•/ 2~* i=A; ^2-t-i

f \ * d t

Next, we suppose that

Then we have

^ ft*\g(t)\
Jo

rg A J2"2* ̂  |/(01 2 Λ +

On the other hand, we have

£ ί21/(012 dt = £" ί21/(012 Λ + £ ί21/(012 ΛJ

1/(012^

Thus we have generally

JΓ" ί21^(012 Λ ̂  A j £ t*\M\*dt + x* £ 1/(012 ^ } Q. D. E,



164 Y OKUYAMA

Our method of proof of Theorem 2 is based on that used by M. Kinukawa
[3].

PROOF OF THEOREM 2. We may suppose that l^p<2. By the
assumption of Theorem 2, we have

f(x) £ L2(8,1) for every positive number 8.

Hence

f(x)(φj(x) — ϊ) € L2(0,1) for every integer j .

Since {an} is a contraction of {cn}, we have, by Parseval theorem,

i

Σ \am(nj)-an\
2 ^ Σ \cm{nJ) - cn\

2 = I \f(x)(φj(x)-l)\2dx < oo.
π=0 τι=0 *Ό

Thus we have

Σ \am(n,j) — an\
2 < °° for every integer j .

71 = 0

Therefore, by lemma 4, we have a function (/( r) which is well-defined almost
everywhere on the open interval (0,1). Now we shall show that this function
g(x) belongs to Lp(0,1). It is clear from lemma 4 that

Γ
Jo

and hence, by Holder's inequality

1 / /.I \P/2 / -1 \l-P/2

Thus we have only to show that g{x) € Lp(0,1/2). By (1) we can define

hp(x)= [ tp\g{t)\pdt.
Jo

Then by Holder's inequality and lemma 4,
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( 2) ^ A x1-"" (jf ί21 f(t)\*dt + x'Jl\ f(t)12 dtY

^ A x1-^ I ί Γ t2y\t)dή + x»( f y\t) dt\ \

by Jensen's inequality. By the assumption (i), for each d € (0,1/2], we have

A^ f χ-ip/2lft2yXt)dή dx

^ I χ-3p/2 / ί 2 γ 2 (ί)Λ J x

= Apa
1-w if t2y\t)dή .

Hence

( 3 ) ί | t2y\t)dt\ ^Aa?vn-\ for

Also

A

7>far"lf
J a/2 Vα

y*(t) dή dx

'α/2

and hence we have

(4 ) M γ2(ί) Λ l ^ A Λ*^"1 , for 0 < x

Combining (2), (3) and (4), we have
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(5 ) I hp(x) I ̂  Ax^Xx™2-1 + x*

Now we can show that \g(x)\p z Lψ,l/2]; that is,

1/2 .1/2

/

1/2 .1

Jo

rι/2

= [X-P hp(x)f0

/2 + £ r""-1 hp(x) dx,
Jo

where the first part is O(l) by (5) and the second part is, by (2), less than

A f ' X-*-1 x1-*2 ! I f t2 y\t) dt\2 + x* If Ί\t) dtY21 dx

^ A j J -̂3P/2 ί J ί2γ2(ί) Λj dxΛ- f χ-p/2 If y\t) dtX dxϊ

which is finite because of the assumption (ii). Therefore we see that g(x)
belongs to Lp(0,1) and whose Walsh Fourier series we shall denote by

71 = 0

Now Σ(am(nj) — an)ψn(x) and ]Γ (a*{ntj) — a*)ψn(x) are the Walsh Fourier
71 = 0 71 = 0

series of the same function g(x)(φj(x) — 1) which belongs to L2(0,1). By the
completeness of the system of Walsh functions, we have

for every pair (n,j) of integers. Letting j —> oo and observing amin>j)-+0,
am(nj)-*0, we see

an = a*,

which completes the proof of Theorem 2.

Added in proof [May 29, 1967]. Recently Prof. G. Sunouchi pointed out
0 0 / 00 \ y3/2 00 in \ /3/2

that the convergence of two series Σn~m \Έla2v) a n <^ Σ W " W 2 I ̂  v2al I
7 i = l \v=n I 7i=l \u=l /

is equivalent, so the hypotheses of our theorems may be accordingly modified.
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