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ON CONTRACTION OF WALSH FOURIER SERIES

YASUO OKUYAMA

(Received December 10, 1966)

The purpose of this note is to prove the Walsh analogue of results due
to M. Kinukawa [3] and an extension of the theorem on contraction of

C. Watari [4].
We begin with some notations and definitions :
Following A. Beurling, ¢(x) is called a contraction of flx) if

l9(@)—9(x)| = | Ax)—fx)| for z, 2" <(01).
A sequence {a,} is called a contraction of sequence {c,} if
|a@m—a,| = |cp—c,| for every m and n.
The Rademacher functions are defined by
b)) =1 0=2<1/2), ¢fx)=-1 1/2=x<1)
$o(x) = do(z+1),  Pu(@) = $o(2"2) (R=1,2--+).
The Walsh functions are then given by

'\PO(JE) =1, \P'n(x) = ‘Pn(l)(x) "P‘,,(g)(él?) e ‘Pn(r)(x) >

for n=2"" 4 2" 4 ... 4+ 2" =1, where the integers 7(i) are uniquely
determined by n(:+1) < n(7). For basic properties of Walsh functions, the
reader is referred to N. J. Fine [2]. Finally, A denotes a positive absolute
constant not always the same. The author wishes to express his hearty
thanks to Prof. C. Watari for his valuable suggestions and encouragements
in the preparation of this paper. The author also thanks Prof. S. Igari for
better presentation.
Our results are as follows:

THEOREM 1. Let
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A2~ X ea (@)
and
92 ~ 3 an (@) LO, ).
Su ppose that

[ 9a+m = gz = [ 1wt - Ao da

157

for any h, and suppose that there exists a positive sequence {v,} such that

(i) lenl =9 and w8 < oo

n=0

oo

[ n /2 oo oo /2
(i) S oo (z «y) b3 e ( 5 vﬁ) <o,
n=1 v=1 n=1

v=n+1

then

> laulr <o
where 2/3 < p= 2.
The following theorem is the dual for Theorem 1.

THEOREM 2. Let

L)~ 2 cnPu(x).
n=0
For a given {a,}, if a,—0 and

Z |Gnen, > — Anl* = Z |Cnen,i> — Cal?®  for every integer j

n=0 n=0

where m(n,j) = n4 2°, and if there exists a function ¥(x) such that

(1) |flD)| =v(x) and v(z)e L*(0,1)
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1 1 /2 1 z /2

(>ii) f x P ( f fy?(t)dt) dr + f xR ( j; tzfyz(t)dt) dzxr < oo
0 z 0

where 1 = p=2, then there exists a function ¢(x) belonging to L*(0,1)
such that

9@~ X ax 9ula).

The case p=1 of Theorem 1 was proved in [4], and the case p=2 is
trivial. Hence in the proof of Theorem 1, we suppose that 2/3 < p<<2.
Moreover we suppose that %2 = k(») is the integer satisfying 2¥=» < 2**! in
Lemmas 1—3.

LEMMA 1. (ii) ¢s equivalent to (ii');
oo 2n—1 /2 oo oo p/2
O VST L T
n=1 v=1 n=1 p=2"
PROOF. The equivalence between
o0 oo /2 oo oo /2
SonP? ( > fy?,) < oo and > 20t-P (Z ryﬁ) < o
n=1 v=n+1 n=1 v=2"

is nothing but Cauchy’s condensation theorem. On the other hand
oo n D/2
Z n-3p2 (Z »? ,ﬁ)
n=1 v=1
o 2741-1 n /2
=2 X n" (Z » vﬁ)
j=0 n=2’ v=1

o P1-1 fai- /2
=z (2

n=2’ v=1

7=0
) 29411 /2
Z (2;‘)—310/2 N ( Z »? 'ﬁ)
j=0

v=1

lIA

5 -1 /2
A Z 2i-39/2) (Z v ,ﬁ)
Jj=0

=1

IA

oo 2/ -1 /2
A Z 2]'(1-'31)/2) <Z 22k ry]Z))
j=1

p=1
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and

oo 92411 p/2
S aon (zv %)

=0 n=9 v=1
S | n /2
=A Z Z (2:’)—31:/2 (z 22k'Y?,>
j=0 n=2¢ v=1

o0 27+1-1 [2i-1 /2
ZAY @)™ T (z 22kv3)
j=0

n=2 \v=1

251 /2
=A Z 2(1-3p/2)] (Z zzk%> ,
=0

v=1

159

Q.E.D.

LEMMA 2. For any sequence {a,}, if the series on the right-hand side

converges, then we have

5 lalr = 3 20 (pZ_lz?kla | )

where 2/3 < p<2.

PROOF. By dissecting the range of summation and
inequality, we have

oo 9It1-1

Z lal? =22 lal”

j=0 p=2’

211

éAZZ“’ Z 272 3 lal?

=j+1 v=27

-1 211

—AZZ_"”ZZHJ Z la lﬂ

n=1 j=0 v=3

n—12M1-1

_Azz—npz Z 2kp|avlp

n=1 J=0 v=2’

27-1

AT 2w 2|a,|r

n=1 v=1

n=1 v=1

oo 2m—1 p/2 [2"-1 1/(2/p)
zasem(Eesare) (Tn) " (3) -
v=1

using

Holder’s
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oo n—1 /2
=AY 2 (Z 2%|a,| ) - (2
n=1 v=1

o 2n-1 /2
=A 2(1-3p/2)n 22k a, 2 ,
Z e (S 2lal] Q.E.D.

LEMMA 3. Under the assumption of Theorem 1,

2"-1 2"-1 oo
22 a|P =AY 2% P+ A2 3 ol
v=1 v=1 v=2"

This lemma is due to C. Watari [4], where there is an obvious misprint in
the statement (see his proof in [4]), which we state in corrected form.

PROOF OF THEOREM 1. By lemmas 2 and 3, we have

oo

o 27—1 oo p/2
3 lar =AY gt-wen (AZ 2¥c, |+ A2 Y lcm)
n=1 v=1

v=1 v=2"

oo 2" -1 /2 oo oo /2
é A Z 2(1—3p/2)n <Z 22k ,lel) + A Z 2(1-1)/2)11 (Z ,Y‘z})
n=1

v=1 n=1 v=2"
which is convergent by lemma 1 and the assumption of Theorem 1.

LEMMA 4. Let flx) =D c,¥u(x) with 3 |c,|* < oo. If the sequence
n=0 n=0

{a,} is a contraction of a sequence {c,}, then there exists a function ¢(x),
belonging to L*&, 1) for any positive number &, such that

HDN @) —1) ~ 3~ (@mnrr—an) Y(@) for every integer j.

n=0

Moreover, this function ¢(x) satisfies the following inequality ;
3 1 x
[esorasale[ igora+ [e1mora).
0 z

PROOF. Since {a,} is a contraction of {c,}, we have, by Parseval
theorem,
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oo oo 1
5 lancs — @nl* =3 [encns — eal? = f | A2 é2) =) dax < .
n=0 n=0

Thus we have

(*) > |nm,s) — an|® < oo for every integer j.
n=0
2n-1
Put ¢.(x) =3 a,¥(z), then
v=0

Sl @Nanop = @) = G0 =D () (1> ).
Hence, by (¥)

Lifh. (0.0 ~D) = L. | T Aale om0

v=0
which we can write
= g(j)(x)(¢i(x) - 1)’ say,

where ¢¢?(x) is defined for almost all = belonging to the set E;= {z|(2v—1)/2’*!
= x < 2/2% »=1,2 -++,2'} and the Walsh Fourier series of ¢‘?(x)(¢,(x)—1)

is 3~ (@, »—an) Ya(x). Since
n=0
¢(x) = ¢ x) = —1 for zcENE; (i,j=12-+-),
we have clearly
gP(x) = ¢P(x) for almost all x<cE,NE; (i+#j).

As the union of the sets E; is (0,1), let us define the function g(x) on the
open interval (0,1) according to the following rule;

9(z)=gP(z) for zeE;, (j=12---).

Thus g(x) is well-defined almost everywhere in the open interval (0,1). It
is clear from the definition of the function g(x) that
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YDA =D~ X @ncrp—a:) ¥(a) for any integer j

and
g(x)e L¥§&, 1) for every positive number &.

Since

oo

Fx)(p(x) —1) ~ 3 (Cmin iy —Cn) Yi(x) for each positive integer k

n=0

and a sequence {a,} is a contraction of a sequence {c,}, we have
1 oo
| 1) =D 2da= 3 |ae.0—al?
] =0

éi lenap=eal® = f |A2)($u(x)~1)|*dz.

By the definition of Rademacher function, we have
) =1 O=z<2™), ¢lr)=—-1 @*F'==x2<2).

Hence we have

4‘[_;‘ Ig(x)hdx = f.- ‘g(x)@’k(x)—l)lzdx

2-k

= [ @Dz = [ 1M1 dx

1

- f_b |IAx)(pu(x)—D)|*°dz=4| |f2)|*dx.

9-k-1

Thus we have

[ s@raz<| (f@raz=3 [ A2 da.

If x=27*% then we have
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94

[erora=5 [ sorasyes [ iy
j=k 2791

j=k Y21

I

j=k 2 j=k \i=0 i=k

I\

A

{ i=k j=i 9
41

2 [ 1pora+ S 2o [ ifal

I

2 [ 1ordc+ T [ rise:

A 12—% f: | At + f:_;ﬂf(t)I?dtI .

Next, we suppose that
27l < L 27F,

Then we have
x 2k
ft2|g<t>12dt§f £ g(6)]? dt
0 0

gA{z—%f_ 1f(t)|2dt+f221ﬂt)12dt.

On the other hand, we have
[ eirorac=[eigora [ ool al

gfztzif@)lzduz-%f )] de

éA{f:tzlf(t)lzdt vat [ If(t)lzdt}-

Thus we have generally

f tzlg(t)lzdtéA{f 2|2 dt + x° f If(t)\%lt}.
[ 0 x

163

apzo[ jpora-as (S e gz [ i

Q.D.E.
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Our method of proof of Theorem 2 is based on that used by M. Kinukawa
[3].

PROOF OF THEOREM 2. We may suppose that 1= p<2. By the
assumption of Theorem 2, we have

flx)e L*(& 1) for every positive number &.
Hence
Ax)p(x)—1)e L¥0, 1) for every integer j.
Since {a,} is a contraction of {c,}, we have, by Parseval theorem,
- " 1
> It =" S Z lewns = l* = [ 16D -DI ' < oo
Thus we have

> |amm,jy — a,|* < oo for every integer j.
n=0

Therefore, by lemma 4, we have a function g(x) which is well-defined almost
everywhere on the open interval (0,1). Now we shall show that this function
g(x) belongs to L?(0,1). It is clear from lemma 4 that

1
[ #1g@ dz < o,
0

and hence, by Holder’s inequality

(1) f:x"lg(x)l"dxé (fletgu)vdx)m (fdx) <o

0

Thus we have only to show that g(x)e L?(0,1/2). By (1) we can define

hp<x>=ftp|g<t>ipdt.

Then by Hélder’s inequality and lemma 4,
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T /2
i) = 2 ([ e1go1 )

T 1 p/2
(2) gAx(f ¢ A0 de + 2 lf(t)l?dt)

<A {( f ’ £2y%(2) dt)p/2 + x? ( f : vi(t) dt)p/z}

by Jensen’s inequality. By the assumption (i), for each a < (0,1/2], we have

20 z /2
A= f xR ( f t2y%(2) dt) dx
a 0
20 a /2
= f x (f £ y(t) dt) dx
a 0

a »/2
= A, a'"¥%2 ( f 2y (t) dt) .
0
Hence
x /2
(3) ([ tzfy?(t)dt) =AY, for O<x=1/2.
0

Also

ll\/

n/2
~o72 ( ¥:(0) dt) dz

A==
[ o
¥l

vi(£) dt) f x P dx
a2

%

and hence we have

1 /2
(4) ([ yz(t)dt) <Az for 0<z<1.

Combining (2), (3) and (4), we have
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(5) [hx)] = Azt P32t + PP ) < AxP.

Now we can show that |g(x)|? ¢ L(0,1/2]; that is,

1/2

1/2
[ 1s@1rdz= [z dngo)
0 0
1/2
= [x7? h(2)]? + pf x P hy(x)dx,

where the first part is O(1) by (5) and the second part is, by (2), less than

1/2 ([ r® /2 1 /2
Af P B | (f 2 y%(2) dt) + x? (f v(2) dt) } dx
0 0 x

1 x /2 a1 1 /2
=A {f o (f t*y*(2) dt) dxr + ‘ x~P? (f vi(2) dt) dx}
0 0 Jo .

which is finite because of the assumption (ii). Therefore we see that g(x)
belongs to L?(0,1) and whose Walsh Fourier series we shall denote by

o)~ X at (@)

Now >~ (@mm,p — Az)¥a(x) and > (akw —ar)Ya(x) are the Walsh Fourier
n=0

n=0
series of the same function g¢(x)(¢;()—1) which belongs to L*0,1). By the
completeness of the system of Walsh functions, we have

Am(n,j) — An = Qmn,jy — An
for every pair (n,j) of integers. Letting j — oo and observing anm, ;y — 0,
axn—0, we see

p— *
a, = ay,

which completes the proof of Theorem 2.
Added in proof [May 29, 1967]. Recently Prof. G.Sunouchi pointed out

o oo B/2 oo n B/2
that the convergence of two series ) n#* (Z azv) and ) n " (Z v2a§>
v=1

n=1 v=n n=1

is equivalent, so the hypotheses of our theorems may be accordingly modified.
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