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1. Introduction. In the discussion of Bertrand curves (in fact nearly all
curves) in elementary classical differential geometry, it is always assumed
(explicitly or implicitly) that the curvature is nowhere zero. In this paper
we drop this requirement on the Bertrand curves and investigate into the
properties of two types of similar curves (the Frenet-Bertrand curves and the
weakened Bertrand curves) under weakened conditions. The properties of
the Frenet-Bertrand curves turn out to be strikingly similar to those of the
Bertrand curves.

We first put down our convention of defining regular curves. We also
use the convention that if f is a real function on a set A, by f=0 we mean
that f is everywhere zero on A, and by fΦ 0 we mean that f is nowhere
zero on A.

DEFINITION 1.1. A parametrized curve (simply called a curve) in E3

is a point set Γ in E3 together with an equivalence class of continuous and
locally injective surjections

(φ,ψ , χ ) : L->Γ
defined by

where two such mappings (φ, ψ, %), (φ, ψ, χ) which are defined on two intervals
L, L respectively are said to be equivalent if there exists a continuous, strictly
monotonic increasing function

σ: L->L

with L as image set (σ must then be a bijection from L onto L) such that

Each of the mappings (φ, ψ, %) is called a parametrization of Γ.
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DEFINITION 1.2. A Cr curve (r — 1, 2, , or oo or ω) is a curve which
admits a parametrization (φ, ψ, %) in which φ, ψ, % are of class C r.

DEFINITION 1.3. A Cr regular curve is a curve which admits a para-

metrization (φ,ψ,χ) in which φ,ψ,χ are of class Cr and <ji)2+^2 + %2 =τ̂  0

throughout the interval L.

The following proposition is easily established:

PROPOSITION 1.1. Each of the following conditions is necessary and
sufficient for the curve Γ to be a Cr regular curve:

(i) Each point of Y has a neighbourhood in which the curve can be re-
presented (in a suitable co-ordinate system) by equations of the form

y = /( r), z = g(x),

where f, g are functions of class Cr.
(ii) Γ admits a parametrization (φ, ψ, %) in terms of its arc length 5, where
Φ,Ψ>% are of class Cr. (It follows that φ'2-\-ψ'2-\-χ'2 = l, where the dash
denotes differentiation with respect to s).

REMARK 1. A C 1 regular curve which is also a Cr curve need not be
a Cr regular curve if r > 1. For example, consider the analytic curve Γ:

x = t\ y = t\ z = 0,

which is a C1 regular curve because it admits the representation

and the function xφ is of class C1. However, Γ cannot be a Cr regular curve
for any r > 1.

REMARK 2. A Cr regular curve can have a parametrization (φ, ψ, %)
which is of class Cr and such that φ 2 + ψ 2 + %2 is zero at some points. For
example, consider the straight line

x = t\ y = 0, 2 = 0 .

In the following, we shall only consider C°° regular curves, although the
results obtained also hold for any Cr regular curve with sufficiently large r.
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DEFINITION 1.4. A Bertrand curve Γ : x(s\ se L is a C°° regular curve

with non-zero curvature for which there exists another (different) C°° regular

curve Γ: x(s\ where x(s) is of class C°° and JC'(s)^0 (5 being the arc length

of Γ only), also with non-zero curvature, in bijection with it in such a

manner that the principal normals to Γ, Γ at each pair of corresponding points

coincide with the line joining the corresponding points. The curve Γ is called

a Bertrand conjugate of Γ.

It easily follows that the relation between a Bertrand curve and its con-
jugate is symmetric.

In this paper we weaken the conditions. We shall adopt the definition
of a C°° Frenet curve ([2]) as a C°° regular curve Γ : x(s\ s € L, for which
there exists a C°° family of Frenet frames, that is, right-handed orthonormal
frames t(s), n(s), 6(5), where t{s) = x\s\ satisfying the Frenet equations

for some C°° scalar functions kλ(s\ k2(s) which are called the curvature and

pseudo-torsion of Γ.

DEFINITION 1.5. A Frenet-Bertrand curve Γ : x{s) (briefly called a FB

curve) is a C°° Frenet curve for which there exists another C°° Frenet curve

Γ : x(s), where x(s) is of class C°° and x'(s) Φ 0, in bijection with it so that,

by suitable choice of the Frenet frames (see [4]), the principal normal vectors

71, n at corresponding points on Γ, Γ both lie on the line joining the cor-

responding points. The curve Γ is called a FB conjugate of Γ.

Again the relation between a FB curve and its conjugate is symmetric.

DEFINITION 1.6. A weakened Bertrand curve Γ : x{s\ se L (briefly

called a WB curve) is a C°° regular curve for which there exists another C°°

regular curve Γ: x(s\ s € L, where s is the arc length of Γ, and a homeomor-

phism σ : L —> L such that

( i) there exist two (disjoint) closed subsets Z, N of L with void interiors such

that σ € C00 on L\N, (ds/ds) = 0 on Z, σ~ι e C°° on o'(L\Z\ and (ds/d7) = 0 on

α (iV),

(ii) the line joining corresponding points 5, s of Γ and Γ is orthogonal to Γ
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and Γ at the points 5, s respectively, and is along the principal normal to Γ

or Γ at the points s, s whenever it is well defined. The curve Γ is called

a WB conjugate of Γ.

Thus for a WB curve we not only drop the requirement of Γ being a

Frenet curve, but also allow (ds/ds) to be zero on a subset with void interior

((ds/ds) = 0 on an interval would destroy the injectivity of the mapping σ ).

Since (ds/ds) = 0 implies that (ds/ds) does not exist, the apparently artificial

requirements in (i) are in fact quite natural. The relation between a WB

curve and its conjugate is again symmetric.

It is clear that a Bertrand curve is necessarily a FB curve, and a FB

curve is necessarily a WB curve. It will be proved in Theorem 3.1 that

under certain conditions a WB curve is also a FB curve, while it will be

clear from Lemma 2.2 that a FB curve need not be a Bertrand curve.

2. Frenet-Bertrand curves. In this section we study the structure and

characterization of FB curves. We begin with a lemma, the method used in

which is classical (see [3]).

LEMMA 2.1. Let Γ : x(s), szL be a FB curve and Γ : x(s) a FB con-

jugate of Γ. Let all quantities belonging to Γ be marked with a tilde. Let

(2.1) Ίc(s) = x(s) + λ(s) n(s).

Then the distance | λ | between corresponding points of Γ, Γ is constant, and

there is a constant angle oί such that t t = cos a and

( i ) (1—Xk^)sm.a = Xk2 cos a,

(ii) (l+Sλk^sina = Xk2 cos a, with S=±l,

(iii) (l-λ&OCl + £ λ £ ) = cos2 a,

(iv) k2\ = — sin2 a.
A

PROOF. From (2.1) it follows that X(s) = (x(s)-x(s))-n(s) is of class C°°.

Differentiation of (2.1) with respect to s gives

(2. 2) 1Ί = (l-Xk^t + λ'/ι - Xk2b .

Since by hypothesis we have n=8n with £ = ± 1 , scalar multiplication of (2. 2)
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by n gives

λ' = 0, λ = constant.

Therefore

(2.3) 1 Ί = (l-Xk^t + Xk2b .

But by definition of FB curve we have s Φ 0, so that t is C°° function of s.
Hence

4- (t ί) = kt n T + tikΓsn)
as

= 0.

Consequently f ί is constant, and there exists a constant angle a such that

(2.4) Γ = cos αtf + sin α& .

Taking the vector product of (2. 3) and (2. 4), we obtain

(1— Xk^)s\nct = \k2 cos a,

which is (i).
Now write

x = x — εxn .

Therefore

(2.3') t =Ί'[(l+€X*kSt - θλl 26].

On the other hand, equation (2. 4) gives

b =Ί x n

= — £ sin at + S cos <2 b .

Using (2.4) again, we get

(2. 4') f = cos a ΐ— £ sin ab .

Taking the vector product of (2. 3') and (2. 4'), we obtain

(1+fλ^OsinΛ = λ£ 2 cosα:,
which is (ii).
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On the other hand, comparison of (2. 3) and (2. 4) gives

(2.5) 1 - Xki = Tcostf,

(2. 6) Xk2 = s sin a.

Similarly (2. 3'), (2.4') give

(2. 5') 7(1+8 λ IΊ) = cos a,

(2. 6')

The properties (iii) and (iv) then easily follow from (2. 5) and (2. 5'), (2. 6) and

(2.6').

LEMMA 2.2. A necessary and sufficient condition for a C°° regular curve

Γ to be a FB curve with a FB conjugate which is a line-segment is that Γ

should be either a line-segment or a non-planar circular helix.

PROOF. Necessity: Let Γ: x(s) have a FB conjugate V: x(s) which is

a line-segment. Then k1=0. Using Lemma 2.1 (iii) and (i), (ii), we have

(2.7) 1 - λ*! = cos2 a,

and then

(2. 8) cos2 a sin a = Xk2 cos a,

(2. 9) sin a = λ k2 cos a.

From (2. 9) it follows that cos a Φ 0. Hence (2. 8) is equivalent to

(2. 8') λ&2 = sin a cos a.

Case 1. sin a = 0. Then cos Λ = ± 1 , so that (2. 7) implies that &χ = 0,

and Γ is a line-segment. We note also that (2. 8') implies that k2 = 0.

Case 2. sin a ^ 0. Then cos Λ ^ ± 1 , and (2. 7), (2. 8') imply that kl9 k2

are non-zero constants, and Γ is a non-planar circular helix.

Sufficiency: If Γ is a non-planar circular helix

x = (a cos ί, a sin £, 6ί), where t=s/*Ja2-\-b2 \
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we may take

n = ( — cos t, sin t, 0) . Now put λ = a ,

Then the curve Γ with

X = JC + λ/l

will be a line-segment along the 2-axis, and can be made into a FB conjugate

of Γ if n is defined to be equal to n.
The case where Γ is a line-segment is trivial.

DEFINITION 2.1. By a plane arc we mean a plane curve which contains
no line-segments.

LEMMA 2.3. If a FB curve Γ has a FB conjugate which is a plane arc,
then Γ is a plane arc on the same plane.

PROOF. Let a FB curve Γ : x(s\ s € L, have a FB conjugate Γ : x(s)

which is a plane arc. Since Γ does not contain any line-segments, the (closed)
subset M of L on which kλ = 0 has a void interior, so that L\M is dense in
L. But since Γ is a plane curve, we must have

s'β \k2 = Ix, x"9 x'''\ = 0

(see [4]). Therefore k2 = 0 on L\M and hence also on L, by continuity.
Therefore Lemma 2.1 (iv), (i) give first

sin a = 0 ,

and then

k2 = 0.

Thus Γ is a plane curve. Moreover, Γ cannot contain any line-segments,
otherwise by Lemma 2.2 Γ must also contain a line-segment. Thus Γ is a
plane arc, which obviously lies on the same plane as Γ.

DEFINITION 2.2. A Bertrand arc is a FB curve which contains no line-
segments or plane arcs and whose FB conjugate also has this property.

Notations: We use the symbols S, % ξ), 33 to denote line-segment, plane
arc, non-planar circular helix and Bertrand arc respectively.
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DEFINITION 2.3. A FB curve is said to be of §2 type if it is a non-
planar circular helix and its FB conjugate is a line-segment. Similarly we
define FB curves of 2ξ>, 22, $5β and 2333 types.

Lemma 2.2 can then be restated: a FB curve which is a line-segment is
of either 22 or 2ξ> type. On the other hand, a FB curve which is a non-
planar circular helix need not be of ξ)2 type, for it is well-known that a
non-planar circular helix has c Bertrand conjugates (c being the cardinality
of the continuum) which are also non-planar circular helices.

Theorems 2.1 and 2.2 below show that, apart from the cases treated in
Lemma 2.2, a FB curve either is a plane curve consisting of arcs of 22 or
φ $ type or is a non-planar curve consisting of arcs of §2, 2§ or 3323 type.

We shall have to use the following ([4])

LEMMA A. Let fi, ,fn be continuous (real-valued) functions of
which f is defined on a proper interval L of the real line, and f (2ίgz5£/z)
is defined on the set Gi^.ι^{s € L: f(s) ^ 0, ,/i_1(5)^=0). Then there exist
n-\-l open sets Bλ, B2, , Bn, Gn of L with the following properties :

/ 1 = 0 on Bl9

fxφ0 and f2 = 0 on B2,

/i^O, / 2 ^ 0 , . . . , fn^ΦQ and fn=0 on Bn,

/ i^O, / 2 ^ 0 , . . . , and fnΦ0 on Gn;

and

I = Sj u ΰ 2 u u ~Bn u Gn,

where the closure operation is taken in R. Thus, the component intervals
of JB1? B2, , Bn, Gn, taken together, form a countable family of disjoint
proper intervals each of which is open in L, and the union of these com-
ponent intervals is a dense subset of L.

THEOREM 2.1. // a FB curve Γ contains a plane arc, then (i) it is a
plane curve with zero pseudo-torsion and has a dense subset which is the
union of a countable number of FB curves of 22 or $5β type, and the FB
conjugate Γ lies on the sarne plane as Γ (ii) the curvatures of Γ and of Γ
are bounded below or bounded above.

PROOF . (i). Let Γ : x(s), s z L be a FB curve which contains a plane
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arc corresponding to an interval I C L. Let Γ : x(s) be the FB conjugate of
Γ under discussion.

As proved in Lemma 2.3, we have sintf=0 (see notations in Lemma 2.1).
Consequently by Lemma 2.1 (i) and (ii), k2 = k2 = 0 on L, and Γ, Γ are plane
curves on the same plane.

By Lemma A, L has a dense subset which is the union of two countable
families 33i, 332 of disjoint intervals open in L such that k1=0 on each member
of 351 and kxφ0 on each member of S52. By Lemma 2.2, the part of Γ cor-
responding to any component interval of 35λ is a line-segment, and by Lemma
2.3, the part of Γ corresponding to any component interval of 332 is a plane
arc.

(ii) Since sintf = 0, c o s Λ = ± l . Hence by Lemma 2.1 (iii) we have
1— Xk1 ΦO. It follows that kΛ is either bounded below or bounded above by

. Similar arguments apply to Γ.
λ*

THEOREM 2.2. If a FB curve Γ contains no plane arc and is not a
line segment, then (i) it is non-planar and has a dense subset which is the
union of a countable number of FB curves of 2ξ), ξj%> or 3323 type, (ii) the
pseudo-torsion k2 is nowhere zero.

PROOF. Let Γ : x{s\ s € L be a FB curve which contains no plane arcs
and is not a line-segment. Then there exists s0 € L such that &i(50) Φ 0. In
a neighbourhood of s0 on which kxφ0, we have at least one point where k2

is non-zero, otherwise this part of Γ would be a plane arc. It follows from
Lemma 2.1 (i) that sinaΦO, and then from Lemma 2.1 (iv) and (iii) that
k2 is nowhere zero on L and that kl9 kx cannot be both zero at any point.
The latter fact shows that Γ contains no arc of £ £ type. It follows from
Lemma 2.2 that any interval of L on which kλ—0 corresponds to an arc of
2ξ) type, and any interval on which k1=0 corresponds to an arc of ξ)2 type.

Now consider an interval IcL on which kλΦθ, kγφQ. The corresponding
parts Γ1? Γx of Γ, Γ then contain no line-segments. Since they also cannot
contain any plane arcs by hypothesis and Lemma 2.3, Γj is a Bertrand arc
of 3333 type. Moreover, since Γ is not a line-segment, it must contain at least
one arc of ξ)S> or 3333 type, and is therefore non-planar.

The proof is then completed by applying Lemma A with n = 2, fx = kl9

A = K

REMARK. It should be noted that although a non-planar FB curve may
contain arcs of &ξ) and ξ>Z types, no two of these arcs can be directly joined
together at a point. This follows immediately from consideration of the
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continuity of kλ (or kλ). It also follows from Lemma 2.1 (i) that for a Bertrand
curve containing an arc of 2 ^ type, cos oί Φ 0.

Following the methods of [4], it is not difficult to construct a FB curve
with a countably infinite number of arcs of ξ)2, 2ξ> and 2325 types. We need
only to notice that on an arc of 2ξ) (respectively |)8) type, we have (ku k2,

ku k2) = (0, —- tan a, -— sin2 a, sin a cos a) (respectively = (—-sin2 a,
\ A A X / \ A

-— sin a cos a, 0, tan en), and that for fixed a with 0 < a < -^-, the

functions k2, ku k2 are uniquely determined by the function hγ using equations
(i) to (iv) of Lemma 2.1.

We now study the converse problem: to find sufficient conditions for a
Frenet curve to be a FB curve. In view of Theorems 2.1, 2.2, we need only
consider plane Frenet curves with zero pseudo-torsion whose curvatures are
bounded below or bounded above, and non-planar Frenet curves whose pseudo-
torsions are nowhere zero. (The case of a line-segment has already been
treated in Lemma 2.2.) *

THEOREM 2.3. Let Γ : x(s\ seL be a plane C°° Frenet curve with zero
pseudo-torsion and whose curvature is either bounded below or bounded
above {which is always the case if L is compact). Then Γ is a FB curve,
and has c FB conjugates which are plane curves, (c being the cardinality
of the continuum).

PROOF. Let Γ be a curve satisfying the conditions of the hypothesis.
Then there are c non-zero numbers λ such that £ 1 (s)<l/λ on L or ^i(5)>l/λ
on L. For any such λ, consider the plane curve Γ (since n always lies on
a plane containing Γ) with position vector

x = x + χn.

Then

JC' = (l-Xk^t.

Since 1— \kx Φ 0, Γ is a C°° regular curve, and t — t. It is then a straight-

forward matter to verify that Γ is a FB conjugate of Γ.

THEOREM 2.4. Let Γ: JC(S), s <z L be a C°° Frenet curve with k2 nowhere
zero and satisfying the equation

(*) (1 — λ&i) sin a = \k2 cos a
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for some constants λ, a with λ ^ O . Then Γ is a non-planar FB curve.

PROOF. Define the curve Γ with position vector

x = x + \n.

Then, denoting differentiation with respect to 5 by a dash, we have

JC' = (l-λi&O* + Xk2b.

Since k2 Φ 0, it follows that Γ is a C°° regular curve. Let quantities belonging

to Γ be marked with a tilde. Then

Hence

and, using (*),

8t = cos at + sintfft,

where £ = + 1 or —1 according as \k2 and since have the same or opposite

signs. (Notice that from (*) we have sin a Φ 0). Therefore

£s(dt/ds) = (&! cos a — k2 sin ά) n .

Now define n = n, kλ = {ε/s){kx zoscί — k2 sinΛ). These are C°° functions of 5

(and hence of 5), and

Further define b = txn and k2 = ( — db/ds) n. These are also C°° functions

on L. It is then easy to verify that with the frame {£, n, b] and the func-

tions kl9 k2, the curve I1 becomes a C°° Frenet curve. But n and n lie on the

line joining corresponding points of Γ and Γ. Thus Γ is a FB curve and Γ

a FB conjugate of Γ.

3. Weakened Bertrand curves.

DEFINITION 3.1. Let D be a subset of a topological space X. A function

on X into a set Y is said to be D-piecewise constant if it is constant on

each component of Zλ
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We shall use the following lemma ([1]).

LEMMA B. Let X be a proper interval on the real line and D an open
subset of X. Then a necessary and sufficient condition for every continuous,
D-piecewise constant real function on X to be constant is that X\D should
have empty dense-in-itself kernel.

We notice, however, that if D is dense in X, any C1 and D-piecewise
constant real function on X must be constant, even if D has non-empty
dense-in-itself kernel.

THEOREM 3.1. A WB curve for which N and Z have empty dense-in-
itself kernels {notations as in Definition 1.6) is a FB curve.

PROOF. Let Γ : x(s\ s € L be a WB curve and Γ : JC(7), κ l a WB con-
jugate of Γ. It follows from the definition that Γ and Γ each has a C°° family
of tangent vectors t(s\ t(s). Let

(3.1) x(s) = x(σ(s)) = x(s) + λ(s) n(s),

where n(s) is some unit vector function and λ(s)^O is some scalar function.

Let D = L\N, 7)=L\σ(Z). Then 7(5) € C°° on D, and 5(7) <Ξ C°° on D.

Step 1. To prove λ = constant.

Since λ = |JC—JC|, it is continuous on L and is of class C°° on every
interval of D on which it is nowhere zero. Let P= [s z L: X(s) Φ 0} and X
any component of P. Then P, and hence also X, is open in L. Let / be
any component interval of X Π Zλ Then on I, \(s) and n(s) axe of class C°°,
and from (3.1) we have

JC'(5) = x(s) + λ'(5) n(s) + λ($) n(s) .

Now by definition of a WB curve we have x'(s) n(s) = 0 = x'(s) n(s). Hence,
using the identity n\s) n(s) = 0, we have

0 = λ'(5) Λ(5) fl(5).

Therefore \ = constant on I.
Hence λ is constant on each component (interval) of the set XnD. But

by hypothesis X\D has empty dense-in-itself kernel. It follows from Lemma B
that λ is constant (and non-zero) on X. Since λ is continuous on L, X
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must be closed in L. But X is also open in L. Therefore by connectedness
we must have X=L, that is, λ is constant on L.

Step 2. To prove the existence of two frames {t(s\ n(s), b(s)}, {(ί(s), n(s),

b(s)} which are Frenet frames for Γ, Γ on D, D respectively.
Since λ is a non-zero constant, it follows from (3.1) that n(s) is continuous

on L and C°° on D, and is always orthogonal to t(s) (by definition of WB
curve). Now define 6(5) = t(s) X n(s). Then [t(s\ n(s), b(s)} forms a right-
handed orthonormal frame for Γ which is continuous on L and C°° on Zλ

Now from the definition of WB curve we see that there exists a scalar
function k^s) such that

t'(s) = kit/) n(s) on L .

Hence k^s) — t'(s) n(s) is continuous on L and C°° on D. Thus the first
Frenet formula holds on D. It is then straightforward to show that there
exists a C°° function k2(s) on D such that the Frenet formulas hold. Thus
[t(s)9 n(s)9 b(s)} is a Frenet frame for Γ on D.

Similarly there exists a right-handed orthonormal frame {t(s\ n(s\ b(s)}
for Γ which is continuous on L and is a Frenet frame for Γ on D. Moreover,
we can choose

n(σ{s)) = n(s).

Step 3. To prove that N= 0, Z =
We first notice that on D we have

(ί ΐ)f = ί 5̂ Xi Λ + *i n T = 0,

so that t t is constant on each component of D and hence on L by Lemma B.
Consequently there exists a constant angle a such that

t(s) = cos a t(s) + sin a b(s) on L .

Further,

Λ($) = n(s)

and so

6(5) = — sin a t(s) + cos a b(s).

Thus ϊ(s), #1(5), 6(5) are also of class C°° on Zλ On the other hand, t, n, b

are of class C°° with respect to s on D. Writing (3.1) in the form
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JC = X — λ l ί

and differentiating with respect to s on Df)σ~\D), we have

t =7'[(1 + Xk.jt - Xk2 6 ] .

But

£ = cos at — sin rt 6 .

Hence

(3.2) 7( l+λ£i) = costf.

Since k1(s) = (dt/ds) n is defined and continuous on L and <r~\D) is dense,
it follows by continuity that (3. 2) holds throughout Zλ

Case 1. cos a Φ 0. Then (3. 2) implies that s Φ 0 on D. Hence Z = φ.
Similarly N= 0.

Case 2. cos tf = 0. Then

(3.3) ϊ=±b.

Differentiation of (3.1) with respect to 5 in D gives

1 ϊ= (l—Xk^t + Xk2b.

Hence using (3. 3) we have

1 - λ * ! = 0 .

Therefore

kx — on D,
A

and so also on L, by Lemma B. It follows that kx is nowhere zero on L.
Let S = ±1 be the sign of kλ. Then

and is of class C°° on L. Consequently

x(s) = χ(s) + \n(s) is of class C°° on L.

Hence N = 0. Similarly Z = β.
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