SIMPLY INVARIANT SUBSPACES

Yoshiki Ohno

(Received June 20, 1967)

Our subject is a theorem on simply invariant subspaces of L_{b}^{p}, the usual L^{p}-space taking values in a Hilbert space \mathfrak{G}. Let X be a compact Hausdorff space and A a Dirichlet algebra on X. We shall fix a non-negative finite Borel measure m on X such that

$$
f \longrightarrow \int f d m \quad(f \in A)
$$

defines a multiplicative linear functional on A. Define A_{0} to be the set

$$
A_{0}=\left\{f \in A ; \int f d m=0\right\}
$$

Let \mathfrak{G} be a separable Hilbert space and let $L_{b}^{p}\left(1 \leqq p \leqq c_{0}\right)$ denote the space of \mathfrak{y}-valued functions on X which are weakly measurable and whose norms are in scalar $L^{p}(d m) . L_{\emptyset}^{2}$ is a Hilbert space for the inner product

$$
(f, g)=\int(f(x), g(x))_{\emptyset} d m
$$

where the inner product on the right is the one in \mathfrak{G}. We define $A_{\mathfrak{y}}$ by $A \otimes_{\lambda} \mathfrak{h}$, the completion of the algebraic tensor product $A \otimes \mathfrak{h}$ under the uniform norm in $C(X, \mathfrak{g})$ (the space of all \mathfrak{h}-valued continuous functions on X). For $1 \leqq p<\infty$ we define H_{b}^{p} by

$$
H_{\mathfrak{y}}^{p}=\left[A_{\mathfrak{y}}\right]_{p}
$$

the closure of $A_{\mathfrak{y}}$ in $L_{\mathfrak{b}}^{p}$ and we define $H_{\mathfrak{\emptyset}}^{\infty}$ by

$$
H_{\mathfrak{h}}^{\infty}=H_{\mathfrak{b}}^{1} \cap L_{\mathfrak{h}}^{\infty} .
$$

We write H^{p} instead of H_{b}^{p} in the case of $\mathfrak{G}=\boldsymbol{C}$. Call $\mathscr{5}$ a range function if \mathbb{E} is a function on X a.e. $(d m)$ to the family of closed subspaces of \mathfrak{h}. Two range functions which agree a.e. are regarded as the same function. \mathscr{S}^{5} is measurable if the orthogonal projection $G(x)$ on $\mathscr{G}(x)$ is weakly measurable in the operator sense. We shall denote by $\widehat{\mathscr{S} \text { s }}$ the operator on L_{9}^{p} defined by $(\mathbb{C} f)(x)$ $=G(x) f(x)$ a.e. Say that a subspace \mathfrak{M} of L_{0}^{p} is doubly invariant if
(i) \mathfrak{M} is closed in L_{b}^{p} if $1 \leqq p<\infty$ and weak*-closed if $p=\infty$.
(ii) \mathfrak{M} is invariant under multiplication by functions in $A+\bar{A}_{0}$ (where the bar denotes complex conjugation). Say that a subspace \mathfrak{M} of L_{b}^{p} is simply invariant if it satisfies (i) above and

$$
\begin{equation*}
\left[\mathfrak{M} A_{0}\right]_{2} \subsetneq \mathfrak{M} \tag{ii'}
\end{equation*}
$$

where [$]_{2}$ denotes the L_{b}^{2}-closure. The purpose of this paper is to prove the following theorem.

THEOREM 1. The simply invariant subspaces \mathfrak{M} of $L_{i j}^{p}(1 \leqq p \leqq \infty)$ are precisely the subspaces of the form

$$
\boldsymbol{U} \cdot H_{b_{1}}^{p} \oplus \widehat{\mathscr{S}} L_{b_{b}}^{p}
$$

where \mathbb{G} is a measurable range function, and \boldsymbol{U} is a measurable oprator function whose values are isometries of an auxiliary Hilbert space \mathfrak{h}_{1} into \mathfrak{h} with range perpendicular to $\mathfrak{(5}$ a.e.

For the circle $|z|=1$, this theorem was proved in Helson [2] for $p=2$. The analogous theorem for doubly invariant subspaces was proved in Srinivasan [3] and Hasumi and Srinivasan [1]. Our discussion was suggested by that of Helson [2]. We first give a proof of the theorem for the case of $p=2$ and for general case apply the interpolation method of Srinivasan and Wang [4].

THEOREM 2. Every doubly invariant subspace \mathfrak{M} of $L_{b}^{p}(1 \leqq p \leqq \infty)$ is of the form $\mathbb{C B} L_{\mathfrak{y}}^{p}$ for some measurable range fuaction $\mathfrak{B} ; \mathfrak{M}$ determines \mathfrak{G} uniquely.

Sketch of the Proof for the case of $p=2$. Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be some fixed c.n.o.s. for \mathfrak{h} and q_{k} be the projection of the constant function e_{k} on \mathfrak{M}. Each q_{k} is defined a.e.on X and all q_{k} 's together. Let $\mathfrak{G}(x)$ be the closed linear span of $\left\{q_{k}(x)\right\}_{k=1}^{\infty}$ in \mathfrak{h}. Then $\mathfrak{G H}(x)$ is defined a.e. We conclude that
(i) ${ }^{(5)}$ is measurable
(ii) $\mathfrak{M}=\left\{f \in L_{b}^{2} ; f(x) \in \mathscr{G}(x)\right.$ a.e. $\}$.

We shall refer to Srinivasan [3] for the details of the proof of Theorem 2.
Let \mathfrak{M} be a closed subspace of $L_{\mathfrak{h}}^{2}$. The range function $\$ 5$ associated with the smallest doubly invariant subspace containing \mathfrak{M}, we shall call the range function of \mathfrak{M}.

Proposition 3. Let \mathfrak{M} be a closed subspace of $L_{\mathfrak{k}}^{2}$, and let $\mathbb{3}$ be the range function of \mathfrak{M}, then

$$
\mathscr{G}(x) \subset\left[\left\{f(x) ; f \in \mathfrak{M},\|f(x)\|_{\mathfrak{G}}<\infty\right\}\right]_{\mathfrak{g}} \quad \text { a.e. }
$$

where $[\quad]_{\mathfrak{h}}$ denotes the closed linear span in \mathfrak{G}.
PROOF. Let $\mathfrak{M}_{-\infty}$ be the smallest doubly invariant subspace containing \mathfrak{M}. Then

$$
\mathfrak{M}_{-\infty}=\left\{f \in L_{\hat{b}}^{2} ; f(x) \in \mathscr{C}(x) \quad \text { a.e. }\right\}
$$

by Theorem 2. Now we define $\mathbb{S}(x)=\left[\left\{f(x) ; f \in \mathfrak{M}, \mid f(x) \|_{\mathfrak{h}}<\infty\right\}\right]_{\mathfrak{b}}$. Clearly $\mathfrak{S}(x) \supset \mathfrak{G}(x)$ a.e. Indeed, there exist $q_{k} \in \mathfrak{M}_{-\infty}$ such that $\mathfrak{G}(x)=\left[\left\{q_{k}(x)\right\}_{k=1}^{\infty}\right]_{\mathfrak{g}}$ a.e. by the construction of (5) (See Srinivasan [3]). Hence

$$
\mathfrak{H}(x) \subset\left[\left\{f(x) ; f \in \mathfrak{M}_{-\infty} ;\|f(x)\|_{\mathfrak{h}}<\infty\right\}\right]_{\mathfrak{g}} \quad \text { a.e. }
$$

Since $\left[\left(A+\bar{A}_{0}\right) \mathfrak{M}\right]_{2}=\mathfrak{M}_{-\infty}$, we have

$$
\left[\left\{f(x) ; f \in \mathfrak{M}_{-\infty} ;\|f(x)\|_{\mathfrak{h}}<\infty\right\}\right]_{\mathfrak{h}}=\mathbb{S}(x) \quad \text { a.e. }
$$

we conclude $\mathscr{G}(x) \subset \subseteq(x)$ a.e.
Lemma 4. We put $Z(f)=\{x \in X ; f(x)=0\}$ and $K=\bigcap_{f \in A_{0}} Z(f)$, then $m(K)$ $=0$.

Proof. Suppose $m(K)>0$. We take a measurable set E such that E contains K and put $\mathfrak{M}=C_{E} \cdot L^{2}(d m)$ (where C_{E} denotes the characteristic function of E), then \mathfrak{M} is a doubly invariant subspace in $L^{2}(d m)$. Hence $\left[A_{0} \mathfrak{M}\right]_{2}=\mathfrak{M}$. Thus any $f \in \mathfrak{M}$ vanishes on $E^{c} \cup K$. We conclude that

$$
\mathfrak{M} \subset C_{E \cap K^{c}} L^{2}=C_{E-K} L^{2} \mp C_{E} L^{2}=\mathfrak{M}
$$

which is a contradiction.

PROPOSITION 5. Let \mathfrak{M} be a closed subspace of L^{2}, then \mathfrak{S} associated with \mathfrak{M} in the proof of Proposition 3 coincides with that of $\left[A_{0} \mathfrak{M}\right]_{2}$ a.e.

Proof. The assertion follows from Lemma 4.
Proof of Theorem 1 (the case of $p=2$). Let \mathfrak{M}_{∞} be the largest doubly invariant subspace which is contained in \mathfrak{M} and let $\mathfrak{M}_{-\infty}$ be the smallest doubly invariant subspace containing \mathfrak{M}. Clearly $L_{\emptyset}^{2} \supset \mathfrak{M}_{-\infty} \nsupseteq \mathfrak{M} \not \ddagger \mathfrak{M}_{\infty} \supset\{0\}$. We put $\mathfrak{R}=\mathfrak{M} \ominus \mathfrak{M}_{\infty}$.
(i) Since \mathfrak{M} is simply invariant, it is easy to see that \mathfrak{N} is simply invariant.
(ii) From the maximality \mathfrak{M}_{∞}, it follows $\mathfrak{N}_{\infty}=\{0\}$.
(iii) By Theorem 2, $\mathfrak{M}_{\infty}=\widehat{\$} L_{\emptyset}^{2}$ for some measurable range function $\mathbb{8}$.
(vi) If $f \in \mathfrak{N}, g \in \mathfrak{M}_{\infty}$, then $f \perp \xi g$ for all $\xi \in A+\bar{A}_{0}$.

Hence

$$
\int\left(f(x), g(x)_{\bullet} \bar{\xi}(x) d m(x)=0 \quad\left(\forall \xi \in A+\bar{A}_{0}\right)\right.
$$

and so $(f(x), g(x))=0$ a.e. on X. We have $f(x) \perp \mathscr{G}(x)$ a.e. and the range of \mathfrak{R} is perpendicular to \mathbb{E} a.e.
(v) Let $\mathfrak{N} \supseteq[A \mathfrak{N}]_{2}=R_{0}$ By the invariance of \mathfrak{N} and the closedness of \mathfrak{N}, $\left[A R_{0}\right]_{2} \subset \mathfrak{N}$. Let $g \in \mathfrak{M} \ominus\left[A R_{0}\right]_{2}$. Then

$$
0=\int(g, \xi q) d m=\int \bar{\xi}(g, q) d m \quad\left(\forall \xi \in A, q \in R_{0}\right)
$$

Also since $A_{0} g \subset\left[A_{0} \Re\right]_{2} \perp R_{0}$, we have

$$
0=\int(\eta g, q) d m=\int \eta(g, q) d m \quad\left(\forall \eta \in A_{0}, q \in R_{0}\right)
$$

So

$$
0=\int \xi(g, q) d m \quad\left(\forall \xi \in A_{0}+\bar{A}, q \in R_{0}\right),
$$

and $(g(x), q(x))=0$ a.e. on X for any $q \in R_{0}$. We conclude that $g(x)$ is orthogonal to the range function of R_{0} a.e. Now the range function of $R_{0}=\mathfrak{N} \ominus\left[A_{0} \mathfrak{M}\right]_{2}$ coincides with that of \mathfrak{N}. Indeed $\left(R_{0}\right)_{-\infty}=\mathfrak{R}_{-\infty} \fallingdotseq\left(\left[A_{0} \mathfrak{N}\right]_{2}\right)_{\infty}$ and $\mathfrak{N}_{\infty}=\{0\}$ by (ii). Hence $g(x)$ is orthogonal a.e. to the range function of \mathfrak{N}. But $g \in \mathfrak{R}$, we have $g=0$ a.e. It follows that $\mathfrak{R}=\left[A R_{0}\right]_{2}$.
(vi) If $u, v \in R_{0}$ and $\int(u, v) d m=c$, then $(u(x), v(x))=c$ a.e. Indeed since $R_{0}=\mathfrak{N} \ni\left[A_{0} \mathfrak{N}\right]_{2}$,

$$
\int \xi(u, v) d m=0 \quad\left(\forall \xi \in A_{0}\right)
$$

Let $f \in A$, then $f-\int f d m \in A_{0}$, and by the above formula,

$$
\int f \cdot(u, v) d m=c \cdot \int f d m
$$

Hence $\int f\{(u, v)-c\} d m=0$ for all $f \in A$. Similarly we have $\int \bar{\eta}\{(u, v)-c\} d m$ $=0$ for all $\eta \in A_{0}$. Thus

$$
\int f \cdot\{(u, v)-c\} d m=0 \quad\left(f \in A+\bar{A}_{0}\right) .
$$

We conclude that $(u(v), v(x))=c$ a.e.
(vii) Now we regard R_{0} as a Hilbert space and denote it by \mathfrak{H}_{1}, abstractly. Let U the operator which maps u of \mathfrak{h}_{1} to u of R_{0} by considering u as an element of R_{0}. (Essentially U is the identity operator.) Extend U to an operator of $L^{2}(d m) \otimes \mathfrak{h}_{1}$ by setting

$$
U\left(\sum_{j=1}^{N} f_{j} \otimes u_{j}\right)(x)=\sum_{j=1}^{N} f_{j}(x) u_{j}(x) .
$$

The extended operator U is an isometry of $L^{2} \otimes \mathfrak{h}_{1}$ into $L_{\mathfrak{b}}^{2}$. Indeed in the expression of $\sum_{j=1}^{N} f_{j} \otimes u_{j}$ we may consider that $\left(u_{i}, u_{j}\right)=\delta_{i j}$ by the definition of tensor products. Thus by (vi) we have

$$
\begin{aligned}
& \left\|\sum_{j=1}^{N} f_{j} \otimes u_{j}\right\|_{L \mathfrak{\xi}_{1}}^{2}=\sum_{j=1}^{N} \int\left|f_{j}\right|^{2}\left(u_{j}, u_{j}\right)_{\mathfrak{h}_{1}} d m=\sum_{j=1}^{N} \int\left|f_{j}\right|^{2} d m \\
= & \sum_{i, j=1}^{N} \int f_{j}(x) \bar{f}_{i}(x)\left(u_{j}(x), u_{i}(x)\right)_{\mathfrak{j}} d m=\int\left\|\sum_{j=1}^{N} f_{j}(x) u_{j}(x)\right\|_{\mathfrak{j}} d m \\
= & \left\|\sum_{j=1}^{N} f_{j}(x) u_{j}(x)\right\|_{L_{\mathfrak{\xi}}^{2} .}
\end{aligned}
$$

Hence U has a unique extension to an isometry of $L_{b_{1}}^{2}$ into $L_{b_{b}}^{2}$. We also denote this extended isometry by U.
(viii) $U H_{l_{1}}^{2}=\left[A R_{0}\right]_{2}=\mathfrak{N}$. Because if $A \otimes \mathfrak{h}_{1} \ni f=\sum_{j=1}^{N} f_{j} \otimes u_{j}$, then by the definition of U

$$
U(f)(x)=\sum_{j=1}^{N} f_{j}(x) u_{j}(x) \in\left[A R_{0}\right]_{2} .
$$

Therefore $U H_{\hat{y}_{1}}^{2} \subset\left[A R_{0}\right]_{2}$. On the other hand, for $h=F g \in A R_{0}\left(F \in A, g \in R_{0}\right)$, we put $f=F \otimes g$, then $f \in H_{\hat{1}_{1}}^{2}$ and $U(f)=h$. Hence $\left[A R_{0}\right]_{2} \subset U H_{\mathfrak{h}_{1}}^{2}$.
(ix) For $x \in X$, we define an operator $\boldsymbol{U}(x)$ of \mathfrak{h}_{1} into \mathfrak{h} by $\boldsymbol{U}(x) u=u(x)$ for $u \in \mathfrak{h}_{1}=R_{0} \subset L_{\mathfrak{y}}^{2}$. It is easy to see that for almost all $x \in X$, this operator $\boldsymbol{U}(x)$ is measurable and isometric. Now we have that for all $F \in L_{h_{1}}^{2}$,

$$
(U F)(x)=\boldsymbol{U}(x) \quad F(x)
$$

Indeed this holds for constant functions by definition, and for $F \in\left(A+\overline{A_{0}}\right) \otimes \mathfrak{h}_{1}$ because the construction of U. Finally the formula holds on all of $L_{b_{1}}^{2}$ by continuity. This clompletes the proof for the case of $p=2$.

Lemma 6. Let $1 \leqq p<2$ and $1 / r+1 / 2=1 / p$. If $f \in L_{b}^{p}$ and $f \notin\left[A_{0} f\right]_{p}$, then $f=F h$ where $h \in H^{2}$ is outer ${ }^{(*)}$ and $F \in[f A]_{p} \cap L_{\emptyset}^{r}$.

Proof. We put that

$$
\begin{aligned}
& f_{1}(x)=\|f(x)\|_{1}^{p / 2} \\
& f_{2}(x)= \begin{cases}0 & \text { if } f_{1}(x)=0 \\
\frac{f(x)}{f_{1}(x)} & \text { if } f_{1}(x) \neq 0\end{cases}
\end{aligned}
$$

Then $f_{1} \in L^{2}, f_{2} \in L_{\mathfrak{k}}^{r}, f=f_{1} f_{2}$ and $f_{1} \notin\left[f_{1} A_{0}\right]_{2}$. Hence by the factorization Lemma of the scalar case, we have $f_{1}=q h$ where $q \in\left[f_{1} A\right]_{2}$ is unitary and $h \in H^{2}$ is outer. Define $F=q f_{2}$, then $F \in L_{h}^{r}$ and $F \in[f A]_{p}$. (See[4]).

Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be some fixed c.n.o.s. for \mathfrak{h}. We define $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}$ by $f(x)$

[^0]$=\sum_{n=1}^{\infty} f_{n}(x) e_{n}$ in the algebraic sense.
Lemma 7. Let $1 \leqq p \leqq \infty$.
(i) If $f \in L_{b}^{p}$, then $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, \quad f_{n} \in L^{p}$
(ii) If $f \in A_{\mathfrak{b}}$, then $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, f_{n} \in A$
(iii) If $f \in H_{l}^{p}$, then $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, f_{n} \in H^{p}$, in particular,
if $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, f_{n} \in H^{2}$ and $\quad \sum_{n=1}^{\infty}\left|f_{n}\right|^{2} d m<\infty$, then $f \in H_{h}^{2}$.
PROOF. (i) is trivial. We shall prove (ii). If $g \in A \otimes \mathfrak{h}$, then $g=\sum_{j=1}^{N} f_{j}^{\prime} \otimes u_{j}$ $\left(f_{j}^{\prime} \in A, u_{j} \in \mathfrak{h}(j=1,2, \cdots, N)\right.$. If we express u_{j} as $u_{j}=\sum_{n=1}^{\infty} \alpha_{n}^{(j)} e_{n}$, then
$$
g(x)=\sum_{j=1}^{N} f_{j}^{\prime}(x) \sum_{n=1}^{\infty} \alpha_{n}^{(i)} e_{n}=\sum_{n=1}^{\infty}\left\{\sum_{j=1}^{N} \alpha_{n}^{(j)} f_{j}^{\prime}(x)\right\} e_{n}
$$

Since $f_{n}=\sum_{j=1}^{N} \alpha_{n}^{(j)} f_{j}^{\prime} \in A, g$ has the expression $g=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, f_{n} \in A$. Now for $f \in A_{\mathfrak{y}}$, there exist $g_{i}=\sum_{n=1}^{\infty} g_{n}^{(j)} \otimes e_{n} \in A \otimes \mathfrak{h}$ such that $g_{i} \rightarrow f$ (unif.). If we put $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, f_{n} \in L^{2}$ then

$$
\left\|f(x)-g_{i}(x)\right\|_{\mathfrak{h}}^{2}=\sum_{n=1}^{\infty}\left|f_{n}(x)-g_{n}^{(i)}(x)\right|^{2} \geqq\left|f_{n}(x)-g_{n}^{(i)}(x)\right|^{2} \quad(n=1,2, \cdots)
$$

It follows that $f_{n} \in A$. The proof of (iii) is similar and the last assertion follows from Lemma 8 .

Lemma 8. Let $1 \leqq p<\infty$. $H_{\mathfrak{y}}^{p}=\left[H^{p} \otimes \mathfrak{h}\right]_{p}$.
Proof. $H_{\mathfrak{y}}^{p} \subset\left[H^{p} \otimes \mathfrak{h}\right]_{p}$ is clear. Conversely, if $f \in H^{p} \otimes \mathfrak{h}, f=\sum_{j=1}^{N} f_{j} \otimes u_{j}$ then for any $\varepsilon>0$, there exists $g_{j} \in A$ such that $\left\|f_{j}-g_{j}\right\|_{p}<\varepsilon$. We have that
$g_{j} \otimes u_{j} \in A_{b}^{p}$ and $\left\|g_{j} \otimes u_{j}-f_{j} \otimes u_{j}\right\|_{p}<\varepsilon\left\|u_{j}\right\| .(j=1,2, \cdots, N)$. Therefore $f_{j} \otimes u_{j} \in$ $\left[A_{\mathfrak{h}}\right]_{p}(j=1,2, \cdots, N)$. Hence $\sum_{j=1}^{N} f_{j} \otimes u_{j} \subset[A]_{p}$ and $H^{p} \otimes \mathfrak{h} \subset H_{\mathfrak{h}}^{p}$. Thus $\left[H^{p} \otimes \mathfrak{h}\right]_{p}$ $\subset H_{b}^{p}$.

Lemma 9. Let $1 \leqq p \leqq \infty$. Then

$$
H_{\mathfrak{h}}^{p}=\left\{f \in L_{\mathfrak{b}}^{p} ; \int(f, \bar{g}) d m=0\left(\forall g \in A_{\mathfrak{h}, 0}\right)\right\},
$$

where $A_{\mathfrak{y}, 0}$ is defined by $A_{0} \otimes_{\lambda} \mathfrak{h}$.
Proof. Let $f \in A_{\mathfrak{h}}, f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}\left(f_{n} \in A, n=1,2, \cdots\right)$ and let $g \in A_{\mathfrak{j}, 0} \quad g$ $=\sum_{n=1}^{\infty} g_{n} \otimes e_{n},\left(g_{n} \in A_{0} ; n=1,2, \cdots\right)$. Then we have

$$
\int(f, \bar{g}) d m=\sum_{n=1}^{\infty} \int f_{n} g_{n} d m=\sum_{n=1}^{\infty} \int f_{n} d m \int g_{n} d m=0
$$

From this, it is easy to see that $\int(f, \bar{g}) d m=0$ for $f \in H_{b}^{p}$. Let $p=2$. We take $f \in L_{\mathfrak{h}}^{2}$ such that $\int(f, \bar{g}) d m=0$ for all $g \in A_{\mathfrak{y}, 0}$. We put $f=\sum_{n=1}^{\infty} f_{n} \otimes e_{n}, f_{n} \in L^{2}$, then we have $\sum_{n=1}^{\infty} \int\left|f_{n}\right|^{2} d m=\int\|f\|_{\mathfrak{j}}^{2} d m<\infty$. Since $\xi \otimes e_{n} \in A_{\mathfrak{y}, 0}$ for all $\xi \in A_{0}$,

$$
0=\int\left(f, \bar{\xi} \otimes e_{n}\right) d m=\int f_{n} \xi d m(n=1,2, \cdots)
$$

Hence $f_{n} \in H^{2}$ and by Lemma 7 (iii), $f \in H_{\mathfrak{h}}^{2}$. Next let $p=1$. Take $f \in L_{\mathfrak{h}}^{1}$ such that $\int(f, \bar{g}) d m=0$ for all $g \in A_{\mathfrak{l}, 0}$. We may assume that $f \notin\left[f A_{0}\right]_{1}$. From Lemma 6, it follows that $f=F h$ where $F \in[f A]_{1} \cap L_{9}^{2}$ and $h \in H^{2}$ is outer. There exist $\xi_{\alpha} \in A$ such that $\xi_{\alpha} f \rightarrow F$ in $L_{\mathfrak{j},}^{1}$. Therefore for all $g \in A_{\mathfrak{y}, 0}$, we have

$$
\int\left(\xi_{\alpha} f, \bar{g}\right) d m=\int\left(f, g \bar{\xi}_{\alpha}\right) d m=0
$$

Hence $\int(F, \bar{g}) d m=0\left(\forall g \in A_{\mathfrak{l}, 0}\right)$. By the case of $p=2$, it follows that $F \in H_{\mathfrak{g}}^{2}$.

Now,

$$
f=F h \in H_{0}^{2} \cdot H^{2} \subset H_{1}^{1} .
$$

The case of $p=\infty$ follows immediately from the definition of H_{b}^{∞} and the above case. For the other case we shall show $H_{y}^{p}=H_{g}^{1} \cap L_{b}^{p}$, then the proof will be complete. Let $1<p<2$. For $f \in H_{\emptyset}^{1} \cap L_{\xi}^{p}$, we may assume $f \notin\left[f A_{0}\right]_{p}$ and by Lemma 6, one have $f=F h$ where $F \in[f A]_{p} \cap L_{9}^{r}$ and $h \in H^{2}$ is outer. Since $r>2, F \in L_{h}^{2}$ and since $f \in H_{b}^{1}, F \in[f A]_{p} \subset H_{\emptyset}^{1}$. Therefore $F \in H_{b}^{1} \cap L_{\emptyset}^{2}=H_{\emptyset}^{2} \subset H_{h}^{p}$ $\left(p<2\right.$!). Hence $f=F h \in F H^{2}=F[A]_{2} \subset[F A]_{p} \subset H_{h}^{p}$. Thus $H_{h}^{p} \supset H_{h}^{1} \cap L_{h .}^{p}$. The converse is trivial. Let $2<p<\infty$. We put $1 / p+1 / q=1$. In this case again $H_{b}^{p} \subset H_{\emptyset}^{1} \cap L_{b}^{p}$ is clear, and suffices to show that if $H_{b}^{p} \perp g \in L_{b}^{q}$, then $g \perp H_{b}^{1} \cap L_{b .}^{p}$. By the case of $p=1$, it follows that $\bar{g} \in H_{b, 0}^{1}$ where $H_{\mathfrak{b}, 0}^{1}$ is the L_{b}^{1}-closure of $A_{\mathfrak{y}, 0}$. As $1<q<2$, by the above case, $\bar{g} \in H_{b, 0}^{1} \cap L_{b,}^{q}=H_{b, 0}^{q}$. So there exist $g_{n} \in A_{b 0}$, such that $g_{n} \rightarrow \bar{g}$ in L_{b}^{q}. Hence

$$
0=\int\left(h, \bar{g}_{n}\right) d m \rightarrow \int(h, g) d m
$$

for all $h \in H_{h}^{1} \cap L_{b j}^{p}$. So the proof is completed.
PRoof of Theorem 1 (the case of $1 \leqq p<2$). Put $\mathfrak{R}=L_{\mathfrak{g}}^{2} \cap \mathfrak{M}$. It is clear that \mathfrak{N} is $L_{i j}^{2}$-closed subspace and $\left[A_{0} \mathfrak{N}\right]_{2} \subset \mathfrak{N}$. We wish to show that \mathfrak{N} is simply invariant. As \mathfrak{M} is simply invariant, there exists an $f \neq 0$ shch that $f \in \mathfrak{M}$ $-\left[A_{0} \mathfrak{M}\right]_{p}$. So $f \notin\left[f A_{0}\right]_{p}$, and by lemma $6, f=F h$ where $h \in H^{2}$ is outer and $F \in[f A]_{p} \cap L_{\mathfrak{b}}^{r} \subset \mathfrak{M} \cap L_{\mathfrak{h}}^{2}=\mathfrak{N}$. Also $F \notin\left[\mathfrak{R} A_{0}\right]_{2}$, since $f \notin\left[\mathfrak{M} A_{0}\right]_{p}$. Thus \mathfrak{M} is simply invariant and by the case of $p=2$, we have

$$
\mathfrak{N}=\boldsymbol{U} \cdot H_{j_{j}, 1}^{2} \oplus \widehat{\mathfrak{G}} L_{\hat{i}}^{2} .
$$

Now $\mathfrak{M} \supset \boldsymbol{U} \cdot H_{1,1}^{p} \oplus \widehat{\mathfrak{B}} L_{b}^{p}$ is trivial. To see the reverse inclusion, let $f \in \mathfrak{M}-\left[\mathfrak{M} A_{0}\right]_{p}$, $f \neq 0$. Then already we have $f=F h$ where $h \in H^{2}$ is outer and $F \in[f A]_{p} \cap L_{b}^{r}$. It follows that

$$
f=F h \in F[A]_{2} \subset[F A]_{p} \subset[\mathfrak{S} A]_{p} \subset[\mathfrak{M}]_{p}=\boldsymbol{U} \cdot H_{b_{1}}^{p} \oplus \widehat{\mathfrak{S}} L_{b^{0}}^{p}
$$

Thus $\mathfrak{M}-\left[\mathfrak{M} A_{0}\right]_{p} \subset \boldsymbol{U} \cdot H_{y_{1}}^{p} \oplus \widehat{\mathscr{S}} L_{\mathfrak{g},}^{p}$. The algebraic sum

$$
\left.\left\{\mathfrak{M}-\mathfrak{M} A_{0}\right]_{p}\right\}+\left[\mathfrak{M} A_{0}\right]_{p} \subset \mathfrak{M}-\left[\mathfrak{M} A_{0}\right]_{p}
$$

shows that $\left[\mathfrak{M} A_{0}\right]_{p} \subset \boldsymbol{U} \cdot H_{b_{1}}^{p} \oplus \mathfrak{S} L_{\mathfrak{b}}^{p}$. We get that

$$
\mathfrak{M}=\left\{\mathfrak{M}-\left[\mathfrak{M} A_{0}\right]_{p}\right\} \cup\left[\mathfrak{M} A_{0}\right]_{p} \subset \boldsymbol{U} \cdot H_{b_{1}}^{p} \oplus \mathfrak{S} L_{\mathfrak{b}}^{p} .
$$

(the case of $2<p \leqq \infty$) Put $1 / p+1 / q=1$. We define \mathfrak{M} by $\left[\mathfrak{M} A_{0}\right]_{p}=$ $\left\{f \in L_{\hat{y}}^{q} ; \int(f, \bar{g}) d m=0,\left(\forall g \in\left[\mathfrak{M} A_{v}\right]_{p}\right)\right\}$, then it is easy to check that \mathfrak{N} is a simply invariant subspace of $L_{b j}^{q}$. By the case of $1 \leqq p<2$, we have

$$
\mathfrak{R}=\boldsymbol{U} \cdot H_{\mathfrak{y}_{1}}^{q} \oplus \widehat{\mathscr{G}^{\prime}} L_{\mathfrak{b}^{q}}^{q}
$$

So $\left[A_{0} \mathfrak{M}\right]_{p}=\boldsymbol{U} \cdot H_{\mathfrak{h}_{1}, 0}^{p} \oplus \widehat{\mathscr{S}} L_{\mathfrak{b}}^{p}$, and $\mathfrak{M} \supset \boldsymbol{U} \cdot H_{\mathfrak{b} 1}^{p} \oplus \widehat{\mathscr{S}} L_{b}^{p}$.
Now for $f \in \mathfrak{M}$, put

$$
F_{1}=\widehat{\mathscr{S}} \perp f, \quad F_{2}=\widehat{Љ y} f .
$$

We shall show that $F_{1} \in \boldsymbol{U} \cdot H_{b 1}^{p}$. For $f=F_{1}+F_{2}$, we have $\xi f=\xi F_{1}+\xi F_{2}$ and $\xi f \in\left[\mathfrak{M} A_{0}\right]_{p}$ for all $\xi \in A_{0}$. But $\xi F_{2} \in \widehat{\S} L_{b,}^{p}$, so $\xi F_{1} \in \boldsymbol{U} \cdot H_{h, 0}^{p}$. Let $\Theta=\boldsymbol{U}^{*} F_{1}$. For fixed $g \in A_{\mathfrak{h}_{1}, 0}$,

$$
\int \xi(\boldsymbol{\Theta}, \bar{g}) d m=\int\left(\boldsymbol{U}^{*} \xi F_{1}, \bar{g}\right) d m=0 \quad(\forall \xi \in A) .
$$

Because, for $g=\sum_{j=1}^{N} g_{j} \otimes u_{j} \in A_{0} \otimes \mathfrak{h}_{1}$, we get

$$
\int\left(\boldsymbol{U}^{*} \xi F_{1}, \bar{g}\right) d m=\sum_{j=1}^{N} \int\left(g_{j} \xi F_{1}, \boldsymbol{U} u_{j}\right) d m=0
$$

by Lemma 9 . We conclude that for each $g \in A_{\mathfrak{h}_{1}, 0},(\Theta, \bar{g}) \in H_{0}^{p}(d m)$ as a scalar function. Thus

$$
\int(\Theta, \bar{g}) d m=0 \quad\left(\forall g \in A_{\mathfrak{y}, 0}\right)
$$

Hence $\Theta \in H_{\mathfrak{b}_{1}}^{p}$, so $\boldsymbol{U} \boldsymbol{U}^{*} F_{1} \in \boldsymbol{U} \cdot H_{\mathfrak{b}_{1}}^{p}$. Since $F_{1}(x)$ is contained in the range of $\boldsymbol{U}(x), \boldsymbol{U} \boldsymbol{U}^{*} F_{1}=F_{1}$ and $F_{1} \in \boldsymbol{U} \cdot H_{b_{1}}^{p}$.

The following theorem is a generalization of Theorem 6 of Srinivasan [3] for a general Dirichlet algebra.

THEOREM 10. A measurable range function $\mathbb{8}$ is of constant dimension a.e. if and only if it is the range function of a simply invariant subspace \mathfrak{M} such that $\mathfrak{M}_{\infty}=\{0\}$.

Proof. The sufficiency follows from Theorem 1. We shall show the
necessity. Since (6) is of constant dimension, there exist $q_{k} \in L_{b}^{2}(k=1,2, \cdots)$ such that $\left\{q_{k}(x)\right\}$ is a c.n.o.s. of $\mathfrak{G}(x)$ a.e. (Srinivasan [3], Theorem 5). We put $\mathfrak{M}=\left[\left\{A q_{k} ; k=1,2, \cdots\right\}\right]_{2}$ and let $f \in \mathfrak{M}$. Then f has the expression

$$
f=\sum_{k=1}^{\infty} f_{k} q_{k}, f_{k} \in H^{2}, \sum_{k=1}^{\infty} \int\left|f_{k}\right|^{2} d m<\infty
$$

Now $f=\sum_{k=1}^{\infty} f_{k} C_{E_{k}} \otimes e_{k}$. For $n=1,2, \cdots, e_{n}-q_{n} \perp\left[\left\{(A+\bar{A}) q_{k}\right\}_{k=1}^{\infty}\right]_{2} \supset \mathfrak{M}$ by the construction of q_{k} (see [3]). So for all $g \in A_{0}$,

$$
\begin{aligned}
0 & =\int\left(f, \bar{g}\left(e_{n}-q_{n}\right)\right) d m=\int f_{n} C_{E_{n}} g d m-\int f_{n} g d m \\
& =\int f_{n} C_{E_{n}} g d m-\int f_{n} d m \int g d m=\int f_{n} C_{E_{n}} g d m
\end{aligned}
$$

Thus $\int f_{n} C_{E_{n}} g d m=0$ for all $g \in A_{0}$ and $n=1,2, \cdots$, and so $f_{n} C_{E_{n}} \in H^{2}$. Of course, $\sum_{n=1}^{\infty} \int\left|f_{n} C_{E_{n}}\right|^{2} d m<\infty$, and $f \in H_{\natural}^{2}$ by Lemma 7. Therefore $\mathfrak{M} \subset H_{\natural}^{2}$ and $\mathfrak{M}_{\infty}=\{0\}$.

References

[1] M. Hasumi and T. P. Srinivasan, Doubly invariant subspaces II, Pacific Journ. Math., 14(1964), 525-535.
[2] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964.
[3] T.P.SRINIVASAN, Doubly invariant subspaces, Pacific Journ. Math., 14(1964), 691-697.
[4] T.P.Srinivasan and J.-K. Wang, Weak* Dirichlet algebras, Proc. Tulane Symposium on Function Algebras, 1966, 216-249.

The College of General Education
Tôhoku University,
SEndai, Japan.

[^0]: (*) A function $h \in H^{2}$ is said to be outer if $[h A]_{2}=H^{2}$. For the details of the scalar case, see Srinivasan and Wang [4].

