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Our subject is a theorem on simply invariant subspaces of Lf, the usual
Lr-space taking values in a Hilbert space §). Let X be a compact Hausdorff
space and A a Dirichlet algebra on X. We shall fix a non-negative finite Borel
measure 7m on X such that

f— f Fdm (fe A)

defines a multiplicative linear functional on A. Define A, to be the set

Ao={feA;ffdm=0}.

Let ) be a separable Hilbert space and let L§ (1 = p= <o) denote the space
of §-valued functions on X which are weakly measurable and whose norms

are in scalar L?(dm). L} is a Hilbert space for the inner product

(9= [ () g@ndm

where the inner product on the right is the one in §. We define Ay by ARH,
the completion of the algebraic tensor product A®Y under the uniform norm
in C(X, 9) (the space of all §-valued continuous functions on X). For 1 = p<oo

we define Hj by
Hj = [As),
the closure of Ay in Lf and we define Hj by

Hy = HinL;.
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We write H? instead of Hj in the case of )=C. Call ® a range function if &
is a function on X a.e.(dm) to the family of closed subspaces of ). Two range
functions which agree a.e. are regarded as the same function. ® is measurable
if the orthogonal projection G(x) on ®(x) is weakly measurable in the operator

sense. We shall denote by & the operator on L} defined by (Bf)(x)

=G(x)f (x) a.e. Say that a subspace M of Lj is doubly invariant if
(1) M is closed in Lf if 1 = p<<oo and weak*-closed if p=oco.
(ii) M is invariant under multiplication by functions in A + A,

(where the bar denotes complex conjugation). Say that a subspace M of Lj is
simply invariant if it satisfies (i) above and

(i) [(MA LM

where [ ], denotes the Li-closure. The purpose of this paper is to prove
the following theorem.

THEOREM 1. The simply invariant subspaces M of Lil = p= o) are
precisely the subspaces of the form

U-IE®SL:

where & is a measurable range function, and U is a measurable opecrator
Sfunction whose values are isometries of an auxiliary Hilbert space Y, into
Y with range perpendicular to & a.e.

For the circle |z|=1, this theorem was proved in Helson [2] for p=2.
The analogous theorem for doubly invariant subspaces was proved in Srinivasan
[3] and Hasumi and Srinivasan [1]. Our discussion was suggested by that of
Helson [2]. We first give a proof of the theorem for the case of p=2 and
for general case apply the interpolation method of Srinivasan and Wang [4].

THEOREM 2. Every doubly invariant subspace M of Ll = p= o) is

of the form OL] for some measurable range fuaction ®; M determines &
uniquely .

SKETCH OF THE PROOF FOR THE CASE OF p=2. Let {e;}2, be
some fixed c.n.o.s. for § and ¢, be the projection of the constant function
e, on M. Each g, is defined a.e.on X and all g,’s together. Let ®& (x) be the

closed linear span of {g,(x)};z; in §. Then ®(x) is defined a.e. We conclude
that

(i) © is measurable
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(ii) M= {fe Ly; Ax) e &(x) a.e.}.
We shall refer to Srinivasan [3] for the details of the proof of Theorem 2.

Let M be a closed subspace of Li. The range function & associated with
the smallest doubly invariant subspace containing M, we shall call the range
function of M.

PROPOSITION 3. Let M be a closed subspace of Ly, and let & be the
range function of M, then

B(x) C [{fx); fe M, D)y < =}y ae.
where [ Iy denotes the closed linear span in Y.

PROOF. Let M_., be the smallest doubly invariant subspace containing
. Then

M_.. = {fely; A)e®x) ael

by Theorem 2. Now we define S(x)=[{f(x); feM, |fx)]y <o}y Clearly
S(x)D®(x) a.e. Indeed, there exist g, <M_.. such that &(x) = [{g(2)} el
a.e. by the construction of & (See Srinivasan [3]). Hence

S@)cl{f(@); feMoc; | D)y < oo})y  ace.
Since [(A+A)M],=M_.., we have

[{fl@); feMus If2)]s < oo}]y = S(z) ae.

we conclude (x)Cc &(x) a.e.

LEMMA 4. We put Z(f)={zx < X; Ax)=0} and K= [\ Z(f), then m(K)

Jedo

=0.

PROOF. Suppose m(K) > 0. We take a measurable set E such that E
contains K and put M=C;- L*(dm) (where C, denotes the characteristic
function of E), then M is a doubly invariant subspace in L*(dm). Hence
[AM],=M. Thus any f< M vanishes on E°UK. We conclude that

MC Cragel? = Cpx L*FCrL? =M

which is a contradiction.
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PROPOSITION 5. Let M be a closed subspace of L?, then & associated
with M in the proof of Proposition 3 coincides with that of [AM], a.e.

PROOF. The assertion follows from Lemma 4.

PROOF OF THEOREM 1 (the case of p=2). Let M., be the largest doubly
invariant subspace which is contained in I and let M _.. be the smallest doubly

invariant subspace containing M. Clearly Lj>M .2 M P M.. D {0}. We put
N=MSM...

(i) Since M is simply invariant, it is easy to see that N is simply
invariant.

(ii) From the maximality M., it follows N..= {0}.

(iii) By Theorem 2, EUEM=@L§ for some measurable range function ®.
(vi) If feM, geM.., then f1Eg for all £c A+A,.

Hence

f (f@), ga)E@dm(x) =0 (VEec A+A,)

and so (f(x), 9(x))=0 a.e. on X. We have f(x) L ®(z)a.e. and the range of N is
perpendicular to ® a.e.

(v) Let NRS[AN],=R, By the invariance of N and the closedness of N,
[AR,],CN. Let ge RES[AR,);,. Then

0= [ ta)im= [E(g.adm (VE< A g<Ry).
Also since A,gC[AN]; LR, we have

0= [ adn=[wg0dn  (yedyqeR)

So 0= f &g, q)dm (VEec Ay+ A, geRy),

and (¢(x),q(x))=0 a.e. on X for any geR,. We conclude that g¢g(x) is
orthogonal to the range function of R, a.e. Now the range function of
Ry=MS[AR], coincides with that of N. Indeed (Ry)_=N_.O([AN],). and
N..= {0} by (ii). Hence ¢(x) is orthogonal a.e. to the range function of M. But
geN, we have ¢g=0 a.e. It follows that N=[AR],.
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(vi) If v,veR, and f (u, v)dm=c, then (u(x), v(x))=c a.e. Indeed since
R,=RO[AMN],,

[ewwam=0  (vica)

Let fe A, then f— f fdm e A,, and by the above formula,

f flu, vydm=c- [ fdm.

Hence f fi(u, v)—c}dm=0 for all fe A. Similarly we have f {(u,v)—c}dm
=0 for all ¢ A,. Thus

ff- (w0)—c}dm=0  (fe A+A).

We conclude that (w(v),v(x))=c a.e.

(vii) Now we regard R, as a Hilbert space and denote it by Y,
abstractly. Let U the operator which maps « of Y, to # of R, by considering
u as an element of R,. (Essentially U is the identity operator.) Extend U to
an operator of L*(dm)®9Y, by setting

U (; fi® u,)(x) = Z Six)u(x).

The extended operator U is an isometry of L*®Y, into L§. Indeed in the

N

expression of ) f,Qu; we may consider that («;, #;)=38,; by the definition of
j=1

tensor products. Thus by (vi) we have

S| =% [l undn= X [1f)dn

2
LY, j=1 j=1

=% [ f@f () w@ndm = [

i,j=1

> fla)

i o)

dm
b

2
L[).
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Hence U has a unique extension to an isometry of L%, into L%. We also
denote this extended isometry by U.
N
(viii) UH. =[AR,;=RN. Because if ARY, >f= > fi®u,, then by the
J=1
definition of U

U(f)(x) = 3_ fix)uy(x) € [AR,l..
j=1

Therefore UHj,C[AR,],. On the other hand, for h=Fge AR(Fec A, geR)),

we put f=FQ®g, then f< Hj, and U(f)=h. Hence [AR,],c UH},.

(ix) For € X, we define an operator U(x) of ¥, into Y by U(x)u=u(x)
for uc ), =R,C L%. It is easy to see that for almost all x < X, this operator
U(x) is measurable and isometric. Now we have that for all Fe L%,

UF)(x) =U(x) Flx).
Indeed this holds for constant functions by definition, and for Fe (A+ A,)®Y,

because the construction of U. Finally the formula holds on all of L%, by
continuity. This clompletes the proof for the case of p=2.

LEMMA 6. Let 1 =p<2 and 1/r+1/2=1/p If fe L and f&[A.f],
then f=Fh where he H* is outer™ and Fe<[fA],N Ly.

PROOF. We put that

Silx) = @)l

0 if filx)=0
f 2(x) = .
j_if(% i ()20

Then f e L’ f,e L, f=f,f:and f; &[f14,],. Hence by the factorization Lemma
of the scalar case, we have f,=qgh where q<[f,A], is unitary and A< H*

is outer. Define F=gf,, then Fe Lj and F<[fA], (See[4]).
Let {e,}7_; be some fixed cn.os. for §. We define f= > f,Qe, by fx)

n=1

*) A function A€ F2 is said to be outer if [AA],=F2. For the details of the scalar case, see
Srinivasan and Wang [4].
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= Y fa(x)e, in the algebraic sense.

LEMMA 7. Let 1 = p= oo,
(i) If fe L}, then f= 3 fu®en focL®
(i) If fe Ay, then f= 3 f@en, fnc A

(iii) If fe Hi, then f= ) fuQe,, fn< H? in particular,

n=1

if =3 fuRen fac H and > |f,|’dm <co, then fe Hi.
n=1 n=1

N
PROOF. (i) is trivial. We shall prove (ii). If ge AR, then g= >_ fiQu;
j=1

(fieA u;e h(j=1,2,-++, N)). If we express u; as u; = »_ a{e,, then

n=1

5 = 5 S T aen= T {Z i) o

n=1 \j=1

N oo
Since f,= Y a{’f;<c A, g has the expression g= ) f,Qe,, f,< A. Now for
n=1

Jj=1

fe A, there exist ¢, = > ¢9Re, c AQY such that ¢, — f(unif.). If we put

=2 fa®ey, fne L* then

1f@)— g@)l§ = ij |fal@)—gP(@)|* = | ful)—gP(@)|* (n=1,2,--")

It follows that f,< A. The proof of (iii) is similar and the last assertion
follows from Lemma 8.

LEMMA 8. Let 1 = p<oo. Hy=[H"®Y],.

N
PROOF. H{C[H’®Y], is clear. Conversely, if fe H'®, f=>_ f,Qu;

Jj=1

then for any &> 0, there exists ¢g;¢ A such that |f;—g,ll, <& We have that
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9,:Qu; € Aj and |g,Qu;—f,Qu;|, <&lu,| (j=1,2,+-+, N). Therefore f;Qu; e
. N

[Ap),(j=1,2,+--,N). Hence 3 f,Qu,C[A ], and H*®Hc HE. Thus [H’QY],
Jj=1
C Hj.

LEMMA 9. Let 1= p= co. Then
Hi= (f< If; [ (f,9)dm=0 (Yg Ay ),
where Ay, is defined by A, Y.

PROOF. Let fe Ay, f= 3 fiQe(fncA,n=12---) and let gc Ay, g
n=1

Ms

92y, (g, € Ay;n=1,2,-++). Then we have

n=1

[ toan=3 [fg.am =% [ r.dm [ gam=o.

From this, it is easy to see that f (f,9)dm=0 for f< Hj. Let p=2. We take
fe Li such thatf (f, 9)dm=0 for all ge Ayo. We put f= > f,RQe, focLl?
n=1

then we have >_ | |f,|*dm= f [flsdm <oo. Since EQe, € Ay, forall <A,

0= [ (£E@eIdm= [ fbdmn=1,2- ).

Hence f, < H* and by Lemma 7 (iii), f< Hj. Next let p=1. Take fe Lj such
that f (f,9)dm=0 for all ge Ay, We may assume that f&[fA,);. From

Lemma 6, it follows that f=Fh where Fe[fA};nL; and h< H*® is outer.
There exist £,€ A such that £,f > F in Lj. Therefore for all g € Ay, we have

f (Eafs9)dm= f (f, gE)dm=0.

Hence f (F,§)dm=0 (Yg< Ay,). By the case of p=2, it follows that Fe Hj.
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Now,
f=FhecH,- H'CH,.

The case of p=oo follows immediately from the definition of Hy and the above
case. For the other case we shall show Hj=HjN L}, then the proof will be
complete. Let 1 << p<< 2. For fe HynL{, we may assume f&[fA,], and by
Lemma 6, one have f=Fh where Fe[fA],NL; and he H* is outer. Since
r>2, Fe Lj and since f< H 3, Fe[fAl,c Hy. Therefore Fe Hyn Li=Hj C H}
(p<2!). Hence f=FheFH?=F[A)l,C[FAl,CH}. Thus H{>HynLj. The
converse is trivial. Let 2 < p<<oo. We put 1/p+ 1/¢g=1. In this case again

tC Hyn L] is clear, and suffices to show that if Hf 1 g€ L{, then g 1 Hyn L}. By
the case of p=1, it follows that § € H},, where Hj, is the Li-closure of Ay, As

1 < g <2, by the above case, § € Hj, N L{=Hj},. So there exist g, € Ay, such
that g, —>¢ in L{. Hence

0= [ @.gdm— [ b pdm

for all A€ Hy NL§. So the proof is completed.

PROOF OF THEOREM 1 (the case of 1 = p<2). Put R=LinM. It is

clear that R is Lij-closed subspace and [AN],CN. We wish to show that N is
simply invariant. As 9% is simply invariant, there exists an f==0 shch that fe M
—[AM], So f&[fA,),, and by lemma 6, f=Fh where h< H* is outer and

Fe[fAl,nLj cMnLi=N. Also F&[NA,], since f&[MA,],. Thus N is simply
invariant and by the case of p=2, we have

AN
N=U - H,,®GLj.

Now M>U -HZ’,GB@L@’ is trivial. To see the reverse inclusion, let /'€ M—[MA,],,

J=0. Then already we have f=Fh where h < H* is outer and Fe[fA],NLj.
It follows that

f=Fh e FIA},C[FA],C[$Al,C[R],=U - HL.OGLE.
Thus M—[MA,],cU - HLGOLE The algebraic sum

{Em—ion]p} + [mAO]pCEDE_[S;RAO]p
shows that [RA,],CU - Hj,®HLf. We get that
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M= (M—[MA,],} U[MA,],C U - Hp, DGLE.

(the case of 2 < p=co) Put 1/p+1/9g=1. We define N by [MA,]L=
{fe Lg;f(f, g)dm=0, (Vg < [MA,],)}, then it is easy to check that N is a
simply invariant subspace of Lj. By the case of 1 = p< 2, we have

N=U - Hi,OE LL.
So [AM],=U - HE,,@GLE, and MU - HLOGLE.
Now for fe M, put
F, = @J‘f‘, F, = é\f
We shall show that F,<U-H$}. For f=F,+F, we have £f=§F,+£F, and

Ef € [MA,], for all £< A,. But £F, e ®LL, so £F,cU-HE, Let ®@=U*F,. For
fixed g€ Ay,

[ & 9pm= [ @er, pam=0  (vgea).

-
Because, for g= > ¢9,Qu, € A,Q®Y,, we get

N
[ @er gran= 5 [ er, Uuyam=o

by Lemma 9. We conclude that for each g< Ay, ,, (0, 7)< Hj(dm) as a scalar
function. Thus

[ @ pdn=0 (Vg < Ay0).-
Hence ® € Hj,, so UU*F, € U-Hj,. Since F\(x) is contained in the range of
U(x), UU*F,=F, and F,<U -H},.

The following theorem is a generalization of Theorem 6 of Srinivasan [3]
for a general Dirichlet algebra.

THEOREM 10. A measurable range function & is of constant dimension
ae. if and only if it is the range function of a simply invariant subspace
M such that M..= {0}.

PROOF. The sufficiency follows from Theorem 1. We shall show the
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necessity. Since ® is of constant dimension, there exist g, < L%(k=1,2,--")
such that {g,(x)} is a cn.o.s. of B(x) a.e. (Srinivasan [3], Theorem 5). We
put M=[{Aq,;k=1,2,---}], and let f €« M. Then f has the expression

f= ka‘Ik, S € H?, Z | fel?dm <oo
k=1 k=1

NOW f: Z kaEx®ek' FOI‘ n:1) 2, crC,—q, —I—[{(A+‘4_)qk}loc°=l]2 DM by the
k=1

construction of g, (see [3]). So for all g < A,,
0= [ (£ 5—adm= [ f.Cugdm— [ figam
= ffnCEngdm — ff,,dmfgdm= ff,,CEngdm.

ThusffnCEngdm=0 for all ge Ay and n=1,2,---, and so f,Cs < H*. Of

*dm < oo, and fe Hj by Lemma 7. Therefore Mc Hj and

course, » f | fCh,
n=1
M= {0}.
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