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R.G.Swan has obtained several important results on Grothendieck rings
of a finite group. In this note we derive generalizations of some of his results.
Throughout this note, R denotes a noetherian integral domain and K- denotes
its quotient field. All modules we consider are finitely generated unitary left
modules. If A is a finite R-algebra (or K-algebra), G(A) denotes the
Grothendieck group of A-modules, P(A) denotes the Grothendieck group of
projective A-modules, and C,(A) its reduced class group, i.e, the subgroup
of P(A) generated by the elements of the form [P]—[Q], where P,Q are
projective and K®zP=K® Q.

1. R is called regular if its localization R, is a regular local ring for each
prime ideal p. A regular domain is integrally closed [l. Proposition 4.2]. In
this section we calculate G(Rx) for a regular domain R of prime characteristic
2 and for any finite group 7.

PROPOSITION 1. Any finitelv generated module over a regular domain
R has a finite projective dimension.

PROOF. Let M be such a module and let

———)Xn‘ian_lq e oo X —M—0

be its projective resolution, where we assume every X, is finitely generated.
Let Y, be the kernel of d,. Then Y, is a finitely generated torsion-free R-
module. To show that some Y, is projective, we first prove the following
lemma.

LEMMA. Let R be an integral domain (not necessarily noetherian), and
Y be a finitely generated torsion-free R-module. Let v be a prime ideal of
R. If Y,=R,QzY is R,-projective, then Y is Ry-projective for each q which

does not contain a certain element r&¥p.

PROOF. Let F-5Y—0 be exact where F is a finitely generated free R-

medule. Then the sequence F,25Y,—0 splits by assumption, and we have a
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homcmcerphism gy : Y, —F, such that f,-g,=identity. Let y,, - - -y, be a set of
generzters for Y, and let gy(y,)=v,/r;, where v, ¢ F, r, € R—p. If a prime q does
not contain r=ryry--+7,, it is clear that g,: y,—v,/r; induces a homomor-
phism of Yy into F; which splits f5. Then Y, is R,-projective.

We now continue the proof of Proposition 1. As R, is regular for each p,
it has the finite global dimension [11. Theorem 1]. Therefore Y, , is R,-
projective for some n=n(p). By the lemma there exists an element r=r(p)
not contained in p such that Y, , is R, projective for every q which does not
contain 7(p). As {r(b), p prime} generates a unit ideal, there exist a finite
number of 7(p) which generate a unit ideal. Let » be the maximal value of
corresponding z(p). Then it is clear that Y, , is R,-projective for every prime
p. Then Y, is R-projective by [2. Proposition 2.6].

Let R be a regular domain of prime characteristic #, and let # be a finite
group. Then R contains a prime field F, of characteristic p Let F be the set
of the elements of K which are algebraic over F,. Then F'is a field contained
in R because R is integrally closed. Let N, denote the radical of Fz. Then
N=RX)rN, is the nil-radical of Rr=RQzFr, and

R”/NgR®F(F7T/No)ER®FMI@ AR @R®FMT

holds. Where M,=M(n,, F,) is the total matric algebra of degree n; over a
finite extension field F, of F. R,=R®:F, is an integral domain with the
quotient field K,=K® F,. Then we have

Rn/l\’;’:M(nl,Rl)EB te @M(nr, Rr)’
and so
G(Rn/N)=G(M(n,,R)))® - - - ®G(M(n,, R,)).

As F; is separable over F, any finitely generated R;-module has a finite
projective dimension by Proposition 1,[4. IX. Theorem 7.10] and [6. Proposition 2].
By Morita theorem [9. Theorem 3.4}, it is also true for any finitely generated
M(n,, R;)-module. So G(M(n,, R,))=P(M(n,, R,)) holds by [12. Proposition 11].
Then by [15. Proposition 4.1] and [15. Proposition 1.1],

0—Cy(M(n,, R;)) —G(M(n,, R)) —-G(M(n;, K,))—0
holds. So also holds
0—Cy(Rn/N)—G(Rr/N)—>G(Kn/N)—0.

Now as N is nilpotent, P(Rr)=P(Rn/N) by [3. Lemma 18.1]. This isomorphism
is obtained by corresponding P/NP to any finitely generated projective module
P. If KQn(P/NP)=K®R P/KQ:NP is Krn/KN-free, KQP is Kr-free because
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KN is the radical of K7 So we have an isomorphism Cy(R7)=C,(Rz/N).
There exist natural homomorphisms

G(Rm/N) — G(Rm), G(Km/KN) — G(K).

They are isomorphisms by [7. Proposition 9.4].
Hence

THEOREM 1. Let R be a regular domain of prime characteristic p, and
let m be a finite group. Then we have an exact sequence

0 — Cy(R7) 5 G(R7) — G(Kr) — 0,

where $([P\)—[P,])=[P:/NP,]—[ P,/ NF;].

This theorem generalizes Theorem 1 of [15]. G(R#) has a ring structure
similarly to [13.81] by Proposition 1. If R is a Dedekind ring, ¢ is a ring
homomorphism. In fact C,(Rz)’=(Im¢)?=0 holds. In -order to prove this
analogously to [15. §12], we need only to note that P/NP is R-projective if P
is Rm-projective and

0—> F/NF—P/NP—A/NA—0
is exact if

0-F—>P—-A—0

is exact, F' is Ra-projective and A is of R-torsion. We do not know if it is
true for any regular ring, but we have

THEOREM 2. The ring extension

0—Im ¢ >GRx)>GKr)—0

splits.

PROOF. Every simple Kz-module is of the form K™ which is a minimal
left-ideal of M(n,, K,). Let R,™ be a corresponding ideal of M(n,, R;). Let
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K"® kK™ ~ Z me K™
1

be the decomposition into simple factors as Km-modules. As KN=KQ pF,™,
we can take a F-basis of F;"®,F;” as a K-basis of K;"® K™ As every
simple Fr-module F;™ induces simple Kz-module K,™, the above decomposition
comes from a transformation of F-basis. As F'is contained in R, and a F-basis
of F;™ becomes an R-basis of R,™, this transformation induces a transformation

of R-basis of R,*®zR;". Therefore R;*®zR,”~ >_ m,»R,™ holds, so the corre-
l

spondence K" — R,™ induces a ring homomorphism which splits the ring
extension.

2. Let A be a finite R-algebra. We assume that A is torsion-free as an
R-module and K® A is a separable algebra. Let 0 denote a maximal order
containing A. Then by [8], there exists a commutative diagram with exact

TOWS
W(K® A) —— G,0) —— G(0) — G(KRA) —~ 0
I P I

v

W(K® A) —— G(A) — G(A) —— G(K® A) — 0.
Where W(K® A) is the Whitehead group of K® A-modules, and G,(A), G,(v)

are Grothendieck groups of R-torsion A-modules and o-modules respectively.
@, ¥ are natural homomorphisms. From this diagram we have

G(A)/pG(0) = G(A)/¥G(0).

If R is of Krull dimension one, G,(4)= > G(A/pA), G,(o)= > G(o/po)
v v
where sums are direct sums over all non-zero prime ideals p. Then ¢ is also

a direct product of @, :G(0/po) = G(A/pA). So we have

G(A)/YGo)= 3~ G(A/pA)/9,G(o/po)  (direct).

Z denotes the rational integers and Q denotes the rationals. Let A= {a+b./m,
a,b e Z} be a subring of Q(+/m) where m =1 (mod 4). Then o ={a + bl+§/m"

is the ring of integers of Q(a/m). If g #9p =(2,1 + m) is a prime ideal of
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A, A/a=0/00 so that G(4/q9) = ,G(0/qv). It is well known that

5 ($1ﬂ3zifm—::lmod8
po = 20 =
lprime inoif m = 5mod 8.

Hence

0/B, Do/B, ifm=1mod8
0/po =
simple 0-module if 7 =5 mod 8.

Aso/po = A/pPA/p as A-modules,

(= 0if 2 =1 mod 8
GA/m oGl /27 i m=5 mod 8
~ 1Im= .

So we have G(A)=G(0) if m =1mod8 and G(A)/YG(o) = Z/2Z f m=5
mod 8. In the latter case, the sequence

Cy(0) —> G(A) — G(Q(s/m)) — 0
is not exact. As Cy(A) — G(A) factors nto Cy(4) — Cy(0) — G(A), the sequence
Cy(A) —> G(A) — G(Q(+/m)) —> 0

is not exact. This shows the analogy of Theorem 1 of [15] does not hold in
general even if A is commutative (We consider A as a Z-algebra).

3. In this section we consider special cases of Corollary 2 of [15].
T.Obayashi [10] has determined the ring structure of G(Zr) more explicitly
in the case of a finite abelian p-group.

THEOREM 3. Let = be a finite p-group and o be a maximal order of
Qn containing Zn. Then

0 —— Cy(0) — = G(Zx) — G(Qr) — 0
is exact.
PROOF. It suffices to prove that 0— Cy(0) > G(Zr) is exact. Let Z,
denote the ring of the rationals whose denominators are powers of p Then

the sequence

G(Z/ pZym) — G(Zm) —~ G(Zym) — 0
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is exact by [15. Proposition 1.1]. But the unique simple (Z/pZ)w-module is
Z/pZ, and

0 zZ 4

Z Z/pZ—0
is exact. So the class of Z/pZ in G(Zrn) is zero. Therefore G(Zn) = G(Zyn)
holds. In the commutative diagrams
CyZn) — G(Zn) — G(Qr) — 0
l onto I onto ”
0 —> Cy(0) — G(0) — G(Qm) —> 0
Cy(Zn) — G(Zn) — G(Qm) —=0

I

0— CO(Z(p)”) - G(Z(p)”) G(Q”) : 0

all the rows are exact by [15. Theorem 1. Proposition 5.1]. The last row is exact
because Z,7 is a maximal order [15. Lemma 5.1]. As Z,7 contains 0, the
kernel of Cy(Zn) — Cy(0) is contained in the kernel of C(Zn)—CyZyn). U
- we show they are equal, Ker(C,(Z7)—G(Zr)) is equal to Ker (Cy(Zn)— Cy(0)).
So G(0) — G(Zn) becomes the isomorphism, and we have the assertion.

Let [P]—[F] be an element of the kernel of Cy(Zrn)— Cy(Zy7). Here P
is a projective Zz-module and F is a free Zz-module. By assumption

Z(ﬂ)® Z‘PEB Z(p)®ZF, = Z(p)®ZF@ Z(p)®2F/

for some free Zz-module F’. This isomorphism, by multiplying some power
of p if necessary, can be assumed to be induced from an injection

@, POF —F&F’

whose cokernel has a finite order of some power of p So we may assume P
is contained in F, and (F': P) is a power of p. Tensoring with o over Zz we
have

@1 0Q p—>07

for some 7. The order of the cokernel is also a power of p and @, is an
injection because 0@ P is Z-torsion-free. In general, let "A- be a semi-simple
algebra over Q, and o its maximal order. Let M be a sub-module of 0 of a
finite index. Put 0" = 0,® - + - Po, for convenience. Then M No, is a submodule
of o, of a finite index and M/Mno, is torsion-free. It is projective because
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0 is hereditary, so M= Mno,&M’'. M’ is isomorphic to the projection of M
into 0, -+ - @®o,. Similarly we have M=M®@..-- DM, where M, is
isomorphic to a submodule of 0; of a finite index. If the index (07:M)is a
power of p, sois every (0,: M;). f A=A,® --- DA, where each A, is a simple
algebra, 0 has corresponding decomposition

o=AD---BU,.

If (0": M) is a power of p every (U, :%U,M;) is also a power of p Applying
the above argument to 0 PCo”, we have

[o®@ P]—[0"] = Z (L] —-1[%0,

where U, is a component of 0 and L;is a left %;-ideal of index of a power of
p. The center K; of every simple component A; of Qxis contained in Q(¢,)
because Qn splits over Q(¢,). Where p" is the order of 7, and ¢, is a primitive
p*-th root of unity. Therefore p has a unique prime factor p; in K,. p, is a
principal ideal generated by Nye,x (1 —&,). If K, is real, it is therefore
generated by a total positive element. Hence if the reduced norm of an ideal
L, is a power of p,, then holds either L, =¥, or L, U, = A, DY, [5.Satz 1.See
also 14]. Therefore [L;]=[¥;] in Cy(¥,) and [0 ® P]—[07]=0 in C,(v) holds. We
have Ker (Cy(Zn)— Cy(Z ) = Ker (Co(Zr) — Cy(0)), and this concludes the
proof . :
It is known that the homomorphism ¢ in the exact sequence

¢
Co(0) — G(Zm) — G(Qm) — 0
is not injective even if 7 is a cyclic group. But we can show

THEOREM 4. The exact sequence

0 Im¢ G(Zn) G(Qr)——0
splits as a ring extension when m is a finite abelian group.

PROOF. Put Q7 =Q,® - - - ®Q,, where every Q, is a field. Let p;:r — Q,
be a corresponding representation. The image of p, consists of roots of unity
in Q,.

If H, is the kernel of p,, G/H, is a cyclic group. This correspondence is
bijective, and Q, = Q(¢,) where ¢, is a primitive (G : H,)-th root of unity.

Let 0, = Z[¢,] and 0; = Z[¢,;] be the rings of integers in Q; and in Q,
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respectively. Let f(X) be an irreducible polynomial over Q such that f{¢;)=0.
Let AX) =g(X)g(X)y +--g(X)" be a factorization into irreducible polynomials
over Q;. Let &, &5, -, & be representatives of their roots. Then

0,®.0; =Z[£,IQ Z[E,]= Z 218, 8]

Let x be an element of n. Then x acts on Z[{,, ¢5] as multiplication by
pi(x)p(xy. If we put H, the kernel of this action, Zz-module structure of
Z[¢, t5] is the same as o,-module structure. As Z[{;, £5] is 0-free, 0,Q0;
is a direct sum of 0;’s. Hence we know that Q, — 0, is a ring homomorphism
which splits the extension .
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